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Chapter 1

General formalism of quantum
computing

1.1 Mixed states

Consider the state |Φ+⟩AB = 1√
2 (|00⟩ + |11⟩) shared between 2 parties Alice and Bob.

How do we describe Alice and Bob’s state locally? Assume Alice measures her state in the
computational basis. From the laws of partial measurement she measures “0” wp. 1

2 and
Bob has the state |0⟩; or she measures “1” wp. 1

2 and Bob has the state |1⟩. If we look

only from Bob’s perspective, and if we define ρB his state, we have ρB =
{

|0⟩ wp. 1
2

|1⟩ wp. 1
2

.

A mixed state (or density matrix) is a clean way of describing probabilistic quantum
states as the one described above. A state

ρ =


|e1⟩ wp. p1

...
|ek⟩ wp. pk

is written ρ =
∑
i pi|ei⟩⟨ei|. If these states are n qubit states, recall Dirac’s notation: |ei⟩

is a column vector of and ⟨ei| is a line vector and |ei⟩⟨ei| is the multiplication of the two
which gives a matrix. For example: |ψ⟩ = α |0⟩ + β |1⟩, then

|ψ⟩⟨ψ| =
(
α
β

)
·
(
α∗ β∗)

=
(
αα∗ αβ∗

βα∗ ββ∗

)
.

A few notable examples on 1 qubit:

|0⟩⟨0| =
(

1 0
0 0

)
; |1⟩⟨1| =

(
0 0
0 1

)
; |+⟩⟨+| = 1

2

(
1 1
1 1

)
; |−⟩⟨−| = 1

2

(
1 −1

−1 1

)
Definition 1.1. A mixed state on n qubits is a matrix ρ =

∑
i pi|ei⟩⟨ei| where each |ei⟩ is

an n-qubit state, each pi ≥ 0 and
∑
i pi = 1.
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Notice that the states |ei⟩ in the decomposition of a mixed state needn’t be orthogonal.
For example:

ρ = 1
2 |0⟩⟨0| + 1

2 |+⟩⟨+| =
(

3/4 1/4
1/4 1/4

)
.

is a valid 1-qubit mixed state.

Properties of quantum mixed states.

• A quantum mixed state ρ is a Hermitian matrix ρ = ρ∗ := ρ⊺. This is because each
|ϕ⟩⟨ϕ| is Hermitian.

• Tr(ρ) = 1 since Tr(|ϕ⟩⟨ϕ|) = 1 for each |ϕ⟩.

• Since ρ is Hermitian it is diagonalizable with real valued eigenvalues, and moreover,
these eigenvalues are non-negative (since the pi ≥ 0 in the definition). This means
we can write ρ =

∑
i λi|ei⟩⟨ei| 0 ≤ λi ≤ 1,

∑
i λi = 1 and the |ei⟩ are pairwise

orthogonal quantum states.

1.1.1 Applying quantum operations on mixed states

A mixed state ρ =
∑
i pi|ψi⟩⟨ψi| is a complete description of the quantum state you have.

Unitaries. Applying a unitary U on a pure state |ψ⟩ gives the state U |ψ⟩ = |ϕ⟩. If we
from a density matrix ρ = |ψ⟩⟨ψ|, then applying a unitary U on this state gives the state
|ϕ⟩⟨ϕ| = U |ψ⟩⟨ψ|U†. More generally, applying U on a state ρ gives the state UρU†.

Projective measurements. Consider a state ρ of n qubits and a basis B = |b1⟩ , . . . , |b2n⟩
of the Hilbert space of n qubits. If you measure ρ in the basis B, you have

Pr[ outcome |bk⟩] =
∑
i

pi| ⟨ψi|bk⟩ |2 = ⟨bk|ρ|bk⟩.

1.1.2 Different mixtures of quantum states can have the same density
matrix

Let ρ1 = 3
4 |0⟩ + 1

4 |1⟩ and ρ2 = 1
2 |0⟩⟨0| + 1

4 |+⟩⟨+| + 1
4 |−⟩⟨−|. We have

ρ1 =
(

3/4 0
0 1/4

)
and

ρ2 =
(

1/2 0
0 0

)
+

(
1/8 1/8
1/8 1/8

)
+

(
1/8 −1/8

−1/8 1/8

)
=

(
3/4 0
0 1/4

)
.

Two different decompositions can lead to the same density matrix. This means that these
two quantum states are the same, they can’t be distinguished one from the other by using
quantum operations.
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1.2 Partial trace

Let’s go back to our original motivation. Assume you have a state |ψ⟩AB =
∑
i,j αi |ei⟩A |i⟩B

shared between 2 parties Alice and Bob. What is the state that Alice has? She has the
mixed state

ρA =
∑
i

|αi|2|ei⟩⟨ei|.

To see this, assume Bob measures his state in the computational basis. He gets outcome
“i” wp. |αi|2 and Alice has the state |ei⟩ which means she has the state ρA. Notice also
that Alice’s state doesn’t depend on whether Bob has measured or not, so we can always
describe Alice’s state as ρA.

The mathematical operation that describes Alice’s reduced state is called the partial trace.
For a (possibly mixed) state ρAB shared between Alice and Bob, we define

TrB(ρAB) =
∑
j

(IA ⊗ ⟨j|)ρAB(IA ⊗ |j⟩). (1.1)

TrB(ρAB) means that we “trace out” Bob’s registers from ρAB (so we keep Alice’s part).
We will rarely use Equation 1.1 directly. Rather, we will use the following results:

• For |ψ⟩AB =
∑
i,j αi |ei⟩A |i⟩B , TrB(|ψAB⟩⟨ψAB |) =

∑
i |αi|2|ei⟩⟨ei|.

