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Foreword

These lectures notes are intended for Masters students of Sorbonne Université attending
the course Introduction to Quantum Information. This course follows to the Quantum
Circuits and Logic Gates. If you have difficulties understanding some material in these
lecture notes, a good thing to do is to read some other lecture notes where things will
be explained in a different manner and maybe you will get a key information that wasn’t
here. I strongly recommend Ronald de Wolf’s lecture notes1 which cover most of the topics
we will present here and are very well written. You can also check the book Quantum
Information and Quantum Computation by Nielsen and Chuang which is still the reference
textbook for quantum computing. These lecture notes are written on the fly for the course
of winter/spring 2022. There will probably be some typos and mistakes (hopefully not too
many) in the first iterations of these lecture notes. Remarks, comments on these lecture
notes are very welcome, particularly if you find some typos or mistakes. You can contact
me at andre.chailloux@inria.fr.

1https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
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Chapter 1

The quantum Fourier transform

The quantum Fourier will be one of our main tools when constructing quantum algorithms.
It will be at the heart of Shor’s factoring algorithm.

1.1 The classical Fourier transform

Widely used: data compression, signal processing, complexity theory. Here, we will con-
sider only the discrete Fourier transform.

1.1.1 Definition

Fourier transform FN : N ×N unitary matrix, with elements of the same magnitude.

F2 := H = 1√
2

(
1 1
1 −1

)
.

N = 3 (for example): impossible to achieve with real numbers. Use complex numbers.

We will use roots of unity ωN = e
2iπ
N . The discrete Fourier transform FN is defined as

FN := 1√
N


. . .

... . .
.

. . . ωjkN . . .

. .
. ...

. . .

 meaning that for any line j ∈ {0, . . . , N − 1} and any

column k ∈ {0, . . . , N − 1}, we have (FN )jk := ωjkN .

Properties

• Each column Ck = 1√
N


1
ωkN
...

ω
(N−1)k
N

 has norm 1 and any two columns are orthog-
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onal. Indeed

∀k, k′ ∈ {0, . . . , N − 1}, 1
N

N−1∑
j=0

ωjkN ω
−jk′
N = 1

N

N−1∑
j=0

ω
j(k−k′)
N = δkk′ .

1.1.2 Computing the classical Fourier transform

Computing the classical Fourier transform problem

Input: a column vector v =

 v0
...

vN−1

.

Goal: compute v̂ = FN · v.

Naive way: Perform the whole multiplication entry-wise

• O(N) operations (+ and ×) per entry.

• O(N2) operations in total.

Fast Fourier transform

• O(N log(N)) operations in total.

• recursive algorithm.

1.2 The quantum Fourier transform

1.2.1 Definition of the problem

Take N = 2n. Since FN is a N × N unitary matrix, we can interpret it as a quantum
unitary operation acting on n qubits.

Computing the quantum Fourier transform problem

Input: a quantum state |ψ〉 of n qubits.
Goal: output FN (|ψ〉).

How efficiently can we implement this quantum Fourier transform?

• QFT can be implemented with a quantum circuit of size O(n2). The rest of the
chapter will be devoted to the construction of this algorithm.

• Exponentially faster than classical FFT which runs in O(N log(N)).

B In the classical setting, we are given an explicit (written) description of a vector v = v0
...

vN−1

 as an input and ask to have a similar description of the output. In the quantum

setting, we are given a quantum state |ψ〉 =
∑N−1
i=0 vi |i〉 and ask to output the state
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FN (|ψ〉) =
∑N−1
i=0 v̂i |i〉. Notice that we cannot fully recover the vector v̂ =

 v̂0
...

v̂N−1


from FN (|ψ〉).

Even though the speedup is exponential, it doesn’t allow to recover v̂, which makes it
incomparable with the FFT. The quantum algorithm in particular doesn’t help in com-
puting the classical Fourier transform. It will still have other important uses.

1.2.2 Efficient quantum circuit for QFT

Elementary gates

• Hadamard gate H = 1√
2

(
1 1
1 −1

)
.

• Phase rotation Rs =
(

1 0
0 e

2iπ
2s

)
.

• Controlled Rs gate written C-Rs and acting on 2 qubits.

C-Rs(|0〉 |x〉) := |0〉 |x〉 ; C-Rs(|1〉 |x〉) := |1〉Rs(|x〉) which gives C-Rs(|b〉 |x〉) = |b〉 e 2iπbx
2s |x〉 .

For each k, we have FN (|k〉) = 1√
N

∑N−1
j=0 ωjkN |j〉. For any integer j, we write its binary

decomposition j = j1, . . . , jn where j1 is the bit of highest weight. This means we can
write j =

∑n
l=1 2n−ljl. We have

FN (|k〉) = 1√
N

N−1∑
j=0

e
2iπjk

2n |j〉

= 1√
N

N−1∑
j=0

e2iπ(
∑n

l=1
jl2−l)k |j1, . . . , jn〉

= 1√
N

N−1∑
j=0

Πn
l=1e

2iπjl2−lk |j1, . . . , jn〉

=
n⊗
l=1

1√
2

(
|0〉+ e2iπk2−l |1〉

)
To prove the last equality, recall that the tensor product satisfies

(α |0〉+ β |1〉)⊗ (α′ |0〉+ β′ |1〉) = αα′ |00〉+ αβ′ |01〉+ βα′ |10〉+ ββ′ |11〉 .

For any integer k, with binary decomposition k = k1, . . . , kn, we define 0.k := k
2n =∑n

l=1 kl2−l. For example, 0.010 = 1
4 and 0.101 = 5

8 . Notice that

e2iπk2−l = e2iπ(
∑n

m=1
2n−mkm)2−l

= e
2iπ
(∑n

m=n−l+1
km2m−(n−l+1)

)
2−l

= e
2iπ
(∑l

m′=1
kn−m′+12−m

′)
= 0.kn . . . kn−l+1.
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The second equality uses the fact e2iπC = 1 for any C ∈ N which implies that only the

l − 1 bits of k of least weight matter in the term e2iπk2−l . We can therefore rewrite

FN (|k〉) =
n⊗
l=1

1√
2

(
|0〉+ e2iπk2−l |1〉

)
= 1√

2
(|0〉+e2iπ0.kn |1〉)⊗ 1√

2
(|0〉+e2iπ0.kn−1kn |1〉)⊗· · ·⊗ 1√

2
(|0〉+e2iπ0.k1...kn |1〉).

The n = 3 (N = 8) case

From the above, we have

F8(|k1k2k3〉) = 1√
2

(|0〉+ e2iπ0.k3 |1〉)⊗ 1√
2

(|0〉+ e2iπ0.k2k3 |1〉)⊗ 1√
2

(|0〉+ e2iπ0.k1k2k3 |1〉).

Because of this product structure, we can easily construct each qubit separately. Notice
that with the 0.k notation, we can write C-Rs(|b〉 |x〉) = |b〉 e 2iπbx

2s |x〉 = |b〉 e2ixπ·0.0...0b |x〉 .
where 0. 0 . . . 0b︸ ︷︷ ︸

s bits

.

1st qubit:

|k3〉
H−→ 1√

2
(|0〉+ (−1)k3 |1〉) = 1√

2
(|0〉+ e2iπ0.k3 |1〉).

2nd qubit:

|k2〉
H−→ 1√

2
(|0〉+ (−1)k2 |1〉) = 1√

2
(|0〉+ e2iπ0.k2 |1〉)

|k3〉
1√
2

(|0〉+ e2iπ0.k2 |1〉) C-R2−−−→ |k3〉
1√
2

(|0〉+ e2iπ0.k2k3 |1〉)

3rd qubit:

|k1〉
H−→ 1√

2
(|0〉+ (−1)k1 |1〉) = 1√

2
(|0〉+ e2iπ0.k1 |1〉)

|k2〉
1√
2

(|0〉+ e2iπ0.k1 |1〉) C-R2−−−→ |k2〉
1√
2

(|0〉+ e2iπ0.k1k2 |1〉)

|k3〉
1√
2

(|0〉+ e2iπ0.k1k2 |1〉) C-R3−−−→ |k3〉
1√
2

(|0〉+ e2iπ0.k1k2k3 |1〉)

The 3rd qubit is stored in the quantum register where |k1〉 is and uses |k2〉 and |k3〉 as
control qubits. The 2nd qubit is be stored in the quantum register where |k2〉 is and uses
|k3〉 as a control qubit. The 1st qubit is stored where |k3〉 is. In order to do this, we must
first construct the 3rd qubit, then the 2nd and finally the 1st qubit. In order to have the
good ordering of qubits, we end up inverting the order of all the qubits.

The circuit of F8 is the following
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The number of gates used here is 3 + 2 + 1 gates + the gates in the SWAP.

General case

The construction for n = 3 can be extended to any n following the same pattern. The
first qubit will consist only of an H gate while the last qubit will require applying H,
C-R2, . . . , C-Rn. Similarly as in the n = 3 case, we finish by inverting the order of all the
qubits. The total number of gates used is therefore n+n−1+· · ·+1+SWAP = O(n2)gates.

Improvements: we can reduce the number of gates if we allow for some small errors:

• As s grows, C-Rs fastly converges to the identity gate.

• We remove all those gates for s ≥ Ω(log(n)). By a careful error analysis, we can
show that the result will be O( 1

poly(n) ) close to the desired state.

• The total amount of needed gates becomes O(n log(n)) (SWAP is O(n)).

1.3 Phase estimation

Our first protocol is a direct application of the quantum Fourier transform.

Phase estimation

Input: a quantum unitary U acting on n qubits. An eigenvector |ψ〉 of U with
eigenvalue λ given as a quantum state.
Goal: output λ.

