QCLG Exercise sheet 1

Exercise 1. Determine whether the following states are qubits or not:

- $\frac{1}{3} |0\rangle \frac{2}{3} |1\rangle.$
- $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|+\rangle.$
- $\frac{1}{2} |0\rangle + (1 \frac{1}{\sqrt{2}}) |+\rangle + \frac{1}{2} |1\rangle$.

Exercise 2 (No cloning theorem). Our goal is to prove the no cloning theorem:

Theorem. There is no unitary U on 2 qubits that on input $|\psi\rangle |0\rangle$ outputs $|\psi\rangle |\psi\rangle$ for all qubits $|\psi\rangle$.

Prove this theorem. To do this, assume that such a unitary U exists and obtain a contradiction, for example by computing $U |\psi\rangle |0\rangle$ for $|\psi\rangle$ in the computational basis and in the Hadamard i.e. $\{|+\rangle, |-\rangle\}$ basis.

Exercise 3. Show that the 2 circuits below compute the same unitary.

where is the SWAP gate satisfying SWAP $(|x\rangle |y\rangle) = |y\rangle |x\rangle$ for $x, y \in \{0, 1\}$, and is the CNOT gate satisfying CNOT $(|x\rangle |y\rangle) = |x\rangle |y \oplus x\rangle$ for $x, y \in \{0, 1\}$.

Exercise 4. Determine whether the following matrices are unitary matrices:

- $M_1 = |0\rangle\langle 0| + |+\rangle\langle 1|.$
- $M_2 = \frac{1}{\sqrt{2}} \left(|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| + |1\rangle \langle 1| \right).$
- $M_3 = |+\rangle\langle -|+|-\rangle\langle +|$

Exercise 5. Consider the circuit

where for any unitary U, $\begin{bmatrix} I \\ -U \end{bmatrix}$ is the ctrl-U gate satisfying:

$$\operatorname{ctrl-U}(|0\rangle |y\rangle) = |x\rangle |y\rangle, \ \operatorname{ctrl-U}(|1\rangle |y\rangle) = |1\rangle U |y\rangle,$$

which can be written concisely as $\operatorname{ctrl-} U(|x\rangle |y\rangle) = |x\rangle U^x |y\rangle$ for any $x, y \in \{0, 1\}$.

- 1. Let U be an arbitrary unitary over one qubit such that $V^2 = U$. Write the output of the circuit in terms of U.
- 2. Let X be the NOT gate. Find a unitary matrices V such that $V^2 = X$ and write also V^{\dagger} (hint, use the fact that $X |+\rangle = |+\rangle$ and $X |-\rangle = -|-\rangle$).
- 3. Show how to construct the Toffoli gate: Toffoli $(|x_1\rangle |x_2\rangle |x_3\rangle) = |x_1\rangle |x_2\rangle |x_3 \oplus (x_1 \wedge x_2)\rangle$ with 5 two-qubit gates.