• For ρAB =
∑
i pi|fi⟩⟨fi|, TrB(ρAB) =

∑
i piTrB |fi⟩⟨fi|.

With the partial, we are now able to characterize the reduced state of a quantum state
share between different registers.

1.3 Generalized measurements

POVM, for Positive Operator Value Measurements, generalize projective measurements.

Definition 1.2. A POVM is an ensemble of matrices {Mi}i st.
∑
iMiM

†
i = I. Measuring

a state ρ with this POVM gives outcome i wp. pi = tr(ρMiM
†
i ) and conditioned on

obtaining outcome i, the resulting state is

ρi = MiρM
†
i

tr(MiρM
†
i )
.

Remarks.

• A POVM is sometimes defined by the matrices Fi = MiM
†
i . Be careful however, the

probabilities pi depend only on Fi but the resulting states ρi actually depend on the
Mi so using the Fi is fine if you are only interested in the outcome distribution but
you need the Mi is you want to specify the resulting states.

• There is no restriction on the Mi but the Fi = MiM
†
i are positive semi-definite

(hence the name POVM).

• Projective measurements are a special case, where the Mi are projectors (which

implies Mi = MiM
†
i = Fi).
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• Physically, a POVM on a state ρ corresponds to the setting where we add some extra
qubits |0m⟩⟨0m| to ρ, perform a projective measurement and then trace-out some
qubits. So POVM are not more powerful from a physical point of view but are an
elegant and compact form for describing these operations.

1.4 Purifications

A purification |ψ⟩AB of a state ρB satisfies TrA|ψAB⟩⟨ψAB | = ρB . For example, if ρB =∑
i pi|fi⟩⟨fi| then the state |ϕ⟩AB =

∑
i

√
pi |i⟩A |fi⟩B is a purification of ρB .

Proposition 1.3 (Schmidt Decomposition). Let |ψ⟩AB be a state of 2n qubits, where each
register A,B contains n qubits. There exists two basis {|e1⟩ , . . . , |e2n⟩} and {|f1⟩ , . . . , |f2n⟩}
st. |ψ⟩AB =

∑2n

i=1 αi |ei⟩A |fi⟩B . with
∑
i |αi|2 = 1. This decomposition is unique. More-

over,

TrA|ψAB⟩⟨ψAB | =
∑
i

|αi|2|fi⟩⟨fi| ; TrB |ψAB⟩⟨ψAB | =
∑
i

|αi|2|ei⟩⟨ei|.

Proposition 1.4. Assume we have two quantum pure states |ϕAB⟩ and |ψAB⟩ st. TrA(|ϕAB⟩⟨ϕAB |) =
TrA(|ψAB⟩⟨ψAB |) = ρB. There exists a unitary U acting on A st. (U ⊗ I) |ϕAB⟩ = |ψAB⟩.

Proof. We write ρB =
∑
i pi|fi⟩⟨fi| the spectral decomposition of ρB (so all the |fi⟩ are

pairwise orthogonal). This means we can write |ϕAB⟩ and |ψAB⟩ as follows, using the
Schmidt decomposition.

|ϕAB⟩ =
∑
i

αi |ei⟩ |fi⟩

|ϕAB⟩ =
∑
i

α′
i |e′

i⟩ |fi⟩

with |αi| = |α′
i| = √

pi and {|ei⟩} as well as the {|e′
i⟩} each form a basis. This means there

exists a unitary U st. for each i, U |ei⟩ = α′
i

αi
|e′
i⟩. We then immediately have

(U ⊗ I) |ϕAB⟩ = |ψAB⟩ .
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Chapter 2

Distance measures for quantum
states and first notion of quantum
information theory

2.1 How close are two quantum states?

2.1.1 The trace distance

We introduce here the notion of trace distance, which is very useful in determining how
close two mixed states are. We present here basic properties of this distance. More about
the trace distance can be found in [?].

Definition and basic properties

Definition 2.1. For any two quantum mixed states ρ and σ, the trace distance between ρ
and σ is defined as ∆(ρ, σ) = 1

2 ∥ρ− σ∥tr where ∥M∥tr = Tr(
√
M†M).

Since ρ and σ are hermitian, we have

∆(ρ, σ) = 1
2Tr(

√
(ρ− σ)†(ρ− σ)).

Be careful, this doesn’t necessarily imply ∆(ρ, σ) = 1
2Tr(ρ− σ)!

ρ − σ is Hermitian but not necessarily positive. This means we can write ρ − σ =∑
i λi|ei⟩⟨ei| where {|ei⟩}i is a orthonormal basis and the λi ∈ R. We have ∆(ρ, σ) =

1
2

∑
i |λi|.

Notice also that
∑
i λi = Tr(ρ− σ) = Tr(ρ) − Tr(σ) = 1 − 1 = 0.

The trace distance is a distance. Indeed, it satisfies the following properties:

• ∆(ρ, σ) = 0 ⇔ ρ = σ.
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• 0 ≤ ∆(ρ, σ) ≤ 1.

• ∆(ρ, σ) = ∆(σ, ρ).