Recall that an eigenvector |ψ〉 of U with eigenvalue λ means that U(|ψ〉) = λ |ψ〉. Because
U is a unitary, |λ| = 1 so we can write λ = e2iπφ for some real number φ ∈ [0, 1) ([0, 1[ in
French notation). We assume first that φ can be fully described with l bits of precision,
i.e. there exists a natural number C ∈ N such that φ = C

2l .

We consider a quantum unitary Q satisfying

Q(|k〉 |ψ〉) = |k〉Uk(|ψ〉).

for any k ∈ {0, . . . , 2l − 1} and any state |ψ〉. We perform the following algorithm:
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1. Start from |0〉 |ψ〉 and apply F2l on the first register. The resulting state is

1√
2l

2l−1∑
k=0
|k〉 |ψ〉 .

2. Apply Q on both registers.

1√
2l

2l−1∑
k=0

Uk |k〉 |ψ〉 = 1√
2l

2l−1∑
k=0

λk |k〉 |ψ〉

= 1√
2l

2l−1∑
k=0

e
2iπkC

2l |k〉 |ψ〉 .

3. Apply the inverse Fourier transform F−1
2l on the first register. The resulting state is

|C〉 |ψ〉. It is then easy to recover φ from C.

General case If φ cannot be written with l bits of precision, we consider the closest
approximation of φ of the form C

2l . An error analysis (not detailed here) shows that the

above procedure will find this C with probability at least 4
π2 . By performing several

iterations of this procedure, we can find the correct C, i.e. a good approximation of φ
with a probability that exponentially converges to 1 in the number of iterations.

Efficiency of the algorithm If U can be computed efficiently and if, for any k ∈
{0, . . . , 2l − 1}, Uk can be computed efficiently then Q can be computed efficiently and
the whole algorithm is efficient. This means that if we want our algorithm to run in time
poly(n) (assuming U can be computed in time poly(n)), we have to take l = O(log(n)).leq

1.4 Application: Fourier transform FN for any N ∈ N
In Chapter 1, we showed how to perform the Fourier transform FN when N = 2n for some
n ∈ N. Here, we show how to perform the Fourier transform for any N . FN will act on a
quantum register that can take N values from 0 to N − 1 and

∀k ∈ {0, . . . , N − 1}, FN (|k〉) = 1√
N

N−1∑
j=0

ωjk |j〉 .

where ω := e
2iπ
N . Let U1 and U2 two unitaries that do the following, ∀k ∈ {0, . . . , N − 1}.

U1(|k〉 |0〉) = |k〉FN (|k〉) ; U2(FN |k〉 |0〉) = FN (|k〉) |k〉 .

From those two unitaries, we can perform FN as follows

|k〉 |0〉 U1−−→ |k〉FN (|k〉) SWAP−−−−−→ FN (|k〉) |k〉 U2−−→ FN (|k〉) |0〉 .

what is left to show is how to perform U1 and U2. U1 can be performed quite easily.
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Let SN a quantum unitary such that SN (|0〉) = 1√
N

∑N−1
j=0 |j〉. Since N is not a power

of 2, SN cannot be expressed as Hadamards but we can still easily construct such a unitary.
Let also Omult satisfying Omult(|k〉 |j〉 |0〉) = |k〉 |j〉 |kj mod N〉.

Let’s now construct U1.

1. Start from |k〉 |0〉 |0〉 and apply SN on the second register. The resulting state is

|k〉 1√
N

∑
j

|j〉 |0〉 .

2. Apply Omult on the three registers.

|k〉 1√
N

∑
j

|j〉 |kj mod N〉 .

3. Apply the unitary |x〉 → ωx |x〉 on the third register.

|k〉 1√
N

∑
j

ωkj |j〉 |kj mod N〉 .

4. Apply O−1
mult on the three registers. We obtain

|k〉 1√
N

∑
j

ωkj |j〉 |0〉 = |k〉FN (|k〉) |0〉 .

Swapping registers is then easy. What is left to do is to perform unitary U2. We consider
the unitary Oadd such that Oadd(|k〉) = |k + 1 mod N〉. The idea is that FN (|k〉) is a
eigenvector of Oadd with eigenvalue λk and that it will be easy to recover k from λk. Doing
this in a coherent way will give U2.

First see that

OaddFN (|k〉) = 1√
N

N−1∑
j=0

ωjk |j + 1 mod N〉 = ω−k
1√
N

N−1∑
j=0

ωjk |j〉

which means that FN (|k〉) is an eigenvector of Oadd with eigenvalue ω−k = ωN−1−k. If
we apply the phase estimation from the previous section, with l = dlog(N)e, we obtain

FN (|k〉) |0〉 Phase Estimation with Oadd−−−−−−−−−−−−−−−−−−→ FN (|k〉) |N − 1− k〉 .

Which by applying |N − 1− x〉 → |x〉 gives the correct result. Actually, the phase estima-
tion will only give N − k with some (high) probability so this whole process will construct
an approximation of U2.

Putting everything together, we managed to construct FN (|k〉). This unitary has many
applications, for example for the Discrete Log quantum algorithm.
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Chapter 2

Shor’s quantum factoring
algorithm

Shor’s idea:

• There exists an efficient quantum algorithm for finding the period of a function.

• Factoring can be reduced to period finding i.e. an efficient algorithm for period
finding ⇒ an efficient algorithm for factoring.

Period finding problem

Input: a function f : N → {0, . . . , N − 1} such that ∃r ∈ {0, . . . , N −
1} (unknown) such that
f(a) = f(b)⇔ a = b mod r.
Goal: output r.

2.1 From factoring to period finding

2.1.1 Classical algorithm for factoring a number N using period
finding

Equivalent to finding a non trivial factor of N .

1. Pick a random x ∈ {2, . . . , N − 1}.

2. Calculate x ∧N (efficient, use Euclid’s algorithm).

• if x ∧N = c 6= 1→ c divides N .

• if x ∧N = 1→ continue.

3. Consider the smallest r ∈ {0, . . . , N−1} such that xr = 1 mod N . Since x∧N = 1,
such an r exists.

4. r is the period of the function f(k) = xk mod N . Use the period finding algorithm
to find r. If r is odd, go back to step 1.
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5. Calculate (xr/2 + 1) ∧N and (xr/2 − 1) ∧N . If one of those values is different than
1 or N then this value is a non trivial factor of n. If both of those values are equal
to 1 or N , start again from step 1.

2.1.2 Proof that the algorithm works

The main part of the proof will be the following lemma from number theory. The proof
will be omitted.

Lemma 1. For any odd N , for a randomly chosen x such that x∧N = 1 and r begin the
smallest element in {0, . . . , n− 1} satisfying xr = 1 mod N , the event

E : r is even ∧ (xr/2 + 1) 6= 0 mod N ∧ (xr/2 + 1) 6= 0 mod N

occurs with probability ≥ 1
2 .

If r is even, we have

xr = 1 mod N ⇔ (xr/2 + 1)(xr/2 − 1) = 0 mod N

⇔ ∃k ∈ N∗, (xr/2 + 1)(xr/2 − 1) = kN.

Notice first that (xr/2 + 1) > 0 and we also have (xr/2 − 1) > 0 because x ≥ 2 and r ≥ 2.
If E holds, both (xr/2 +1) and (xr/2−1) are not multiples of N . Therefore, they will both
have a non trivial factor of N and we actually have (xr/2−1)∧N 6= 1 and (xr/2+1)∧N 6= 1.
Conclusion: if E holds then step 5 outputs a non trivial factor of N . Since Pr[E] ≥ 1

2 ,
we require O(1) calls to the period finding algorithm for the algorithm to succeed with a
high (constant) probability.

2.2 Shor’s period finding algorithm

Our goal here is to present Shor’s quantum algorithm for period finding. Let n :=
dlog(N)e, q := dlog(N2)e and Q := 2q ∈ [N2, 2N2]. We have a quantum access to
f : N → {0, . . . , N − 1}. We restrict the input space to q input bits and consider the
quantum unitary

Of : |x〉q |0〉n → |x〉q |f(x)〉n .

The subscripts represent the number of qubits in each register. This means for example
that register |x〉q contains q qubits and register |0〉n contains n qubits.

2.2.1 Algorithm for period finding

1. Initialize the protocol at the state

|0〉q |0〉n .

2. Apply QFTQ on the first register. We get

1√
Q

Q−1∑
a=0
|a〉q |0〉n .
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3. Apply Of on the whole state to obtain

1√
Q

Q−1∑
a=0
|a〉q |f(a)〉n .

4. Measure the second register: it gives some value f(s) for some s < r. Let m :=
#{a ∈ {0, . . . , Q− 1} : f(a) = f(s)}. We have

{a ∈ {0, . . . , Q− 1} : f(a) = f(s)} = {s, s+ r, . . . , s+ (m− 1)r}
= {jr + s}0≤j<m

When measuring f(s) in the second register, the first register collapses to

1√
m

m−1∑
j=0
|jr + s〉 .

5. Apply QFTQ on this first register.

1√
m

m−1∑
j=0

1√
Q

Q−1∑
b=0

e
2iπ(jr+s)b

Q |b〉

= 1√
mQ

Q−1∑
b=0

e
2iπsb
Q

m−1∑
j=0

e
2iπjrb
Q

 |b〉
6. Measure the first register. What is the probability of outputting each specific b?

Special case developed here : r divides Q.

In this case, we have m = Q
r . We have

b is a multiple of
Q

r
⇔ e

2iπrb
Q = 1.

