QCLG Exercise sheet 4

Notations

We use
$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
 and $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$. $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.
 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$. Recall that for $x \in \{0, 1\}^n$, we have

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle,$$

where $x \cdot y = \sum_{i=1}^{n} x_i y_i$ when writing $x = x_1 \dots x_n$ and $y = y_1 \dots y_n$.

Exercise 1.

- 1. Construct 4 orthogonal 2-qubit states $|\psi_1\rangle$, $|\psi_2\rangle$, $|\psi_3\rangle$, $|\psi_4\rangle$ st. measuring in the $\{|0\rangle, |1\rangle\}$ basis any qubit of any of these states gives outcome "0" wp. $\frac{1}{2}$ and outcome "1" wp. $\frac{1}{2}$.
- Is it possible to construct 2 orthogonal 1-qubit states |ψ₁⟩, |ψ₂⟩ st. measuring in the {|0⟩, |1⟩} basis any of these states gives outcome "0" wp. 0.6 and outcome "1" wp. 0.4? If yes, construct these states, if no, explain why it isn't possible.

Exercise 2.

- 1. Consider the operation on 3 qubits $W_1 : |a\rangle |b\rangle |c\rangle = |a \oplus b\rangle |a \oplus c\rangle |b \oplus c\rangle$ for each $a, b, c \in \{0, 1\}$. Is W_1 a unitary? Justify your answer.
- 2. Consider the operation on 3 qubits $W_2 : |a\rangle |b\rangle |c\rangle = |a \oplus b\rangle |a \oplus c\rangle |a \oplus b \oplus c\rangle$ for each $a, b, c \in \{0, 1\}$. Is W_2 a unitary? Justify your answer.
- 3. Construct the circuits for W_1 and/or W_2 if the corresponding operation is a unitary, using elementary 1 and 2 qubit gates.

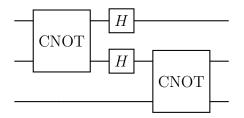
Exercise 3. Let $|\phi\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |01\rangle + |10\rangle)$. Show that $|\phi\rangle$ is entangled meaning that there doesn't exist any 1-qubit states $|u\rangle, |v\rangle$ satisfying $|\phi\rangle = |u\rangle \otimes |v\rangle$.

Exercise 4. Consider a function $f : \{0,1\}^n \to \{0,1\}$. Let

$$|\psi_f\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

- 1. Compute $|\psi'\rangle = H^{\otimes n} |\psi_f\rangle$.
- 2. Let $T_b = |\{x : f(x) = b\}|$, so $T_0 + T_1 = 2^n$. Write the probability of measuring 0^n when having $|\psi'\rangle$ as a function of T_0, T_1 .
- 3. Show how starting from $|\psi_f\rangle$, one can distinguish whether f is constant (i.e. $T_0 = 0$ or $T_1 = 0$) or whether $\min\{T_0, T_1\} = \frac{1}{16} \cdot 2^n$ with a constant probability with a single call to $H^{\otimes n}$ and a single measurement.

Exercise 5. Consider the following circuit C:



(a) Compute $C |000\rangle$.

(b) Compute $C |111\rangle$.