• ∀ρ, σ, τ, ∆(ρ, τ) ≤ ∆(ρ, σ) + ∆(σ, τ)

Example of Trace distances

• ρ and σ are diagonalizable in the same basis : this means we can write ρ =∑
i pi|ei⟩⟨ei| and σ =

∑
i qi|ei⟩⟨ei| where {|ei⟩}i is a orthonormal basis. In this

case, we have ∆(ρ, σ) = 1
2

∑
i |pi − qi|.

• ρ and σ are two pure states : this means we can write ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|.
In this case, we have ∆(ρ, σ) =

√
1 − | ⟨ψ|ϕ⟩ |2.

• Other example: ρ = |0⟩⟨0|, σ = 3
4 |+⟩⟨+| + 1

4 |−⟩⟨−|. Let’s calculate ∆(ρ, σ) using
the definition. We have

ρ− σ =
(

1 0
0 0

)
−

[
3
4

(
1/2 1/2
1/2 1/2

)
+ 1

4

(
1/2 −1/2

−1/2 1/2

)]
=

(
1 0
0 0

)
−

(
1/2 1/4
1/4 1/2

)
=

(
1/2 −1/4

−1/4 −1/2

)
Calculation tip: at that point, make sure that ρ− σ is Hermitian and that its trace
is 0.

(ρ− σ)†(ρ− σ) =
(

1/2 −1/4
−1/4 −1/2

)
·
(

1/2 −1/4
−1/4 −1/2

)
=

(
5/16 0

0 5/16

)
From there, we have

√
(ρ− σ)2 =

√(
5/16 0

0 5/16

)
=

( √
5/4 0
0

√
5/4

)
which allows us to conclude that ∆(ρ, σ) = 1

2Tr(
√

(ρ− σ)(ρ− σ)†) =
√

5/4.

Invariance over unitary operations. The trace distance has the following property:

Proposition 2.2. For any two quantum mixed states ρ, σ and any unitary operation U , we
have ∆(ρ, σ) = ∆(UρU†, UσU†).

Interpretation of the trace distance

Let’s consider two people Alice and Bob. Alice has bit b unknown to Bob. Suppose now
Alice sends a mixed state ρb that depends on b. With what probability can Bob guess b?
This probability in fully characterized by the trace distance between ρ0 and ρ1. We have:

Proposition 2.3. max(Pr[Bob guesses b]) = 1
2 + ∆(ρ0,ρ1)

2
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Proof. We will not go through the whole proof. However, we’ll show that max(Pr[Bob guesses b]) ≥
1
2 + ∆(ρ0,ρ1)

2 . To do this, we present a measurement for Bob that allows him to guess b

with probability 1
2 + ∆(ρ0,ρ1)

2 .
We write ρ0 − ρ1 =

∑
i λi|ei⟩⟨ei| where {|ei⟩}i is a orthonormal basis and

∑
i λi = 0.

Bob’s strategy is to measure in the {|e1⟩ , . . . , |en⟩} basis. Suppose Bob’s outcome is |ei⟩:

• If λi ≥ 0, Bob’s guess is 0.

• If λi < 0, Bob’s guess is 1.

Let

pi = ⟨ei|ρ0|ei⟩ = Pr[Bob’s outcome is |ei⟩ | Bob receives ρ0]
qi = ⟨ei|ρ1|ei⟩ = Pr[Bob’s outcome is |ei⟩ | Bob receives ρ1]

Notice that we have ⟨ei|ρ0 − ρ1|ei⟩ = λi = pi − qi. We write

Pr[Bob guesses b correctly |b = 0] =
∑
i:λi≥0

pi

Pr[Bob guesses b correctly |b = 1] =
∑
i:λi<0

qi

Since b is a random bit, we have

Pr[Bob guesses b correctly] = 1
2

∑
i:λi≥0

pi + 1
2

∑
i:λi<0

qi

Moreover, we have∑
i

|λi| =
∑
i

|pi − qi| =
∑
i:λi≥0

pi − qi +
∑
i:λi<0

qi − pi

=
∑
i:λi≥0

pi − (1 −
∑
i:λi<0

qi) +
∑
i:λi<0

qi − (1 −
∑
i:λi≥0

pi) using
∑
i

pi =
∑
i

qi = 1

= 2(
∑
i:λi≥0

pi) + 2(
∑
i:λi<0

qi) − 2

From there, we conclude:

Pr[Bob guesses b correctly] = 1
2

∑
i:λi≥0

pi + 1
2

∑
i:λi<0

qi = 1
4

∑
i

|λi| + 1
2 = ∆(ρ, σ)

2 + 1
2

NB: This measurement is optimal for Bob

2.1.2 Unambiguous state discrimination

Assume we have 2 qubits |ϕ0⟩ = |0⟩ and |ϕ1⟩ = cos(θ) |0⟩ + sin(θ) |1⟩. We just saw that
there is a measurement that distinguishes between |ϕ0⟩ and |ϕ1⟩ wp. 1

2 + 1
2
√

1 − cos2(θ) =
1
2 + sin(θ)

2 . The measurement is a projective measurement {E0, E1} st. tr(Ei|ϕi⟩⟨ϕi|) =

9



1
2 + sin(θ)

2 . We are ourselves another question, we want a measurement that maybe succeeds
with a smaller probability but is always correct when it succeeds. More precisely, we want
a measurement that has up to 3 outcomes: “0”, “1” and “2” st. the measurement always
succeeds when measuring “0” or “1”. (the “2” outcome corresponds to unknown). If you
only consider projective measurements, the best outcome is to consider the measurement
{|1⟩⟨1|, 0⃗, |0⟩⟨0|}, and this measurement succeeds wp. 1

2 sin2(θ).
With the use of POVM, we can do much better. Let |f1⟩ = sin(θ) |0⟩ − cos(θ) |1⟩.

