Parallel programming with Skimi

Quentin Carbonneaux Frangois Clément Pierre Weis
INRIA

MaGiX@LiX - September 22nd, 2011

S

Today’s parallelism
Industry standards

OpenMP

@ It is used to parallelize purely sequential code;
@ it is designed for shared memory architectures;
~ @ itis low level and intrusive.

@ Itis a kind of assembly toolbox for parallelism;

@ let you fine tune the parallelism for the application;

@ the code is a mixture of sequential instructions and parallel
primitives;

@ the parallelization process is difficult and lengthy.

@ Both approaches give very efficient parallel programs.)

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 2/26

Today’s parallelism
Design goals for Skiml

The traditional approaches to parallelism exhibit major drawbacks
@ too low level notations and concepts;

@ hence, extremely error prone;
@ hence, very demanding in programming/debugging effort.

.

The Skiml answers

@ separation: the parallelization code does not interfere with the
core of the computational code;

@ high-level: skeleton programming is an abstract description of
parallelism;

@ reliable: functional and statically type checked;

@ well-founded: the sequential and parallel versions of a program
always give the same results (adequacy theorem).

4

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 3/26

Skiml’s parallelism Overview

What Skiml is

As a result, Skiml
@ is high level: based on a compositional combinator algebra;

@ clearly isolates the description of the parallelism in the skeletons
of the algebra;

@ is a powerful tool to describe parallelism
(parallelization code is typically a few tens of lines);

@ is type safe by construction due to the skeleton algebra;
@ is a true Domain Specific Language embeded in OCaml;

@ frees the programmer from all the ugly low level details
(message passing, process management);

@ is not restricted to shared memory systems (works on clusters);
@ is a complete toolkit (compiler + library + runtime system).
™

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 4/26

Skiml’s parallelism Overview

What Skiml is not

On the other hand,
@ Skiml does not give access to processes, shared memory, ... ;
@ hence, Skiml does not permit to encode every parallel scheme;
@ hence, Skiml may not be the fastest parallel toolkit.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 5/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

What is a skeleton

A skeleton is an OCaml value with type (a, ’'b) skel

(its input is of type * a and its output is of type " b).

A skeleton is a function acting on streams (a potentially infinite
sequence of data).

The Skiml library provides skeletal combinators which might either
@ encode some kind of parallelism (data parallelism, program
parallelism);

@ encode some kind of control structure (i f-then-else,
do-while,...).

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011

o

6/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

The farm skeleton combinator
The farm skeleton combinator applies one treatment in parallel to a
flow of data.

val farm : ("a, ’"b) skel x int — ('a, ’'b) skel;;

)
<

Figure: farm (F,2) skeleton graph
™

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 7/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

The pipeline skeleton combinator

The pipeline skeleton combinator modelizes the parallel composition of
functions.

val (|) =
("a, "b) skel — (b, "c) skel — ("a, ’'c) skel;;

R OaIOa

Figure: G | | | F skeleton graph

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 8/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

The loop skeleton combinator

The loop skeleton combinator is a control combinator: it iteratively
applies a skeleton on a data until the resulting value negates a given
predicate.

val loop
("a, bool) skel = ('a, ’"a) skel — ('a, "a) skel;;

Figure: 1oop (P, F) skeleton graph ™

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 9/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

Other skeleton combinators

The & s & skeleton combinator modelizes the parallel application of two
functions.

val (&&&)
("a, "b) skel — ('c, "d) skel —
("a = 'c, "b x "d) skel;;

The +++ skeleton combinator modelizes the parallel application of two
functions on the elements of the direct sum of two sets.

val (+++)
("a, "c) skel — ("b, '"c) skel —
(("a, "b) sum, ’'c) skel;;

where sum is the classical direct sum of sets defined as
type ("a, '"b) sum = Inl of "a | Inr of "b;; i

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 10/26

Skiml’s parallelism Programming with skeletons

Skiml skeletons

Other skeleton combinators

The farm_vector skeleton combinator modelizes the parallel
application of a function to the items of a vector.

val farm_vector
("a, '"b) skel » int — (’a array, ’'b array) skel;;

The rails skeleton combinator modelizes the parallel application of a
vector of n functions to the nitems of an input vector.

val rails
(("a, "b) skel) array — ("a array, ’'b array) skel;;

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 11/26

Skiml’s parallelism Examples

A simple example

Introducing the example

Problem
Find the first element which does not satisify a given property P.
We suppose that P is expensive and must be computed in parallel.
We also have two functions:
@ next_elmwhich gives the “successor” of its input;
@ test_elma predicate function which test if an element satisfies
the property P.

This problem is borrowed from the program PrimeGen that generates
primes satisfying strong cryptographic properties.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 12/26

Skiml’s parallelism Examples

A simple example

The actual Skiml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 13/26

Skiml’s parallelism Examples

A simple example

The actual Skiml code

In sequential C, this actually boils down to a simple while loop:

do {
elm = next_elm(elm);

} while (test_elm(elm) == True);

In Skiml, the program uses the 1oop skeleton, with a predicate
described as a parallel pipeline:

let find_skl nw =
loop (farm_vector (test_elm, nw) ||| fold_or,
next_elms) in

The Skiml compiler can compile this program for both sequential and
parallel executions.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 13/26

Skiml’s parallelism Examples

Domain Decomposition problems using Skiml (1)

Skiml was developed to cope with scientific computing problems and in
particular domain decomposition problems.