Any such b will therefore have squared amplitude

∣∣∣ 1√
mQ

e
2iπsb
Q

m−1∑
j=0

e
2iπjrb
Q

∣∣∣2

=
∣∣∣ 1√
mQ

e
2iπsb
Q

m−1∑
j=0

1

∣∣∣2
= m

Q
= 1
r

Each b ∈ {0, . . . , Q− 1} which is a multiple of Q
r will be measured with probability

exactly 1
r . Notice also that there are exactly r such multiples, which are the elements
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of {0, Qr , . . . ,
(r−1)Q

r }. Therefore, the measurement will always output a multiple of
Q
r .

Output b : a uniformly random multiple of
Q

r
.

This means there exists a random (unknown) c ∈ {0, . . . , r − 1} such that b = cQ
r .

or equivalently b
Q = c

r .

7. Find r from the above equality. How?

• b,Q are known, c, r are unknown. We can rewrite b
Q = b′

Q′ with b′ ∧Q′ = 1.

• c is a random number in {0, . . . , r − 1}. This implies that c ∧ r = 1 with
probability greater than Ω( 1

log(log(r)) ). When this happens, we necessarily have

c = b′ and r = Q′.

• Check that Q′ is a period of f . If yes: done. If no, go back to step 1.

General case (Sketch) : r does not divide Q.

If we measure the first register, we obtain b such that | bQ −
c
r | ≤

1
2Q with high prob-

ability for some random c. If this is the case, c
r is the only fraction with c ∧ r = 1

and r ≤ N such that | bQ −
c
r | ≤

1
2Q (proof omitted). This is because we chose Q

such that Q ≥ N2.

If we indeed have c ∧ r = 1, which still happens with probability greater than
Ω( 1

log(log(r)) ), we can use the continuous fraction method to find the unique fraction
c
r satisfying | bQ −

c
r | ≤

1
2Q from which we can get r.

DONE :)

Complexity of the period finding algorithm

We apply the above procedure until we find c such that c∧ r = 1. This means we perform
O(log(log(r))) loops. Each loop makes 2 calls to QFTQ and 1 call to Of .

The running time is therefore PFAf ≤ O (log(log(r))(QFTQ +Of )).

2.2.2 Complexity of Shor’s algorithm

Shor’s algorithm: O(1) calls to PFAf with f(k) = xk mod N for some random x.
One can show that Of can be calculated in O(log2(N) log(log(N)) log(log(log(N))))

using efficient squaring. (Perfect) QFTQ is made in O(Q2) = O(log2(N)).
From there, we conclude that the total running time of Shor’s algorithm is

O
(
log(log(r)) ∗

(
log2(N) + log2(N) log(log(N)) log(log(log(N)))

))
≤ O

(
log(n) ∗

(
n2 + n2 log(n) log(log(n))

))
= O(n2polylog(n)).
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Chapter 3

Quantum random walks

3.1 Classical random walks

3.1.1 Introduction

Consider an undirected graph G = (V,E) with N vertices. Suppose at least an ε-fraction
of the vertices are marked.
We consider the following algorithm: start from a specific vertex y

• If y is marked → OK.

• Otherwise: go to a random neighbor of y and continue the random walk.

It is a naive algorithm for finding a marked element. One advantage however is that the
space required is O(log(N)). The algorithm can be useful depending on the data structure
used for encoding the graph.

3.1.2 Analysis of the classical random walk

Here, we only consider d-regular graphs without self loops, i.e. each vertex has exactly d
neighbors.
For such a graph G, we consider the matrix P = 1

dAdj(G), where Adj(G) is the adjacency
matrix of G. By definition, we have

Pxy = 1
d

if (x, y) ∈ E ; Pxy = 0 otherwise.

When performing a random walk on graph, we keep track of the probability of being in

each vertex using a column vector v =

 v0
...

vN−1

 satisfying
∑N−1
i=0 vi = 1.

If we start from a distribution v, P ·v will correspond to the new distribution on vectors
after applying 1 step of the random walk.
For example, we initially start with the vector v0 satisfying v0

y = 1 and v0
x = 0 for x 6= y.

After 1 step of the walk, the new distribution v1 = Pv0 satisfies v1
x = 1

d if (x, y) ∈ E and
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v1
x = 0 otherwise. Similarly, after k steps of the random walk, we are in the distribution
vk = P kv0.

Convergence speed

Starting from any probability distribution vector (pdv) v, how fast do we converge to the

uniform distribution u =


1
N
...
1
N

?

We have to look at the eigenvalues of P . P is a real symmetric matrix. Let λ1 ≥ λ2 ≥
. . . λN the N (not necessarily distinct) eigenvalues of P . Since Pu = u, we have λ1 = 1.
Moreover, a quick look at P tells us that ∀i ∈ {2, . . . , N}, λi ∈] − 1, 1[. Moreover, each
corresponding normalized eigenstate vi for i ∈ {2, . . . , N} is orthogonal to u.
Let δ := λ1 − maxi∈{2,...,N} |λi| = 1 − maxi∈{2,...,N} |λi| the spectral gap of P . δ will
determine at what rate any probability distribution vector v will converge to u. For any
pdv v, we write v =

∑
i αivi and

P kv =
N∑
i=1

αiλ
k
i vi

= u+
N∑
i=2

αiλ
k
i vi

which gives

∣∣∣∣∣∣P k(v)− u
∣∣∣∣∣∣2 =

∣∣∣∣∣∣ N∑
i=2

αiλ
k
i vi

∣∣∣∣∣∣ =
N∑
i=2
|αi|2|λi|2k ≤ (1− δ)2k||v||2 ≤ (1− δ)2k.

If δ is not too small, the convergence rate is very fast. If we take k = ln( 1
η ) 1

δ , we have∣∣∣∣∣∣P k(v)− u
∣∣∣∣∣∣2 ≤ η.

Once we are close to the uniform distribution u, we have an ε chance of hitting a
marked vertex. If we miss, repeat.
Cost of the random walk:

• S (setup): cost to set up an initial v.

• U (update): cost to perform one step of the random walk.

• C (check): cost to check whether a vertex is marked.

Consider a classical search algorithm that starts at v, and then repeats the following until
it finds a marked vertex: check if the current vertex is marked, and if not run a random
walk for roughly 1

δ steps to get close to the uniform distribution. Ignoring constant factors,
the expected cost before this procedure finds a marked item, is on the order of

S + 1
ε

(
C + 1

δ
U

)
.
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3.2 Quantum random walks

We will try to mimic random walks. In a quantum random walk, we will not only keep
track of the current vertex but also of the neighbors (or predecessors). Quantum states:
superposition of elements |x〉 |y〉 where x is the current vertex and y a neighbor of x. In-
stead of looking at the classical probability vector of the current position, we will look at
its quantum superposition.

Quantum walk on d-regular graph

• Input: A graph G = (V,E) which is connected and d-regular. A set of marked
elements M ⊆ V with |M | = ε|V |.

• Goal: Find x ∈M .

A quantum walk will be similar to Grover’s algorithm:

• For all x ∈ V , Let |px〉 =
∑
y∈V

√
Pxy |y〉 = 1√

d

∑
y:(x,y)∈E |y〉.

• Let |U〉 = 1√
N

∑
x∈V |x〉 |px〉. |U〉 = uniform superposition of vertices x with uni-

formly associated neighbors.

• As in Grover, we decompose into the good state (meaning where x is marked) and
the bad state. Let M be the set of marked vertices.

We write |U〉 =
√
|M |
N
|G〉+

√
N − |M |

N
|B〉

with |G〉 = 1√
|M |

∑
x∈M |x〉 |px〉 and |B〉 = 1√

N−|M |

∑
x/∈M |x〉 |px〉.

• We can perform the same reflexions as in Grover’s algorithm to get close to |G〉.

A quantum walk algorithm therefore performs the following:

Quantum algorithm for finding a marked element

1. Setup: construct the state |U〉 =
√
|M |
N |G〉+

√
N−|M |
N |B〉.

2. We perform the following O( 1√
ε
) = O(

√
N
|M | ) times

• Do a reflexion over |B〉 (in the {|B〉 , |G〉} subspace).
• Do a reflexion of |U〉.

3. Measure the first register to see if it is a marked state.

4. The above algorithm will find a marked element with high probability.

How to construct those 2 reflexions?
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Reflexion over |B〉:

• The unitary OZ that performs |x〉 |y〉 → (−1)x∈M |x〉 |y〉 will do the job.

• One can check that OZ(|B〉) = |B〉 and OZ(|G〉) = − |G〉.

• This requires a quantum algorithm that checks whether an element is marked or not:
Quantum Check procedure.

Reflexion over |U〉: This is the part where the quantum walk framework will give an
advantage. In Grover’s algorithm, we performed this reflexion over |U〉 using a circuit
that constructs |U〉. This is can be done with the Setup procedure. We will show however
that there is a more efficient way of performing this reflexion, and this justifies the whole
quantum walk framework.

3.2.1 Reflexion over |U〉
We have

|U〉 = 1√
N

∑
x∈V
|x〉 |px〉 = 1√

N

∑
x∈V
|x〉

∑
y:(x,y)∈E

1√
d
|y〉 = 1√

N

∑
y∈V
|py〉 |y〉 .

To perform a reflexion of |U〉, we first present a unitary W (P ) for which the only eigen-
vector with eigenvalue 1 is |U〉.

Construction of W (P )

• Let A = span{|x〉 |px〉} and B = span{|py〉 |y〉}. Let Ref(A) be the reflexion
through A i.e. ∀ |ψ〉 ∈ A, Ref(A)(|ψ〉) = |ψ〉 and ∀ |ψ〉 /∈ A, Ref(A)(|ψ〉) =
− |ψ〉. Similarly, we define Ref(B).