We consider the 3 outcome POVM F = {F1, F2, F3} with Fi = MiM
†
i . We take F1 =

1
1+cos(θ)kbf1,, F2 = 1

1+cos(θ) |1⟩⟨1|, F3 = (I − kbf1 − |1⟩⟨1|)}. One can check that F1, F2, F3
are positive semi-definite. We have

tr(|i⟩⟨i|Fi) = sin2(θ)
1 + cos(θ) = 1 − cos(θ)

tr(|i⟩⟨i|F1−i) = 0 for iin{0, 1}

This means the measurements always succeeds if you don’t have a “2” outcome and it
succeeds wp. 1 − cos(θ).

2.2 Fidelity for quantum states

We now present a second notion for quantifying how close two quantum states are, the
fidelity. We will use this notion to analyze more formally cheating possibilities in quantum
bit commitment protocols.

2.2.1 Definition and basis properties

Definition 2.4. For any two quantum mixed states ρ and σ, the fidelity between ρ and σ is
defined as F (ρ, σ) = Tr(

√√
ρσ

√
ρ)

The fidelity has the following properties

• 0 ≤ F (ρ, σ) ≤ 1.

• F (ρ, σ) = 1 ⇔ ρ = σ

• F (ρ, σ)

It seems that the quantity (1 − F (ρ, σ) has similar properties than ∆(ρ, σ). However, the
quantity 1 −F does not satisfy the triangle inequality, meaning we don’t necessarily have

(1 − F (ρ, τ)) ≤ (1 − F (ρ, σ)) + (1 − F (σ, τ))

. However, we have a ’weak’ triangle inequality in the following form

Proposition 2.5. For any states ρ, σ, τ , we have (1−F (ρ, τ)) ≤ 2(1−F (ρ, σ))+2(1−F (σ, τ))
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Example of fidelities

• ρ and σ are diagonalizable in the same basis : this means we can write ρ =∑
i pi|ei⟩⟨ei| and σ =

∑
i qi|ei⟩⟨ei| where {|ei⟩}i is a orthonormal basis. In this

case, we have F (ρ, σ) =
∑
i

√
piqi.

• ρ and σ are two pure states : this means we can write ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|.
In this case, we have F (ρ, σ) = | ⟨ψ|ϕ⟩ |.

Invariance over unitary operations. The fidelity also has the following property:

Proposition 2.6. For any two quantum mixed states ρ, σ and any unitary operation U , we
have F (ρ, σ) = F (UρU†, UσU†).

2.2.2 Purifications and Uhlmann’s theorem

Our goal here is to introduce the notion of purifications. Then we give an interpretation
of fidelity of two states using Uhlmann’s theorem.

Purifications

Definition 2.7. For any state ρB, we say that a bipartite state |ψAB⟩ is a purification of
ρB is TrA(ψAB) = ρ.

Typically, if two players Alice and Bob share a state |ψAB⟩ then ρB = TrA(|ψAB⟩) is
Bob’s reduced density matrix and |ψAB⟩ is a purification of ρB .

For example, if ρB = 3
4 |0⟩⟨0| + 1

4 |1⟩⟨1|, then |ψAB⟩ =
√

3
4 |0⟩ |0⟩ +

√
1
4 |1⟩ |1⟩ is a

purification of ρB . We also have that |ψ′
AB⟩ =

√
3
4 |+⟩ |0⟩ +

√
1
4 |−⟩ |1⟩. This means that

a state ρB can have many purifications.
Fix ρB =

∑
i pi|ei⟩⟨ei|. We have that |ψAB⟩ =

∑
i

√
pi |i⟩ |ei⟩ is a purification of ρB .

In fact, for any orthonormal basis {|fi⟩}i, |ψAB⟩ =
∑
i

√
pi |fi⟩ |ei⟩ is a purification of ρB .

NB: the above holds even if {|ei⟩}i is not a basis.

Uhlmann’s Theorems

We now present an interpretation of the fidelity of quantum states

Theorem 2.8 (Uhlmann’s first theorem). For any two states ρ, σ,

F (ρ, σ) = max
|ψ⟩,|ϕ⟩

| ⟨ψ|ϕ⟩ |

where the maximum is taken over purifications |ψ⟩ of ρ and purifications |ϕ⟩ of σ.

Theorem 2.9 (Uhlmann’s second theorem). For any two states ρ, σ and any purification
|ψ⟩ of ρ, we have

F (ρ, σ) = max
|ϕ⟩

| ⟨ψ|ϕ⟩ |

where the maximum is taken over purifications |ϕ⟩ of σ.
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For example, consider ρ = 1
2 |0⟩⟨0| + 1

2 |1⟩⟨1| and σ = 3
4 |0⟩⟨0| + 1

4 |1⟩⟨1|. Since ρ and

σ are diagonalizable in the same basis, we know that F (ρ, σ) =
√

3
8 +

√
1
8 . Let |ψ⟩ =

1√
2 |00⟩ + 1√

2 |11⟩ and |ϕ⟩ =
√

3
4 |00⟩ +

√
1
4 |11⟩.

|ψ⟩ (resp. |ϕ⟩) is a purification of ρ (resp. σ). Moreover, we have ⟨ψ|ϕ⟩ =
√

3
8 +

√
1
8 .

These purifications are optimal with regards to Uhlmann’s theorem.

