QCLG Exercise sheet 5

Exercise 1. Consider a function $f : \{0,1\}^2 \to \{0,1\}$ st. there exists a unique x_1 st. $f(x_1) = 1$. Apply one step of Grover's algorithm (i.e. construct the original state $|\psi_1\rangle$ and then perform a reflexion over $|\psi_{Bad}\rangle$ and then over $|\psi_1\rangle$). More precisely:

- 1. Write the different states $|\psi_{Good}\rangle$, $|\psi_{Bad}\rangle$, $|\psi_1\rangle$ as defined in the lecture in this setting.
- 2. Write $|\psi_1\rangle = \cos(\theta) |\psi_{Bad}\rangle + \sin(\theta) |\psi_{Good}\rangle$. What is the value of θ ?
- 3. Show the different steps of the computation you don't need to reprove how to perform the reflexions and show the algorithm succeeds wp. 1 after 1 step of Grover's algorithm in this case.

Assume now we have the following generalization of Grover's algorithm:

Theorem 1. Let $f: T \to \{0, 1\}$ be an efficiently computable function. Let $S = \{x \in S : f(x) = 1\}$. Grover's algorithm finds a random element of S in time $O(\sqrt{\frac{|T|}{|S|}})$.

We can use this theorem for the next exercice.

Exercise 2. We consider a graph G = (V, E) with V being the set of vertices and E being the set of edges. Let |V| = n and |E| = m. The graph is undirected so $(i, j) \in E \Leftrightarrow (j, i) \in E$ and without self-loops so $(i, i) \notin E$ for each $i \in V$. We have access to an efficient classical circuit that computes f_E where

$$f_E(i,j) = 1$$
 if $(i,j) \in E$ and $f_E(i,j) = 0$ otherwise.

A triangle is a triplet (i, j, k) st. $(i, j), (j, k), (i, k) \in E$.

- 1. Use Grover's algorithm to find a quantum algorithm that finds a triangle in time $O(n^{3/2})$ if a triangle exists.
- 2. Find a quantum algorithm that finds an edge in time $O(\sqrt{\frac{n^2}{m}})$. Argue that the edge found is a random edge from the set of all edges.
- 3. Given an edge (i, j), find an algorithm that determines whether there exists k st. (i, j, k) is a triangle in time $O(\sqrt{n})$.

- 4. From there, constructs an algorithm that finds a triangle (i, j, k) (if it exists) in time $O(\sqrt{\frac{n^2}{m}} + \sqrt{n})$ and that succeeds wp. at least $\frac{1}{m}$.
- 5. In the next lecture, we will present the notion of amplitude amplification saying that if you have an algorithm running in time T that finds a solution to a problem wp. p then you can construct an algorithm finding a solution in expected time $O(T\sqrt{\frac{1}{p}})$. Use this result to find a quantum algorithm for finding a triangle in time $O(n + \sqrt{mn})$.
- 6. Compare this complexity with the one from Question 1. When is it better? Can it be worse?

Extra exercice.

Let $x = x_0 \dots x_{N-1}$, where $N = 2^n$ and $x_i \in \{0, 1\}^n$, be an input that we can query in the usual way. We are promised that this input is 2-to-1: for each *i* there is exactly one other *j* such that $x_i = x_j$.³ Such an (i, j)-pair is called a *collision*.

- (a) Suppose S is a uniformly randomly chosen set of $s \leq N/2$ elements of $\{0, \ldots, N-1\}$. What is the probability that there exists a collision in S?
- (b) (H) Give a classical randomized algorithm that finds a collision (with probability $\geq 2/3$) using $O(\sqrt{N})$ queries to x.
- (c) (H) Give a quantum algorithm that finds a collision (with probability $\geq 2/3$) using $O(N^{1/3})$ queries.