• W (P ) = Ref(B)Ref(A).

We have |U〉 ∈ A and |U〉 ∈ B so W (P ) |U〉 = |U〉. So we constructed a quantum unitary
W (P ) such that |U〉 is an eigenstate of W (P ) with eigenvalue 1. Recall P = 1

dAdj(G).
Let λ1 = 1 > λ2 > · · · ≥ λN > −1 the N ordered eigenvalues of P . Let θi such that
λi = cos(θi) (θ1 = 0).

Theorem 3.1 (Admitted). The eigenvalues of W (P ) are of the form e±2iθj . Eigenvalue
1 has a unique eigenvector, and it is |U〉. Recall also the definition of the spectral gap δ:
maxi≥2 |λi| ≤ 1− δ. For all j ≥ 2, we also have |θj | ≥

√
2δ.

We use phase estimation (PE) now to perform the reflexion over |U〉. We have a
unitary W (P ) with eigenvectors e±2iθj . Eigenvalue 1 (θ1 = 0) has a unique eigenvector
|U〉 and for j ≥ 2, |θj | ≥

√
2δ.
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Reflexion over |U〉 using PE

1. Start from an eigenvector |Ψ〉 |0〉 of U with eigenvalue e2πiθ.

2. Apply PE with precision
√
δ

2 to get |Ψ〉
∣∣∣θ̃〉 with |θ̃ − θ| <

√
δ

2 .

3. Apply Z2 satisfying Z2(|Ψ〉
∣∣∣θ̃〉) = (−1)|θ̃|>

√
δ

2 |Ψ〉
∣∣∣θ̃〉.

4. Apply PE−1 to get (−1)|θ̃|>
√
δ

2 |Ψ〉 |0〉

Analysis of the unitary:

• If |Ψ〉 = |U〉 then θ = 0 and θ̃ <
√
δ

2 so R(P )(|Ψ〉 |0〉) = |Ψ〉 |0〉.

• If |Ψ〉 is any other eigenvector, |θ| ≥
√

2δ and |θ̃| ≥
√

2δ−
√
δ

2 >
√
δ

2 soR(P )(|Ψ〉 |0〉) =
− |Ψ〉 |0〉. By linearity, this extends to any state orthogonal to |U〉.

• The above unitary is exactly a reflexion over |U〉! Uses O( 1√
δ
) calls to W (P ).

3.2.2 Recap of the random walk

Start from a graph G = (V,E) which is connected and d-regular with an ε-fraction of
marked vertices. Goal: find a marked vertex.

Quantum algorithm for finding a marked element

1. Setup: construct the state |U〉 =
√
|M |
N |G〉+

√
N−|M |
N |B〉.

2. We perform the following O( 1√
ε
) = O(

√
N
|M | ) times

• Do a reflexion over |B〉: uses 1 Check procedure.

• Do a reflexion of |U〉: uses O( 1√
δ
) Update procedures.

3. Measure the first register to see if it is a marked state.

4. The above algorithm will find a marked element with high probability.

Total cost = S +O( 1√
ε

)
(
C +O( 1√

δ
)U
)
. (3.1)

Compare with classical cost S +O( 1
ε )
(
C +O( 1

δ )U
)
.

About the Update procedure: So the update procedure consists of constructing the
unitary W (P ) = Ref(B)Ref(A). Suppose we are able to implement the following two
operations
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1. |x〉 |0〉 → |x〉 |px〉.

2. |0〉 |y〉 → |py〉 |y〉.

Since (1) and (2) prepare a uniform superposition over the neighbors of x and y, respec-
tively, one can think of them as taking one classical walk step “in superposition.” Note
that ref(A) can be implemented by applying the inverse of (1), putting a minus if the
second register is not |0〉, and applying (1). We can similarly implement ref(B) using (2)
and its inverse. Hence we can think of W (P ) = ref(B)ref(A) as corresponding to four
steps of the classical walk in superposition.

In practice, these operations can be constructed from an operation that construct from
a node one of its neighbors (and then can be used in superposition over the possible
neighbors).

3.3 Application: Golden collision finding

We consider an efficiently computable function f : {0, 1}n → {0, 1}n st. there exists
a unique pairs x0, x1 6= x0 st. f(x0) = f(x1). We already saw the BHT algorithm
that succeeds wp. 2n/3 but when we have many (typically O(2n)) collisions. Here, we
only have a single solution so the BHT algorithm won’t work. A priori, we don’t know
how to do better than Grover search on all the input pairs (x0, x1) which takes time

O(
√

22n) = O(2n).
Here, we will show how to use a quantum walk to solve this problem in time O(22n/3).

In order to do this, we have to construct a graph G on which we perform the random
walk. The graph G = (V,E) is the following, for a parameter r:

• For S ⊆ {0, 1}n, we define vS = (vS(inp), vS(out)) where vS(inp) = {xi}i∈S and
vS(out) = {f(xi)}i∈S . We have V = {vS : |S| = r}.

• (vS , vS′) form an edge iff. S and S′ differ in exactly one position, so there exists
y ∈ S(inp) and y′ ∈ S′(inp)\S(inp) st. S′(inp) = (S(inp)\{y}) ∪ {y′}.

• A vertex v is marked iff. the golden collision (x0, x1) appears in v, so x0 ∈ v(inp)
and x1 ∈ v(inp).

Here, we are only interested in the query complexity of the algorithm, so only the number
of calls to Of It is also possible to perform a real time analysis of this protocol but
it is much more cumbersome. G is a Johnson graph J(2n, r), so it has a spectral gap
δ = 2n

r(2n−r) ≈
1
r for r � 2n. Now, let’s calculate each term of Equation 3.1. We have

• Setup = r. Constructing a vertex requires r queries and this can be done in super-
position, so we can construct |U〉 with r queries.

• Update = O(1). In order to go from a vertex vS to a vertex vS′ , with S′(inp) =
(S(inp)\{y}) ∪ {y′}, we have to uncompute the value f(y) and add the value f(y′)
which requires 2 queries to Of . Then, we can apply this in superposition in order
to construct the unitary |v〉 |0〉 → |v〉 |pv〉, and similarly for the other unitary.

• The checking cost is 0, all the information is in vS(out).
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• The fraction of marked vertices is ε = r2

22n

Putting everything together, we have

Cost = S +O( 1√
ε

)
(
C +O( 1√

δ
)U
)

= r + n

r

(√
r + 0

)
= O(r + 2n√

r
).

By taking r = 22n/3, we obtain the desired result.
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Chapter 4

General formalism of quantum
computing

4.1 Mixed states

Consider the state |Φ+〉AB = 1√
2 (|00〉 + |11〉) shared between 2 parties Alice and Bob.

How do we describe Alice and Bob’s state locally? Assume Alice measures her state in the
computational basis. From the laws of partial measurement she measures “0” wp. 1

2 and
Bob has the state |0〉; or she measures “1” wp. 1

2 and Bob has the state |1〉. If we look

only from Bob’s perspective, and if we define ρB his state, we have ρB =
{
|0〉 wp. 1

2
|1〉 wp. 1

2
.

A mixed state (or density matrix) is a clean way of describing probabilistic quantum
states as the one described above. A state

ρ =


|e1〉 wp. p1

...
|ek〉 wp. pk

is written ρ =
∑
i pi|ei〉〈ei|. If these states are n qubit states, recall Dirac’s notation: |ei〉

is a column vector of and 〈ei| is a line vector and |ei〉〈ei| is the multiplication of the two
which gives a matrix. For example: |ψ〉 = α |0〉+ β |1〉, then

|ψ〉〈ψ| =
(
α
β

)
·
(
α∗ β∗

)
=
(
αα∗ αβ∗

βα∗ ββ∗

)
.

A few notable examples on 1 qubit:

|0〉〈0| =
(

1 0
0 0

)
; |1〉〈1| =

(
0 0
0 1

)
; |+〉〈+| = 1

2

(
1 1
1 1

)
; |−〉〈−| = 1

2

(
1 −1
−1 1

)
Definition 4.1. A mixed state on n qubits is a matrix ρ =

∑
i pi|ei〉〈ei| where each |ei〉

is an n-qubit state, each pi ≥ 0 and
∑
i pi = 1.
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Notice that the states |ei〉 in the decomposition of a mixed state needn’t be orthogonal.
For example:

ρ = 1
2 |0〉〈0|+

1
2 |+〉〈+| =

(
3/4 1/4
1/4 1/4

)
.

is a valid 1-qubit mixed state.

Properties of quantum mixed states.

• A quantum mixed state ρ is a Hermitian matrix ρ = ρ∗ := ρᵀ. This is because each
|φ〉〈φ| is Hermitian.

• Tr(ρ) = 1 since Tr(|φ〉〈φ|) = 1 for each |φ〉.

• Since ρ is Hermitian it is diagonalizable with real valued eigenvalues, and moreover,
these eigenvalues are non-negative (since the pi ≥ 0 in the definition). This means
we can write ρ =

∑
i λi|ei〉〈ei| 0 ≤ λi ≤ 1,

∑
i λi = 1 and the |ei〉 are pairwise

orthogonal quantum states.

4.1.1 Applying quantum operations on mixed states

A mixed state ρ =
∑
i pi|ψi〉〈ψi| is a complete description of the quantum state you have.

Unitaries. Applying a unitary U on a pure state |ψ〉 gives the state U |ψ〉 = |φ〉. If we
from a density matrix ρ = |ψ〉〈ψ|, then applying a unitary U on this state gives the state
|φ〉〈φ| = U |ψ〉〈ψ|U†. More generally, applying U on a state ρ gives the state UρU†.