2.2.3 Angle distance

As we said previously, the quantity 1 − F is not a distance since it doesn’t satisfy the
triangle inequality. Our goal here is to construct a distance out of the fidelity.

Definition 2.10. For any two quantum states ρ, σ, we define their angle as Angle(ρ, σ) =
Arccos(F (ρ, σ))

Fix two pure states |ψ⟩ and |ϕ⟩ with | ⟨ψ|ϕ⟩ | = cos(α), then Angle(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = α.
The notion of angle for mixed states somehow extends the notion of angle that exists for
pure states.

The angle is a distance Indeed, it satisfies the following properties

• Angle(ρ, σ) = 0 ⇔ ρ = σ

• 0 ≤ Angle(ρ, σ) ≤ π/2

• Angle(ρ, σ) = Angle(σ, ρ)

• Angle(ρ, τ) ≤ Angle(ρ, σ) +Angle(σ, τ)

2.2.4 Fuchs - Van de Graaf inequalities

Finally, we present a relationship between the trace distance of two quantum states and
the fidelity of those states.

Proposition 2.11 ([?]). For any states ρ, σ, we have

(1 − F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1 − F 2(ρ, σ)

or conversely
(1 − ∆(ρ, σ) ≤ F (ρ, σ) ≤

√
1 − ∆2(ρ, σ)

12



Chapter 3

First quantum cryptographic
protocols

3.1 Bit commitment

A bit commitment scheme is a protocol between two parties Alice and Bob, denoted
hereafter A and B. A bit commitment scheme consists of 2 phases; a commit phase and
a reveal phase.

• At the commit phase, Alice commits to a bit b ∈ {0, 1} and Bob should not be able
to guess b at the end of the commit phase.

• At the reveal phase, Alice reveals b. She shouldn’t be able to change her mind about
the bit b she reveals.

Security requirements:

• Completeness: If both players are honest, the protocol should succeed wp. 1.

• Hiding property: If Alice is honest and Bob is dishonest, his cheating probability is

P ∗
B = Pr[ Bob guesses b after the commit phase ].

• Binding property: If Alice is dishonest and Bob is honest, her cheating probability
is

P ∗
A = 1

2 (Pr[ Alice successfully reveals b = 0] + Pr[ Alice successfully reveals b = 1]) .

for the same commit phase. This means that after the commit phase, we want to
bound Alice possibility to reveal both b = 0 and b = 1 successfully.

3.1.1 Generic example of commitment schemes

Let
∣∣ψ0
AB

〉
and

∣∣ψ1
AB

〉
two quantum bipartite states. Consider the following protocol

13



• Commit phase: Alice wants to commit to a bit b. She creates
∣∣ψbAB〉

and sends the

B part to Bob. After the commit phase, Bob has ρb = TrA(
∣∣ψbAB〉

).

• Reveal phase: Alice sends the A part of the quantum state
∣∣ψbAB〉

as well as b. Bob

checks that he has
∣∣ψbAB〉

by projecting the state he has onto
∣∣ψbAB〉

.

Cheating probabilities We define the cheating probabilties for the two players:

• P ∗
A = max(Pr[Alice cheats]) = max

( 1
2 Pr[Alice reveals b = 0] + 1

2 Pr[Alice reveals b = 1]
)

(for the same commit phase)

• P ∗
B = max(Pr[Bob cheats]) = max(Pr[Bob can guess b after the commit phase])

3.1.2 Cheating strategies

Cheating Bob : He has ρb after the commit phas and tries to guess b. We have that

P ∗
B = Pr[Bob can guess b] = 1

2 + ∆(ρ0, ρ1)
2

Cheating Alice: Fix a cheating strategy for Alice and let σ the state that Bob has after
the commit phase. During the reveal phase, is she reveals b = 0 then she sends qubits
such that Bob has a pure state |ϕ0⟩. If she reveals b = 1, then she sends qubits such that
Bob has a pure state |ϕ1⟩.

We have TrA(|ϕ0⟩) = TrA(|ϕ1⟩) = σ. If Alice reveals b = 0, we have

Pr[Bob accepts |b = 0] = |
〈
ϕ0

∣∣ψbAB〉
|2

If Alice reveals b = 1, we have

Pr[Bob accepts |b = 1] = |
〈
ϕ1

∣∣ψbAB〉
|2

Using Uhlmann’s theorem, we have

max
|ϕ0⟩

|
〈
ϕ0

∣∣ψ0
AB

〉
|2 = F 2(σ, ρ0)

where the maximum is taken over purifications |ϕ0⟩ of σ. We also have

max
|ϕ1⟩

|
〈
ϕ1

∣∣ψ1
AB

〉
|2 = F 2(σ, ρ1)

where the maximum is taken over purifications |ϕ1⟩ of σ.
This gives us

1
2 (Pr[Bob accepts |b = 0] + Pr[Bob accepts |b = 1]) = 1

2F
2(σ, ρ0) + 1

2F
2(σ, ρ1)

Since Alice can choose any σ, we have

P ∗
A = max

σ

(
1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1)
)

14



Recall also that

P ∗
B = 1

2 + ∆(ρ0, ρ1)/2

We want to remove the maximization for Alice’s cheating probability. We use the
following Lemma

Lemma 1.

