QCLG Exercise sheet 2

Notations

We use
$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
 and $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$. $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Exercise 1. Write in matrix form the following 1 qubit unitaries U_1, U_2, U_3 st.

1. $U_1 |0\rangle = |0\rangle$, $U_1 |1\rangle = -|1\rangle$.

2.
$$U_2 |0\rangle = |+\rangle, \ U_2 |1\rangle = |-\rangle.$$

3. $U_3 |0\rangle = \cos(\theta) |0\rangle + \sin(\theta) |1\rangle$, $U_3 |1\rangle = \sin(\theta) |0\rangle - \cos(\theta) |1\rangle$ for some $\theta \in [0, 2\pi]$.

Exercise 2. Let $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$

- 1. Is $|\psi\rangle$ a valid 2-qubit state?
- 2. Find a 1-qubit state $|\phi\rangle$ st. $|\psi\rangle = |\phi\rangle \otimes |\phi\rangle$.
- 3. Compute $(H \otimes H) |\psi\rangle$.

Exercise 3. Let $|\phi\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |01\rangle + |10\rangle)$. Show that $|\phi\rangle$ is entangled meaning that there doesn't exist any 1-qubit states $|u\rangle, |v\rangle$ satisfying $|\phi\rangle = |u\rangle \otimes |v\rangle$.

Exercise 4.

- 1. Compute $CNOT |00\rangle$, $CNOT |01\rangle$, $CNOT |10\rangle$, $CNOT |11\rangle$.
- 2. Construct a 2-qubit circuit C that uses 1 and 2 qubit operations such that $C(|00\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle).$

Exercise 5 (Breidbart basis). Consider the 2 states $|\phi_0\rangle = |0\rangle$ and $|\phi_1\rangle = |-\rangle$. Suppose we have 2 players Alice and Bob. Alice picks a uniformly random bit b and sends $|\phi_b\rangle$ to Bob. Bob's goal is to determine b.

1. Find a strategy that succeeds wp. $\frac{3}{4}$, on average on b.

- 2. Find a (possibly randomized) strategy that succeeds wp. $\frac{3}{4}$ for any b.
- 3. Now assume Bob measures in the basis $\{|v\rangle, |v^{\perp}\rangle\}$ and gets outcome 0 or 1. Assume we can write $|v\rangle = \cos(\theta) |0\rangle + \sin(\theta) |1\rangle$ and $|v^{\perp}\rangle = \sin(\theta) |0\rangle - \cos(\theta) |1\rangle$ with $\theta \in [0, \pi/2]$.
 - (a) Compute the probability that Bob succeeds with this strategy, as a function of θ .
 - (b) Find a strategy that will make him succeed wp. $\cos^2(\pi/8)$ for any b. The basis that achieves this is called the Breidbart basis and has application to non local games for instance.

Exercice 6. [Efficient controlled operations]

Let U be a 1-qubit unitary that we would like to implement in a controlled way, i.e., we want to implement a map $|c\rangle|b\rangle \mapsto |c\rangle U^{c}|b\rangle$ for all $c, b \in \{0, 1\}$. Suppose there exist 1-qubit unitaries A, B, and C, such that ABC = I and AXBXC = U (remember that X is the NOT-gate). Give a circuit that acts on two qubits and implements a controlled-U gate, using CNOTs and (uncontrolled) A, B, and C gates.