Projective measurements. Consider a state ρ of n qubits and a basisB = |b1〉 , . . . , |b2n〉
of the Hilbert space of n qubits. If you measure ρ in the basis B, you have

Pr[ outcome |bk〉] =
∑
i

pi| 〈ψi|bk〉 |2 = 〈bk|ρ|bk〉.

4.1.2 Different mixtures of quantum states can have the same
density matrix

Let ρ1 = 3
4 |0〉+ 1

4 |1〉 and ρ2 = 1
2 |0〉〈0|+

1
4 |+〉〈+|+

1
4 |−〉〈−|. We have

ρ1 =
(

3/4 0
0 1/4

)
and

ρ2 =
(

1/2 0
0 0

)
+
(

1/8 1/8
1/8 1/8

)
+
(

1/8 −1/8
−1/8 1/8

)
=
(

3/4 0
0 1/4

)
.

Two different decompositions can lead to the same density matrix. This means that these
two quantum states are the same, they can’t be distinguished one from the other by using
quantum operations.
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4.2 Partial trace

Let’s go back to our original motivation. Assume you have a state |ψ〉AB =
∑
i,j αi |ei〉A |i〉B

shared between 2 parties Alice and Bob. What is the state that Alice has? She has the
mixed state

ρA =
∑
i

|αi|2|ei〉〈ei|.

To see this, assume Bob measures his state in the computational basis. He gets outcome
“i” wp. |αi|2 and Alice has the state |ei〉 which means she has the state ρA. Notice also
that Alice’s state doesn’t depend on whether Bob has measured or not, so we can always
describe Alice’s state as ρA.

The mathematical operation that describes Alice’s reduced state is called the partial trace.
For a (possibly mixed) state ρAB shared between Alice and Bob, we define

TrB(ρAB) =
∑
j

(IA ⊗ 〈j|)ρAB(IA ⊗ |j〉). (4.1)

TrB(ρAB) means that we “trace out” Bob’s registers from ρAB (so we keep Alice’s part).
We will rarely use Equation 4.1 directly. Rather, we will use the following results:

• For |ψ〉AB =
∑
i,j αi |ei〉A |i〉B , TrB(|ψAB〉〈ψAB |) =

∑
i |αi|2|ei〉〈ei|.

• For ρAB =
∑
i pi|fi〉〈fi|, TrB(ρAB) =

∑
i piTrB |fi〉〈fi|.

With the partial, we are now able to characterize the reduced state of a quantum state
share between different registers.

4.3 Generalized measurements

POVM, for Positive Operator Value Measurements, generalize projective measurements.

Definition 4.2. A POVM is an ensemble of matrices {Mi}i st.
∑
iMiM

†
i = I. Measur-

ing a state ρ with this POVM gives outcome i wp. pi = tr(ρMiM
†
i ) and conditioned on

obtaining outcome i, the resulting state is

ρi = MiρM
†
i

tr(MiρM
†
i )
.

Remarks.

• A POVM is sometimes defined by the matrices Fi = MiM
†
i . Be careful however, the

probabilities pi depend only on Fi but the resulting states ρi actually depend on the
Mi so using the Fi is fine if you are only interested in the outcome distribution but
you need the Mi is you want to specify the resulting states.

• There is no restriction on the Mi but the Fi = MiM
†
i are positive semi-definite

(hence the name POVM), meaning that for any pure state |ψ〉,

〈ψ|Fi |ψ〉 ≥ 0.
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Moreover, any positive semi-definite matrix Fi is of the form MiM
†
i so we can de-

scribe the POVM {Fi} with
∑
i Fi = I if we are only interested in the outcome

probabilities.

• Projective measurements are a special case, where the Mi are projectors (which

implies Mi = MiM
†
i = Fi).

• Physically, a POVM on a state ρ corresponds to the setting where we add some extra
qubits |0m〉〈0m| to ρ, perform a projective measurement and then trace-out some
qubits. So POVM are not more powerful from a physical point of view but are an
elegant and compact form for describing these operations.

4.4 Purifications

A purification |ψ〉AB of a state ρB satisfies TrA|ψAB〉〈ψAB | = ρB . For example, if ρB =∑
i pi|fi〉〈fi| then the state |φ〉AB =

∑
i

√
pi |i〉A |fi〉B is a purification of ρB .

Proposition 4.3 (Schmidt Decomposition). Let |ψ〉AB be a state of 2n qubits, where each
register A,B contains n qubits. There exists two basis {|e1〉 , . . . , |e2n〉} and {|f1〉 , . . . , |f2n〉}
st. |ψ〉AB =

∑2n
i=1 αi |ei〉A |fi〉B . with

∑
i |αi|2 = 1. This decomposition is unique. More-

over,

TrA|ψAB〉〈ψAB | =
∑
i

|αi|2|fi〉〈fi| ; TrB |ψAB〉〈ψAB | =
∑
i

|αi|2|ei〉〈ei|.

Proposition 4.4. Assume we have two quantum pure states |φAB〉 and |ψAB〉 st. TrA(|φAB〉〈φAB |) =
TrA(|ψAB〉〈ψAB |) = ρB. There exists a unitary U acting on A st. (U ⊗ I) |φAB〉 = |ψAB〉.

Proof. We write ρB =
∑
i pi|fi〉〈fi| the spectral decomposition of ρB (so all the |fi〉 are

pairwise orthogonal). This means we can write |φAB〉 and |ψAB〉 as follows, using the
Schmidt decomposition.

|φAB〉 =
∑
i

αi |ei〉 |fi〉

|φAB〉 =
∑
i

α′i |e′i〉 |fi〉

with |αi| = |α′i| =
√
pi and {|ei〉} as well as the {|e′i〉} each form a basis. This means there

exists a unitary U st. for each i, U |ei〉 = α′i
αi
|e′i〉. We then immediately have

(U ⊗ I) |φAB〉 = |ψAB〉 .
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Chapter 5

Distance measures for quantum
states and first notion of
quantum information theory

5.1 How close are two quantum states?

5.1.1 The trace distance

We introduce here the notion of trace distance, which is very useful in determining how
close two mixed states are. We present here basic properties of this distance. More about
the trace distance can be found in [NC00].

Definition and basic properties

Definition 5.1. For any two quantum mixed states ρ and σ, the trace distance between ρ
and σ is defined as ∆(ρ, σ) = 1

2‖ρ− σ‖tr where ‖M‖tr = Tr(
√
M†M).

Since ρ and σ are hermitian, we have

∆(ρ, σ) = 1
2Tr(

√
(ρ− σ)†(ρ− σ)).

Be careful, this doesn’t necessarily imply ∆(ρ, σ) = 1
2Tr(ρ− σ)!

ρ − σ is Hermitian but not necessarily positive. This means we can write ρ − σ =∑
i λi|ei〉〈ei| where {|ei〉}i is a orthonormal basis and the λi ∈ R. We have ∆(ρ, σ) =

1
2
∑
i |λi|.

Notice also that
∑
i λi = Tr(ρ− σ) = Tr(ρ)− Tr(σ) = 1− 1 = 0.

The trace distance is a distance. Indeed, it satisfies the following properties:

• ∆(ρ, σ) = 0⇔ ρ = σ.
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• 0 ≤ ∆(ρ, σ) ≤ 1.

• ∆(ρ, σ) = ∆(σ, ρ).

• ∀ρ, σ, τ, ∆(ρ, τ) ≤ ∆(ρ, σ) + ∆(σ, τ)

Example of Trace distances

• ρ and σ are diagonalizable in the same basis : this means we can write ρ =∑
i pi|ei〉〈ei| and σ =

∑
i qi|ei〉〈ei| where {|ei〉}i is a orthonormal basis. In this

case, we have ∆(ρ, σ) = 1
2
∑
i |pi − qi|.

• ρ and σ are two pure states : this means we can write ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|.
In this case, we have ∆(ρ, σ) =

√
1− | 〈ψ|φ〉 |2.

• Other example: ρ = |0〉〈0|, σ = 3
4 |+〉〈+| +

1
4 |−〉〈−|. Let’s calculate ∆(ρ, σ) using

the definition. We have

ρ− σ =
(

1 0
0 0

)
−
[

3
4

(
1/2 1/2
1/2 1/2

)
+ 1

4

(
1/2 −1/2
−1/2 1/2

)]
=
(

1 0
0 0

)
−
(

1/2 1/4
1/4 1/2

)
=
(

1/2 −1/4
−1/4 −1/2

)
Calculation tip: at that point, make sure that ρ− σ is Hermitian and that its trace
is 0.

(ρ− σ)†(ρ− σ) =
(

1/2 −1/4
−1/4 −1/2

)
·
(

1/2 −1/4
−1/4 −1/2

)
=
(

5/16 0
0 5/16

)
From there, we have

√
(ρ− σ)2 =

√(
5/16 0

0 5/16

)
=
( √

5/4 0
0

√
5/4

)
which allows us to conclude that ∆(ρ, σ) = 1

2Tr(
√

(ρ− σ)(ρ− σ)†) =
√

5/4.

Invariance over unitary operations. The trace distance has the following property:

Proposition 5.2. For any two quantum mixed states ρ, σ and any unitary operation U ,
we have ∆(ρ, σ) = ∆(UρU†, UσU†).