∀σ, 1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1) ≤ 1
2 (1 + F (ρ0, ρ1))

Proof. Use the Angle distance (proof skipped here)

Also, there exists a σ such that 1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1) = 1
2 (1 + F (ρ0, ρ1)). From

there, we conclude that

P ∗
A = 1

2 + F (ρ0, ρ1)
2

P ∗
B = 1

2 + ∆(ρ0, ρ1)
2

Best coin flipping protocols of this type By using the Fuchs - Van de Graaf inequalities,
we have F (ρ0, ρ1) ≥ 1 − ∆(ρ0, ρ1). This implies P ∗

A + P ∗
B ≥ 3/2 or max{P ∗

A, P
∗
B} ≥ 3/4.

Is this tight ? Yes
Consider the states ρ0 = 1

2 |0⟩⟨0| + 1
2 |2⟩⟨2| and ρ1 = 1

2 |1⟩⟨1| + 1
2 |2⟩⟨2|. We can calculate

∆(ρ0, ρ1) = 1
2(|1/2 − 0| + |0 − 1/2| + |1/2 − 1/2|) = 1/2

F (ρ0, ρ1) =
√

1/2 · 0 +
√

0 · 1/2 +
√

1/2 · 1/2 = 1/2

NB: This analysis covers only quantum bit commitment protocols for specific com-
mit/reveal phases. This is not the most general analysis. In fact, there exists interactive
quantum BC protocols with cheating probabiltiies < 3/4.

3.2 Bit commtiment based coin flipping

Here, we show that any bit commitment protocols with cheating probabilities P ∗
A, P

∗
B can

be transformed into a quantum bit commitment scheme with the same cheating probabil-
ities.

Protocol for QCF using QBC

1. Alice picks a random a ∈ {0, 1}. Then, she commits to a using the QBC protocol.

2. Bob sends a random b ∈ {0, 1} and sends b to Alice.

3. Alice reveals a, as described in the QBC protocol.

4. The output of the coin is c = a⊕ b.

15



We can see that

Pr[Bob cheats in the CF protocol] = Pr[Bob guesses a after step 1] = Pr[Bob cheats in the BC protocol].

and

Pr[Alice cheats in the CF protocol] = 1
2 Pr[Alice cheats in the CF protocol |Bob sends b = 0] +

1
2 Pr[Alice cheats in the CF protocol |Bob sends b = 1]

= 1
2 Pr[Alice successfully reveals a = 0] + 1

2 Pr[Alice successfully reveals a = 1]

= Pr[Alice can cheat in the BC protocol]

NB: On the other hand, we don’t have QCF ⇒ QBC.

3.3 Quantum Random Access codes

A quantum encoding x ∈ {0, 1}n → |ψx⟩ on m qubits is called a (n,m, p) −QRAC, if one
can recover any bit xi with probability p when having access to |ψx⟩. (n,m, 1) −QRACs
are impossible for m < n.

Construction of a (2, 1, cos2(π/8))-QRAC We consider the encoding |ψ00⟩ = |0⟩, |ψ01⟩ =
|+⟩, |ψ10⟩ = |−⟩, |ψ11⟩ = |1⟩.

• If I want to learn x1, I measure in the {|v⟩ ,
∣∣v⊥〉

} basis with |v⟩ = cos(π/8) |0⟩ +
sin(π/8) |1⟩ and

∣∣v⊥〉
= sin(π/8) |0⟩ − cos(π/8) |1⟩.

• If I want to learn x2, I measure in the {|w⟩ ,
∣∣w⊥〉

} basis with |w⟩ = cos(π/8) |0⟩ −
sin(π/8) |1⟩ and

∣∣w⊥〉
= sin(π/8) |0⟩ + cos(π/8) |1⟩.

We have

| ⟨v|ψ00|⟩2 = | ⟨v|ψ01⟩ |2 = cos2(π/8)
|
〈
v⊥∣∣ψ10

〉
|2 = |

〈
v⊥∣∣ψ11

〉
|2 = cos2(π/8)

| ⟨w|ψ00⟩ |2 = | ⟨v|ψ10⟩ |2 = cos2(π/8)
|
〈
w⊥∣∣ψ01

〉
|2 = |

〈
w⊥∣∣ψ11

〉
|2 = cos2(π/8)

which shows that this construction is indeed a (2, 1, cos2(π/8))-QRAC.
NB: These measurements are optimal.
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Chapter 4

Quantum key distribution

Key distribution is an important cryptographic primitive, which is defined as follows.

Key distribution

• Alice and Bob communicate over a public and authenticated channel.

• At the end of the scheme, they should agree on a key K ∈ {0, 1}k.
• Any adversary eavesdropping and tampering the channel shouldn’t be
able to have any (or vanishingly little) information about K.

4.1 Encoding bits of key inside qubits

Alice has a string K = k1, . . . , kn which we call the initial key. Her goal is to transmit the
bits of K to Bob in a way that can’t be intercepted without being caught. For each i, She
performs the following encoding:

The BB84 encoding of a bit ki

• Pick a random bi ∈ {0, 1}.
• If bi = 0, construct |ψi⟩ = |ki⟩. If bi = 1, construct |ψi⟩ = H |ki⟩.
• Output |ψi⟩.

This encoding is very simple. You pick a random bi ∈ {0, 1}, and you encode ki in the
computational basis if bi = 0 and in the Hadamard basis if bi = 1.

ki bi |ψi⟩
0 0 |0⟩
0 1 |+⟩
1 0 |1⟩
1 1 |−⟩

17



The full protocol is then the following

The BB84 protocol

• Alice picks a random initial raw key K = k1, . . . , kn uniformly at random.