Domain decomposition algorithm

A computation needs to be performed on a grid (domain) splitted in
different small subdomains.

Domain decomposition algorithms perform a sequence of rounds built
of two steps:

@ each processor run a step of a numerical scheme on its
subdomain;

@ border information is exchanged between processors.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 14 /26

Skiml’s parallelism Examples

Domain Decomposition problems using Skiml (2)

Figure: Computation using a domain decomposition algorithm
i}

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 15/26

Skiml’s parallelism Examples

Domain Decomposition problems using Skiml (3)

Skiml provides a library of derived operators written in terms of
composition of the basic skeletons.

The make_domain skeleton is specific to decomposition domain
algorithms.

Given a vector of skeleton workers, the connectivity of the
subdomains, and a stopping criterion, the make_domain skeleton
combinator creates a skeleton implementing the appropriate domain
decomposition algorithm.

type ("a, ’'"b) worker_spec =
("a border list, 'a * ’'b) skel x int list

val make_ _domain
(("a, "b) worker_spec) array —->
("b array, bool) skel ->
("a array, ('a » ’'b) array) skel

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011

o

16/26

Skiml’s parallelism Inside Skiml

The Skiml distribution

Skiml is a set of 4 components written both in OCaml and Skimi:
@ a compiler (sklmlc);
@ a core library of basic skeletons;
@ an extra library of derived skeletons;
@ a parallel process manager (sk1lmlrun).

Skiml is free software available at http://sklml.inria.fr/.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 17 /26

Skiml’s parallelism Inside Skiml

Skiml’s key feature (1)

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 18/26

Skiml’s parallelism Inside Skiml

Skiml’s key feature (1)

Skeletal combinators have simple sequential semantics.

As a consequence, two compilation modes are proposed, a sequential
interpretation of skeletal combinators and a parallel one.

The two semantics in practice

Compile either in parallel mode:

sklmlc -mode par code.ml

Or in sequential mode:

sklmlc -mode seq code.ml

v

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 18/26

Skiml’s parallelism Inside Skiml

Skiml’s key feature (2)

The Skiml system guaranties that:
@ the parallel and sequential programs give the same results;

@ hence, if the code runs properly in sequential mode, it is
guaranteed to be correct in parallel mode.

Hence, the methodoly:
@ develop and debug using the sequential semantics;

© start the heavy parallel computation after changing a flag in the
makefile!

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011

o

19/26

Skiml’s parallelism Inside Skiml

Skiml and OCaml 3.12

Due to its high abstraction level, SkKiml needs advanced features of the
OCaml language:

@ first class modules to emulate GADTSs (3.12);
@ lazy evaluation to represent possibly infinite computations;
@ second rank polymorphism to provide a polymorphic API;

@ polymorphic recursion to uniformly implement the skeletons
(3.12).

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 20/26

Skiml’s parallelism Interacting with Skiml

Skiml and the other languages

Sequential parts of Skiml programs can be written:
@ in pure OCaml;
@ in C, with the standard OCaml Foreign Language Interface;

@ in many languages, with the external data communication layer
associated to Skiml (Pio, the Polyglot I/O library).

Already written code can be parallelized with Skiml!
(In particular, closed or complex codes from third party).

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011

o

21/26

State of the art

Skiml is robust and usable but can be improved:
@ improve the load balancing system;
@ handle and recover from network or machine failures;
@ improve error messages;
@ enrich the library of derived skeletons;
@ evangelism: tell people they must use it!

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 22/26

That’s all folks!

@ Any questions?
@ Want to see some code?

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 23/26

Code appendix
Implementing simple helper skeletons

let projl = skl () -> fun (x, _) —> x;;
let projr = skl () -> fun (_, x) —> X;;
let injl = skl () -> fun x -> Inl x;;
let injr = skl () -> fun x -> Inr X;;

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 24 /26

Code appendix
Implementing a i £_then_else skeleton

let dup = skl () -> fun x -> (x, X);;
let to_sum = skl () ->
fun (x, b) -> if b then Inl x else Inr X

let if _then_else (cond_skl, then_skl, else_skl) =
dup () Il (id () #*x% cond_skl) |||
to_sum () ||| (then_skl +++ else_skl)

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 25/26

Code appendix
Factorial in pure Skiml

let is_gt = skl i -> (<) 1i;;

let con = skl x -> fun _ -> x;;

let minus = skl i -> fun x —> x — 1i;;

let mult = skl () -> fun (a, b) -> a x b;;

let fact =
dup () Il (id () **x con 1) []|
loop
(projl () [l is_gt 1,
dup () |1l ((projl () [I|] minus 1) *xx mult ()))
projr ()

o

QC, FC, PW (INRIA) Parallel programming with Skiml MaGiX@LiX 09/22/2011 26 /26

	Today's parallelism
	Sklml's parallelism
	Overview
	Programming with skeletons
	Examples
	Inside Sklml
	Interacting with Sklml

	Future directions
	End
	Code appendix