Interpretation of the trace distance

Let’s consider two people Alice and Bob. Alice has bit b unknown to Bob. Suppose now
Alice sends a mixed state ρb that depends on b. With what probability can Bob guess b?
This probability in fully characterized by the trace distance between ρ0 and ρ1. We have:

Proposition 5.3. max(Pr[Bob guesses b]) = 1
2 + ∆(ρ0,ρ1)

2
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Proof. We will not go through the whole proof. However, we’ll show that max(Pr[Bob guesses b]) ≥
1
2 + ∆(ρ0,ρ1)

2 . To do this, we present a measurement for Bob that allows him to guess b

with probability 1
2 + ∆(ρ0,ρ1)

2 .
We write ρ0 − ρ1 =

∑
i λi|ei〉〈ei| where {|ei〉}i is a orthonormal basis and

∑
i λi = 0.

Bob’s strategy is to measure in the {|e1〉 , . . . , |en〉} basis. Suppose Bob’s outcome is |ei〉:

• If λi ≥ 0, Bob’s guess is 0.

• If λi < 0, Bob’s guess is 1.

Let

pi = 〈ei|ρ0|ei〉 = Pr[Bob’s outcome is |ei〉 | Bob receives ρ0]
qi = 〈ei|ρ1|ei〉 = Pr[Bob’s outcome is |ei〉 | Bob receives ρ1]

Notice that we have 〈ei|ρ0 − ρ1|ei〉 = λi = pi − qi. We write

Pr[Bob guesses b correctly |b = 0] =
∑
i:λi≥0

pi

Pr[Bob guesses b correctly |b = 1] =
∑
i:λi<0

qi

Since b is a random bit, we have

Pr[Bob guesses b correctly] = 1
2
∑
i:λi≥0

pi + 1
2
∑
i:λi<0

qi

Moreover, we have∑
i

|λi| =
∑
i

|pi − qi| =
∑
i:λi≥0

pi − qi +
∑
i:λi<0

qi − pi

=
∑
i:λi≥0

pi − (1−
∑
i:λi<0

qi) +
∑
i:λi<0

qi − (1−
∑
i:λi≥0

pi) using
∑
i

pi =
∑
i

qi = 1

= 2(
∑
i:λi≥0

pi) + 2(
∑
i:λi<0

qi)− 2

From there, we conclude:

Pr[Bob guesses b correctly] = 1
2
∑
i:λi≥0

pi + 1
2
∑
i:λi<0

qi = 1
4
∑
i

|λi|+
1
2 = ∆(ρ, σ)

2 + 1
2

NB: This measurement is optimal for Bob

5.2 Fidelity for quantum states

We now present a second notion for quantifying how close two quantum states are, the
fidelity. We will use this notion to analyze more formally cheating possibilities in quantum
bit commitment protocols.
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5.2.1 Definition and basis properties

Definition 5.4. For any two quantum mixed states ρ and σ, the fidelity between ρ and σ
is defined as F (ρ, σ) = Tr(

√√
ρσ
√
ρ)

The fidelity has the following properties

• 0 ≤ F (ρ, σ) ≤ 1.

• F (ρ, σ) = 1⇔ ρ = σ

• F (ρ, σ)

It seems that the quantity (1− F (ρ, σ) has similar properties than ∆(ρ, σ). However, the
quantity 1−F does not satisfy the triangle inequality, meaning we don’t necessarily have

(1− F (ρ, τ)) ≤ (1− F (ρ, σ)) + (1− F (σ, τ))

. However, we have a ’weak’ triangle inequality in the following form

Proposition 5.5. For any states ρ, σ, τ , we have (1 − F (ρ, τ)) ≤ 2(1 − F (ρ, σ)) + 2(1 −
F (σ, τ))

Example of fidelities

• ρ and σ are diagonalizable in the same basis : this means we can write ρ =∑
i pi|ei〉〈ei| and σ =

∑
i qi|ei〉〈ei| where {|ei〉}i is a orthonormal basis. In this

case, we have F (ρ, σ) =
∑
i

√
piqi.

• ρ and σ are two pure states : this means we can write ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|.
In this case, we have F (ρ, σ) = | 〈ψ|φ〉 |.

Invariance over unitary operations. The fidelity also has the following property:

Proposition 5.6. For any two quantum mixed states ρ, σ and any unitary operation U ,
we have F (ρ, σ) = F (UρU†, UσU†).

5.2.2 Purifications and Uhlmann’s theorem

Our goal here is to introduce the notion of purifications. Then we give an interpretation
of fidelity of two states using Uhlmann’s theorem.

Purifications

Definition 5.7. For any state ρB, we say that a bipartite state |ψAB〉 is a purification of
ρB is TrA(ψAB) = ρ.

Typically, if two players Alice and Bob share a state |ψAB〉 then ρB = TrA(|ψAB〉) is
Bob’s reduced density matrix and |ψAB〉 is a purification of ρB .

For example, if ρB = 3
4 |0〉〈0| +

1
4 |1〉〈1|, then |ψAB〉 =

√
3
4 |0〉 |0〉 +

√
1
4 |1〉 |1〉 is a

purification of ρB . We also have that |ψ′AB〉 =
√

3
4 |+〉 |0〉+

√
1
4 |−〉 |1〉. This means that

a state ρB can have many purifications.
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Fix ρB =
∑
i pi|ei〉〈ei|. We have that |ψAB〉 =

∑
i

√
pi |i〉 |ei〉 is a purification of ρB .

In fact, for any orthonormal basis {|fi〉}i, |ψAB〉 =
∑
i

√
pi |fi〉 |ei〉 is a purification of ρB .

NB: the above holds even if {|ei〉}i is not a basis.

Uhlmann’s Theorems

We now present an interpretation of the fidelity of quantum states

Theorem 5.8 (Uhlmann’s first theorem). For any two states ρ, σ,

F (ρ, σ) = max
|ψ〉,|φ〉

| 〈ψ|φ〉 |

where the maximum is taken over purifications |ψ〉 of ρ and purifications |φ〉 of σ.

Theorem 5.9 (Uhlmann’s second theorem). For any two states ρ, σ and any purification
|ψ〉 of ρ, we have

F (ρ, σ) = max
|φ〉
| 〈ψ|φ〉 |

where the maximum is taken over purifications |φ〉 of σ.

For example, consider ρ = 1
2 |0〉〈0| +

1
2 |1〉〈1| and σ = 3

4 |0〉〈0| +
1
4 |1〉〈1|. Since ρ and

σ are diagonalizable in the same basis, we know that F (ρ, σ) =
√

3
8 +

√
1
8 . Let |ψ〉 =

1√
2 |00〉+ 1√

2 |11〉 and |φ〉 =
√

3
4 |00〉+

√
1
4 |11〉.

|ψ〉 (resp. |φ〉) is a purification of ρ (resp. σ). Moreover, we have 〈ψ|φ〉 =
√

3
8 +

√
1
8 .

These purifications are optimal with regards to Uhlmann’s theorem.

5.2.3 Angle distance

As we said previously, the quantity 1 − F is not a distance since it doesn’t satisfy the
triangle inequality. Our goal here is to construct a distance out of the fidelity.

Definition 5.10. For any two quantum states ρ, σ, we define their angle as Angle(ρ, σ) =
Arccos(F (ρ, σ))

Fix two pure states |ψ〉 and |φ〉 with | 〈ψ|φ〉 | = cos(α), then Angle(|ψ〉〈ψ|, |φ〉〈φ|) = α.
The notion of angle for mixed states somehow extends the notion of angle that exists for
pure states.

The angle is a distance Indeed, it satisfies the following properties

• Angle(ρ, σ) = 0⇔ ρ = σ

• 0 ≤ Angle(ρ, σ) ≤ π/2

• Angle(ρ, σ) = Angle(σ, ρ)

• Angle(ρ, τ) ≤ Angle(ρ, σ) +Angle(σ, τ)
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5.2.4 Fuchs - Van de Graaf inequalities

Finally, we present a relationship between the trace distance of two quantum states and
the fidelity of those states.

Proposition 5.11 ([FG99]). For any states ρ, σ, we have

(1− F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F 2(ρ, σ)

or conversely
(1−∆(ρ, σ) ≤ F (ρ, σ) ≤

√
1−∆2(ρ, σ)
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Chapter 6

First quantum cryptographic
protocols

6.1 Bit commitment

A bit commitment scheme is a protocol between two parties Alice and Bob, denoted
hereafter A and B. A bit commitment scheme consists of 2 phases; a commit phase and
a reveal phase.

• At the commit phase, Alice commits to a bit b ∈ {0, 1} and Bob should not be able
to guess b at the end of the commit phase.

• At the reveal phase, Alice reveals b. She shouldn’t be able to change her mind about
the bit b she reveals.

Security requirements:

• Completeness: If both players are honest, the protocol should succeed wp. 1.

• Hiding property: If Alice is honest and Bob is dishonest, his cheating probability is

P ∗B = Pr[ Bob guesses b after the commit phase ].

• Binding property: If Alice is dishonest and Bob is honest, her cheating probability
is

P ∗A = 1
2 (Pr[ Alice successfully reveals b = 0] + Pr[ Alice successfully reveals b = 1]) .

for the same commit phase. This means that after the commit phase, we want to
bound Alice possibility to reveal both b = 0 and b = 1 successfully.

6.1.1 Generic example of commitment schemes

Let
∣∣ψ0
AB

〉
and

∣∣ψ1
AB

〉
two quantum bipartite states. Consider the following protocol
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• Commit phase: Alice wants to commit to a bit b. She creates
∣∣ψbAB〉 and sends

the B part to Bob. After the commit phase, Bob has ρb = TrA(
∣∣ψbAB〉).

• Reveal phase: Alice sends the A part of the quantum state
∣∣ψbAB〉 as well as b.