• For each i ∈ {1, . . . , n}, Alice picks a random bi ∈ {+,×}, constructs |ψi⟩ =
|ki⟩bi and sends |ψi⟩ to Bob.

• Bob picks some random basis b′
1, . . . , b

′
n ∈ {+,×} and measures each qubit |ψi⟩

in the b′
i basis. Let ci be the outcome of this measurement.

• Bob sends to Alice the basis b′ = b′
1, . . . , b

′
n he used for his measurements using

a public channel. Alice sends back the subset I = {i ∈ [n] : bi = b′
i} to Bob.

• Alice then picks a random subset J ⊆ I of size |I|
2 which is the subset of indices

for which Alice and Bob check that there wasn’t any interception and sends J
to Bob. For j ∈ J , Alice also sends kj to Bob.

• For each j ∈ J , Bob checks that kj = cj . If one of these checks fail, he aborts.

• Let L = I\J = l1, . . . , l|L| be the subset of indices used for the final raw key.
We write KA = {kl}l∈L and KB = {cl}l∈L.

• Alice and Bob perform key reconciliation to agree on a key Kraw.

• They perform privacy amplification to ensure that Alice has no information
about the key.

4.1.1 Key reconciliation

The idea of key reconciliation is that KA ∈ {0, 1}m is usually different from KB . How
does that happen? There are two possible scenarios:

• An eavesdropper only intercepted a small number of qubits (so he wasn’t caught
with some constant probability), but disturbed the signal enough st. there is i st.
ki ̸= ci for i ∈ I\J .

• Hardware imperfection in the signal transmission and in the measurement create
some inconsistency.

In order to perform key reconciliation the idea is to use a binary error-correcting code.
For our purposes, an error correcting code is a set C ⊆ {0, 1}m st. minx,y ̸=x∈C |x−y|H = d
for a parameter d of the code called the minimal distance. Alice chooses a code C st.
KA ∈ C. This means that if |KB − KA| ≤ d

2 then Bob can recover KA from KB since it

is the unique element of C at distance at most d
2 . Here are the challenges of this method.

• We must choose a code C with a large enough minimal distance d such that |KB −
KA| < d

2 .

• However, the adversary now knows that KA ∈ C so the size of C must remain very
large. There is a trade-off between the size of C and the minimal distance d.

• Even if the decoding is unique, it has to be computationally efficient. Even if it is
unique, recovering KA from KB can be a very difficult task. For example, if we take
a random code C, this task is NP-hard.
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Basic BB84 protocol

Alice Bob

k1, . . . , kn ←$ {0, 1}
b1, . . . , bn ←$ {+,×}

|k1⟩b1 , . . . , |kn⟩bn

b′
1, . . . , b′

n ←$ {+,×}

∀i, ci ← measure |ki⟩bi in basis b′
i

b′
1, . . . , b′

n

I = {i : bi = b′
i}

J ←$ {S ⊆ I : |S| = |I|2 }

I, J, {kj}j∈J

Check that ∀j ∈ J, kj = cj

“Check passed”

KA = {kl}l∈I\J KB = {cl}l∈I\J

Key reconciliation

Agree on K ∈ {0, 1}k′
Agree on K ∈ {0, 1}k′

Agree on h

Kfinal = h(K) Kfinal = h(K)

Figure 4.1: Description of a basic BB84 quantum key distribution protocol
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There are varieties of choices for this task, for example using LDPC codes.

4.1.2 Privacy amplification

At the end of the reconciliation phase, the eavesdropper Eve could still have a little bit of
information about K. In order to construct Kfinal, we apply a hash function to ensure
that this information is destroyed.
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Chapter 5

Quantum information theory

5.1 Classical entropy

5.2 Classical entropy

Entropy is arguably one of the most important concepts in information theory.

Definition 5.1. Let p = (p1, . . . , pn) be a discrete probability function, so pi ≥ 0 and∑
i pi = 1. The entropy H(p) of p is defined as

H(p) =
n∑
i=1

−pi log2(pi).

The entropy H(p) measures the amount of uncertainty in p. For example, for p =
(1, 0, . . . , 0), we have H(p) = 0. For p = ( 1

2 ,
1
2 , 0, . . . , 0) then H(p) = 1. If p = ( 1

n , . . . ,
1
n )

then H(p) = log2(n) (maximal). The entropy can be informally seen as the amount of
coins required to mimic p.

Other example: p(0) = 3
4 , p(1) = 1

4 so H(p) = 3
4 log(4/3) + 1

4 log(1/4) ≈ 0.811. It
doesn’t seem we can send i with strictly less than 1 bit. How do we interpret H(p) < 1
as a noiseless compression bound? Consider p2(xy) = p(x)p(y) for x, y ∈ {0, 1}. We have
H(p2) = 2H(p). Now, if Alice has i, j wp. p2(i, j) and wants to send these 2 bits, she can
do the following:

1. If (x, y) = (0, 0): send “0”.

2. If (x, y) = (0, 1): send “01”.

3. If (x, y) = (1, 0): send “011”.

4. If (x, y) = (1, 1): send “111”.

We have

Average amount of bits sent = 9
16 + 2 ∗ 3

16 + 3 ∗ ( 3
16 + 1

16) = 27
16 = 1.6875.
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and we have H(p2) ≤ 27
16 < 2. If we take pn, we can find an encoding st. the average

number of bits sent will be closer and closer to H(p). This is Shannon’s noiseless source
coding theorem.