Bob checks that he has
∣∣ψbAB〉 by projecting the state he has onto

∣∣ψbAB〉.
Cheating probabilities We define the cheating probabilties for the two players:

• P ∗A = max(Pr[Alice cheats]) = max
( 1

2 Pr[Alice reveals b = 0] + 1
2 Pr[Alice reveals b = 1]

)
(for the same commit phase)

• P ∗B = max(Pr[Bob cheats]) = max(Pr[Bob can guess b after the commit phase])

6.1.2 Cheating strategies

Cheating Bob : He has ρb after the commit phas and tries to guess b. We have that

P ∗B = Pr[Bob can guess b] = 1
2 + ∆(ρ0, ρ1)

2

Cheating Alice: Fix a cheating strategy for Alice and let σ the state that Bob has after
the commit phase. During the reveal phase, is she reveals b = 0 then she sends qubits
such that Bob has a pure state |φ0〉. If she reveals b = 1, then she sends qubits such that
Bob has a pure state |φ1〉.

We have TrA(|φ0〉) = TrA(|φ1〉) = σ. If Alice reveals b = 0, we have

Pr[Bob accepts |b = 0] = |
〈
φ0
∣∣ψbAB〉 |2

If Alice reveals b = 1, we have

Pr[Bob accepts |b = 1] = |
〈
φ1
∣∣ψbAB〉 |2

Using Uhlmann’s theorem, we have

max
|φ0〉
|
〈
φ0
∣∣ψ0
AB

〉
|2 = F 2(σ, ρ0)

where the maximum is taken over purifications |φ0〉 of σ. We also have

max
|φ1〉
|
〈
φ1
∣∣ψ1
AB

〉
|2 = F 2(σ, ρ1)

where the maximum is taken over purifications |φ1〉 of σ.
This gives us

1
2 (Pr[Bob accepts |b = 0] + Pr[Bob accepts |b = 1]) = 1

2F
2(σ, ρ0) + 1

2F
2(σ, ρ1)

Since Alice can choose any σ, we have

P ∗A = max
σ

(
1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1)
)

33



Recall also that

P ∗B = 1
2 + ∆(ρ0, ρ1)/2

We want to remove the maximization for Alice’s cheating probability. We use the
following Lemma

Lemma 2.

∀σ, 1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1) ≤ 1
2 (1 + F (ρ0, ρ1))

Proof. Use the Angle distance (proof skipped here)

Also, there exists a σ such that 1
2F

2(σ, ρ0) + 1
2F

2(σ, ρ1) = 1
2 (1 + F (ρ0, ρ1)). From

there, we conclude that

P ∗A = 1
2 + F (ρ0, ρ1)

2

P ∗B = 1
2 + ∆(ρ0, ρ1)

2

Best coin flipping protocols of this type By using the Fuchs - Van de Graaf inequali-
ties, we have F (ρ0, ρ1) ≥ 1−∆(ρ0, ρ1). This implies P ∗A+P ∗B ≥ 3/2 or max{P ∗A, P ∗B} ≥ 3/4.
Is this tight ? Yes

Consider the states ρ0 = 1
2 |0〉〈0|+

1
2 |2〉〈2| and ρ1 = 1

2 |1〉〈1|+
1
2 |2〉〈2|. We can calculate

∆(ρ0, ρ1) = 1
2(|1/2− 0|+ |0− 1/2|+ |1/2− 1/2|) = 1/2

F (ρ0, ρ1) =
√

1/2 · 0 +
√

0 · 1/2 +
√

1/2 · 1/2 = 1/2

NB: This analysis covers only quantum bit commitment protocols for specific com-
mit/reveal phases. This is not the most general analysis. In fact, there exists interactive
quantum BC protocols with cheating probabiltiies < 3/4.

6.2 Bit commtiment based coin flipping

Here, we show that any bit commitment protocols with cheating probabilities P ∗A, P
∗
B can

be transformed into a quantum bit commitment scheme with the same cheating probabil-
ities.

Protocol for QCF using QBC

1. Alice picks a random a ∈ {0, 1}. Then, she commits to a using the QBC protocol.

2. Bob sends a random b ∈ {0, 1} and sends b to Alice.

3. Alice reveals a, as described in the QBC protocol.

4. The output of the coin is c = a⊕ b.
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We can see that

Pr[Bob cheats in the CF protocol] = Pr[Bob guesses a after step 1] = Pr[Bob cheats in the BC protocol].

and

Pr[Alice cheats in the CF protocol] = 1
2 Pr[Alice cheats in the CF protocol |Bob sends b = 0] +

1
2 Pr[Alice cheats in the CF protocol |Bob sends b = 1]

= 1
2 Pr[Alice successfully reveals a = 0] + 1

2 Pr[Alice successfully reveals a = 1]

= Pr[Alice can cheat in the BC protocol]

NB: On the other hand, we don’t have QCF ⇒ QBC.

6.3 Quantum Random Access codes

A quantum encoding x ∈ {0, 1}n → |ψx〉 on m qubits is called a (n,m, p)−QRAC, if one
can recover any bit xi with probability p when having access to |ψx〉. (n,m, 1)−QRACs
are impossible for m < n.

Construction of a (2, 1, cos2(π/8))-QRAC We consider the encoding |ψ00〉 = |0〉,
|ψ01〉 = |+〉, |ψ10〉 = |−〉, |ψ11〉 = |1〉.

• If I want to learn x1, I measure in the {|v〉 ,
∣∣v⊥〉} basis with |v〉 = cos(π/8) |0〉 +

sin(π/8) |1〉 and
∣∣v⊥〉 = sin(π/8) |0〉 − cos(π/8) |1〉.

• If I want to learn x2, I measure in the {|w〉 ,
∣∣w⊥〉} basis with |w〉 = cos(π/8) |0〉 −

sin(π/8) |1〉 and
∣∣w⊥〉 = sin(π/8) |0〉+ cos(π/8) |1〉.

We have

| 〈v|ψ00|〉2 = | 〈v|ψ01〉 |2 = cos2(π/8)
|
〈
v⊥
∣∣ψ10

〉
|2 = |

〈
v⊥
∣∣ψ11

〉
|2 = cos2(π/8)

| 〈w|ψ00〉 |2 = | 〈v|ψ10〉 |2 = cos2(π/8)
|
〈
w⊥
∣∣ψ01

〉
|2 = |

〈
w⊥
∣∣ψ11

〉
|2 = cos2(π/8)

which shows that this construction is indeed a (2, 1, cos2(π/8))-QRAC.
NB: These measurements are optimal.
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Chapter 7

Quantum key distribution

Key distribution is an important cryptographic primitive, which is defined as follows.

Key distribution

• Alice and Bob communicate over a public and authenticated channel.

• At the end of the scheme, they should agree on a key K ∈ {0, 1}k.

• Any adversary eavesdropping and tampering the channel shouldn’t be
able to have any (or vanishingly little) information about K.

7.1 Encoding bits of key inside qubits

Alice has a string K = k1, . . . , kn which we call the initial key. Her goal is to transmit the
bits of K to Bob in a way that can’t be intercepted without being caught. For each i, She
performs the following encoding:

The BB84 encoding of a bit ki

• Pick a random bi ∈ {0, 1}.
• If bi = 0, construct |ψi〉 = |ki〉. If bi = 1, construct |ψi〉 = H |ki〉.
• Output |ψi〉.

This encoding is very simple. You pick a random bi ∈ {0, 1}, and you encode ki in the
computational basis if bi = 0 and in the Hadamard basis if bi = 1.

ki bi |ψi〉
0 0 |0〉
0 1 |+〉
1 0 |1〉
1 1 |−〉
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The full protocol is then the following

The BB84 protocol

• Alice picks a random initial raw key K = k1, . . . , kn uniformly at random.

• For each i ∈ {1, . . . , n}, Alice picks a random bi ∈ {+,×}, constructs |ψi〉 =
|ki〉bi and sends |ψi〉 to Bob.

• Bob picks some random basis b′1, . . . , b
′
n ∈ {+,×} and measures each qubit |ψi〉

in the b′i basis. Let ci be the outcome of this measurement.

• Bob sends to Alice the basis b′ = b′1, . . . , b
′
n he used for his measurements using

a public channel. Alice sends back the subset I = {i ∈ [n] : bi = b′i} to Bob.

• Alice then picks a random subset J ⊆ I of size |I|2 which is the subset of indices
for which Alice and Bob check that there wasn’t any interception and sends J
to Bob. For j ∈ J , Alice also sends kj to Bob.

• For each j ∈ J , Bob checks that kj = cj . If one of these checks fail, he aborts.

• Let L = I\J = l1, . . . , l|L| be the subset of indices used for the final raw key.
We write KA = {kl}l∈L and KB = {cl}l∈L.

• Alice and Bob perform key reconciliation to agree on a key Kraw.

• They perform privacy amplification to ensure that Alice has no information
about the key.

7.1.1 Key reconciliation

The idea of key reconciliation is that KA ∈ {0, 1}m is usually different from KB . How
does that happen? There are two possible scenarios:

• An eavesdropper only intercepted a small number of qubits (so he wasn’t caught
with some constant probability), but disturbed the signal enough st. there is i st.
ki 6= ci for i ∈ I\J .

• Hardware imperfection in the signal transmission and in the measurement create
some inconsistency.

In order to perform key reconciliation the idea is to use a binary error-correcting code.
For our purposes, an error correcting code is a set C ⊆ {0, 1}m st. minx,y 6=x∈C |x−y|H = d
for a parameter d of the code called the minimal distance. Alice chooses a code C st.
KA ∈ C. This means that if |KB −KA| ≤ d

2 then Bob can recover KA from KB since it

is the unique element of C at distance at most d
2 . Here are the challenges of this method.

• We must choose a code C with a large enough minimal distance d such that |KB −
KA| < d

2 .

• However, the adversary now knows that KA ∈ C so the size of C must remain very
large. There is a trade-off between the size of C and the minimal distance d.

• Even if the decoding is unique, it has to be computationally efficient. Even if it is
unique, recovering KA from KB can be a very difficult task. For example, if we take
a random code C, this task is NP-hard.
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Basic BB84 protocol

Alice Bob

k1, . . . , kn ←$ {0, 1}
b1, . . . , bn ←$ {+,×}

|k1〉b1 , . . . , |kn〉bn

b′
1, . . . , b′

n ←$ {+,×}

∀i, ci ← measure |ki〉bi in basis b′
i

b′
1, . . . , b′

n

I = {i : bi = b′
i}

J ←$ {S ⊆ I : |S| = |I|2 }

I, J, {kj}j∈J

Check that ∀j ∈ J, kj = cj

“Check passed”

KA = {kl}l∈I\J KB = {cl}l∈I\J

Key reconciliation

Agree on K ∈ {0, 1}k′ Agree on K ∈ {0, 1}k′

Agree on h

Kfinal = h(K) Kfinal = h(K)

Figure 7.1: Description of a basic BB84 quantum key distribution protocol
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There are varieties of choices for this task, for example using LDPC codes.

7.1.2 Privacy amplification

At the end of the reconciliation phase, the eavesdropper Eve could still have a little bit of
information about K. In order to construct Kfinal, we apply a hash function to ensure
that this information is destroyed.
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Chapter 8

Quantum information theory

8.1 Classical entropy

Entropy is arguably one of the most important concepts in information theory.

Definition 8.1. Let p = (p1, . . . , pn) be a discrete probability function, so pi ≥ 0 and∑
i pi = 1. The entropy H(p) of p is defined as

H(p) =
n∑
i=1
−pi log2(pi).

The entropy H(p) measures the amount of uncertainty in p. For example, for p =
(1, 0, . . . , 0), we have H(p) = 0. For p = ( 1

2 ,
1
2 , 0, . . . , 0) then H(p) = 1. If p = ( 1

n , . . . ,
1
n )

then H(p) = log2(n) (maximal). The entropy can be informally seen as the amount of
coins required to mimic p.

Other example: p(0) = 3
4 , p(1) = 1

4 so H(p) = 3
4 log(4/3) + 1

4 log(1/4) ≈ 0.811. It
doesn’t seem we can send i with strictly less than 1 bit. How do we interpret H(p) < 1
as a noiseless compression bound? Consider p2(xy) = p(x)p(y) for x, y ∈ {0, 1}. We have
H(p2) = 2H(p). Now, if Alice has i, j wp. p2(i, j) and wants to send these 2 bits, she can
do the following:

1. If (x, y) = (0, 0): send “0”.

2. If (x, y) = (0, 1): send “01”.

3. If (x, y) = (1, 0): send “011”.

4. If (x, y) = (1, 1): send “111”.

We have

Average amount of bits sent = 9
16 + 2 ∗ 3

16 + 3 ∗ ( 3
16 + 1

16) = 27
16 = 1.6875.

and we have H(p2) ≤ 27
16 < 2. If we take pn, we can find an encoding st. the average

number of bits sent will be closer and closer to H(p). This is Shannon’s noiseless source
coding theorem.
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8.1.1 Quantum entropy

Quantum Shannon entropy: S(·).

Definition 8.2. Let ρ =
∑
i λi|ei〉〈ei| be a quantum mixed state with it’s spectral decom-

position (so the |ei〉 are pairwise orthogonal and have norm 1). We define the Shannon
entropy of ρ as

S(ρ) := H((λ1, . . . , λn)) =
∑
i

−λi log(λi).

We can also write S(ρ) = −Tr(ρ log(ρ)) where log(ρ) =
∑
i log(λi)|ei〉〈ei|. log(ρ) is a

hermitian matrix but not a quantum state!

• If ρ is in some register R, we will sometimes equivalently write S(R)ρ instead of
S(ρ).

• If we take ρAB in registers AB and ρA = TrB(ρAB), we will equivalently write

S(ρA) = S(A)ρA = S(A)ρAB .

8.1.2 Properties of the quantum entropy

• Let ρ =
∑
i λi|ei〉〈ei| a quantum mixed state with it’s spectral decomposition.

• Let U a quantum unitary and let |fi〉 = U(|ei〉). Recall that applying U to ρ gives
the state UρU† =

∑
i λi|fi〉〈fi|.

• We immediately have S(UρU†) = S(ρ).

• S(ρ) ≥ 0.

• S(A)ρAB − S(B)ρAB ≤ S(AB)ρAB ≤ S(A)ρAB + S(B)ρAB .

• S(ρA ⊗ ρB) = S(ρA) + S(ρB).

Proposition 8.3. Let ρ be a quantum state. Let Π : {Π1, . . . ,Πn} be a projective mea-
surement and let pi = tr(ρΠi). We have

S(ρ) ≤ H(p).

S(
∑
i

ΠiρΠi) = tr(
∑
i

ΠiρΠi log(
∑
i

ΠiρΠi)) (8.1)

8.1.3 Conditional quantum entropy and conditional mutual infor-
mation

Definition 8.4. The conditional entropy S(A|B) is defined as

S(A|B)ρAB := S(AB)ρAB − S(B)ρAB .

• Unlike classical conditional entropy, the quantum one can be negative! Take for
example ρAB = |Φ+〉〈Φ+|. We have S(AB)ρAB = 0 and S(A)ρAB = S(B)ρAB = 1.
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• Chain rule:
S(A|C)ρABC + S(B|AC)ρABC = S(AB|C)ρABC .

• We also have S(A|B)ρABC ≤ S(A)ρABC and S(A|BC)ρABC ≤ S(A|B)ρABC . This
implies

S(A|C)ρABC + S(B|C)ρABC ≥ S(A|C)ρABC + S(B|AC)ρABC = S(AB|C)ρABC .
(8.2)

Definition 8.5. The mutual information I(A : B) is defined as

I(A : B)ρAB = S(A)ρAB + S(B)ρAB − S(AB)ρAB .

Definition 8.6. The conditional mutual information I(A : B|C) is defined as

I(A : B|C)ρABC = S(A|C)ρABC + S(B|C)ρABC − S(AB|C)ρABC .

We have that I(A : B)ρAB ≥ 0 and I(A : B|C)ρABC ≥ 0 from Equation 8.2.

Proposition 8.7 (Pinsker’s inequality). For a quantum state ρAB, we have

I(A : B) ≥ 1
2∆2(ρAB , ρA ⊗ ρB).

8.1.4 The index problem

The index problem; Alice has a uniformly random string x ∈ {0, 1}n. Bob is given a
uniformly random index i. Alice and Bob cooperate and the goal of the index game is for
Bob to output xi. Without any communication, Bob can’t do better than randomly guess
xi so he will succeed wp. 1

2 .
Now, assume Alice sends a quantum pure state |ψx〉 of m < n qubits to Bob. An

m-qubit state consists of 2m complex numbers so it shouldn’t be hard to encode the
information of each x in a different state |ψx〉. However, when Bob receives |ψx〉, he can’t
recover all the amplitudes of |ψx〉 and he is limited by the laws of quantum measurements
in order to recover x.

We can actually show that for m < n, Bob cannot recover perfectly xi. We will also
give quantitative versions of this result.

Bounding the probability of winning Indexn with m bits of communication Let
pi the probability of winning when Bob has input i. After Alice sends her message, Alice
and Bob share the state

ρ = 1
2n

∑
x∈{0,1}n

|x〉〈x|A|ψx〉〈ψx|B .

We have

I(A : B)ρ = S(A)ρ + S(B)ρ − S(AB)ρ = n+ S(B)ρ − n = S(B)ρ ≤ m.

We write A = X1, . . . , Xn, and
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I(A : B) = S(A)− S(A|B) = S(A)− S(X1, . . . , Xn|B) ≥ n−
n∑
i=1

S(Xi|B)

=
n∑
i=1

1− S(Xi|B) =
n∑
i=1

S(Xi)− S(Xi|B) =
n∑
i=1

I(Xi : B)

which gives

1
n

n∑
i=1

I(Xi : B) ≤ m

n
.

Bob can perform a measurement on his part that guesses xi wp. pi on input i. So
after his guess, the state is

ρ2 = 1
n2n

∑
x∈{0,1}n
i∈[n]

|x〉〈x|A ⊗
(
|i〉〈i|I ⊗

(
pi|xi〉〈xi|G ⊗ ζx,iE + (1− pi)|xi〉〈xi|G ⊗ ζ̃x,iE

))
.

where there registers I,G,E are on Bob’s side. We have

I(Xi : B)ρ2 ≥ I(Xi : G)ρ2 = 1 + 1− (1 +H2(p)) = 1−H2(pi)

with H2(p) = −p log(p)− (1− p) log(1− p). Here, we use

• ρ2
Xi

= 1
2 (|0〉〈0|+ |1〉〈1|) .

• ρ2
G = 1

2 (|0〉〈0|+ |1〉〈1|) .

• ρ2
XiG

= 1−pi
2 (|00〉〈00|+ |11〉〈11|) + pi

2 (|01〉〈01|+ |10〉〈10|). So H(XiG)ρ2 = 1 +
H2(pi).

Putting everything together, we have

m ≥
n∑
i=1

(1−H(pi)).

This gives interesting information. For example, if we want Bob to win wp. 1, we
have necessarily m ≥ n meaning that we cannot perform better than sending the whole
string x. Moreover, if the players want that Bob always succeeds wp. p for each i, we have
necessarily m ≥ n− nH(p). These bounds are not necessarily tight.
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