5.2.1 Properties of the quantum entropy

• Let ρ =
∑
i λi|ei⟩⟨ei| a quantum mixed state with it’s spectral decomposition.

• Let U a quantum unitary and let |fi⟩ = U(|ei⟩). Recall that applying U to ρ gives
the state UρU† =

∑
i λi|fi⟩⟨fi|.

• We immediately have H(UρU†) = S(ρ).

• S(ρ) ≥ 0.

• S(A)ρAB
− S(B)ρAB

≤ S(AB)ρAB
≤ S(A)ρAB

+ S(B)ρAB
.

• S(ρA ⊗ ρB) = S(ρA) + S(ρB).

5.2.2 Conditional quantum entropy and conditional mutual information

Definition 5.2. The conditional entropy S(A|B) is defined as

S(A|B)ρAB
:= S(AB)ρAB

− S(B)ρAB
.
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• Unlike classical conditional entropy, the quantum one can be negative! Take for
example ρAB = |Φ+⟩⟨Φ+|. We have S(AB)ρAB

= 0 and S(A)ρAB
= S(B)ρAB

= 1.

• Chain rule:
S(A|C)ρABC

+ S(B|AC)ρABC
= S(AB|C)ρABC

.

• We also have S(A|B)ρABC
≤ S(A)ρABC

and S(A|BC)ρABC
≤ S(A|B)ρABC

. This
implies

S(A|C)ρABC
+ S(B|C)ρABC

≥ S(A|C)ρABC
+ S(B|AC)ρABC

= S(AB|C)ρABC
.

(5.1)

Definition 5.3. The mutual information I(A : B) is defined as

I(A : B)ρAB
= S(A)ρAB

+ S(B)ρAB
− S(AB)ρAB

.

Definition 5.4. The conditional mutual information I(A : B|C) is defined as

I(A : B|C)ρABC
= S(A|C)ρABC

+ S(B|C)ρABC
− S(AB|C)ρABC

.

We have that I(A : B)ρAB
≥ 0 and I(A : B|C)ρABC

≥ 0 from Equation 5.1. One can
check that

I(A : BC) = I(A : B) + I(A : C|B) ≥ I(A : B).

Proposition 5.5 (Pinsker’s inequality). For a quantum state ρAB, we have

I(A : B) ≥ 1
2∆2(ρAB , ρA ⊗ ρB).

5.2.3 The index problem

The index problem; Alice has a uniformly random string x ∈ {0, 1}n. Bob is given a
uniformly random index i. Alice and Bob cooperate and the goal of the index game is for
Bob to output xi. Without any communication, Bob can’t do better than randomly guess
xi so he will succeed wp. 1

2 .
Now, assume Alice sends a quantum pure state |ψx⟩ of m < n qubits to Bob. An

m-qubit state consists of 2m complex numbers so it shouldn’t be hard to encode the
information of each x in a different state |ψx⟩. However, when Bob receives |ψx⟩, he can’t
recover all the amplitudes of |ψx⟩ and he is limited by the laws of quantum measurements
in order to recover x.

We can actually show that for m < n, Bob cannot recover perfectly xi. We will also
give quantitative versions of this result.

Bounding the probability of winning Indexn with m bits of communication Let pi the
probability of winning when Bob has input i. After Alice sends her message, Alice and
Bob share the state

ρ = 1
2n

∑
x∈{0,1}n

|x⟩⟨x|A|ψx⟩⟨ψx|B .
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We have

I(A : B)ρ = S(A)ρ + S(B)ρ − S(AB)ρ = n+ S(B)ρ − n = S(B)ρ ≤ m.

We write A = X1, . . . , Xn, and

I(A : B) = S(A) − S(A|B) = S(A) − S(X1, . . . , Xn|B) ≥ n−
n∑
i=1

S(Xi|B)

=
n∑
i=1

1 − S(Xi|B) =
n∑
i=1

S(Xi) − S(Xi|B) =
n∑
i=1

I(Xi : B)

which gives

1
n

n∑
i=1

I(Xi : B) ≤ m

n
.

Bob can perform a measurement on his part that guesses xi wp. pi on input i. So
after his guess, the state is

ξ = 1
n2n

∑
x∈{0,1}n

i∈[n]

|x⟩⟨x|A ⊗
(

|i⟩⟨i|I ⊗
(
pi|xi⟩⟨xi|G ⊗ ζx,iE + (1 − pi)|xi⟩⟨xi|G ⊗ ζ̃x,iE

))
.

where there registers I,G,E are on Bob’s side. We have

I(Xi : B)ξ ≥ I(Xi : G)ξ = 1 + 1 − (1 +H2(p)) = 1 −H2(pi)

with H2(p) = −p log(p) − (1 − p) log(1 − p). Here, we use

• ξXi
= 1

2 (|0⟩⟨0| + |1⟩⟨1|) .

• ξG = 1
2 (|0⟩⟨0| + |1⟩⟨1|) .

• ξXiG = 1−pi

2 (|00⟩⟨00| + |11⟩⟨11|) + pi

2 (|01⟩⟨01| + |10⟩⟨10|). So H(XiG)ξ = 1 +
H2(pi).

Putting everything together, we have

m ≥
n∑
i=1

(1 −H(pi)).

This gives interesting information. For example, if we want Bob to win wp. 1, we
have necessarily m ≥ n meaning that we cannot perform better than sending the whole
string x. Moreover, if the players want that Bob always succeeds wp. p for each i, we have
necessarily m ≥ n− nH(p). These bounds are not necessarily tight.
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