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QII Exercise sheet 13

Notations. |+〉 = 1√
2

(|0〉+ |1〉) and |−〉 = 1√
2

(|0〉+ |1〉). “ + ” corresponds to the

{|0〉 , |1〉} basis and “ × ” corresponds to the {|+〉 , |−〉} basis. We have |b〉+ = |b〉
and |b〉× = H |b〉 = 1√

2

(
|0〉+ (−1)b |1〉

)
. Recall the main steps of the BB84 protocol

1. Alice picks a random initial raw key K = k1, . . . , kn uniformly at random.

2. For each i ∈ {1, . . . , n}, Alice picks a random bi ∈ {+,×}, constructs |ψi〉 =
|ki〉bi and sends |ψi〉 to Bob.

3. Bob picks some random basis b′1, . . . , b
′
n ∈ {+,×} and measures each qubit |ψi〉

in the b′i basis. Let ci be the outcome of this measurement.

4. Bob sends to Alice the basis b′ = b′1, . . . , b
′
n he used for his measurements using

a public channel. Alice sends back the subset I = {i ∈ [n] : bi = b′i} to Bob.

5. Alice then picks a random subset J ⊆ I of size |I|
2

which is the subset of indices
for which Alice and Bob check that there wasn’t any interception and sends J
to Bob. For j ∈ J , Alice also sends kj to Bob.

6. For each j ∈ J , Bob checks that kj = cj. If one of these checks fail, he aborts.

7. Let L = I\J = l1, . . . , l|L| be the subset of indices used for the final raw
key. Alice has KA = {kl}l∈L and Bob has KB = {cl}l∈L. They perform key
reconciliation and privacy amplification to obtain the final common key Kfinal.

Exercise 1. We consider the BB84 quantum key distribution protocol seen in class.
We want to analyze the information that an eavesdropper Eve can have about each
ki if she measures the qubits |ψi〉 at step 2. We first consider here the case n = 1, so
there is a single k1, b1 and a single state |ψ1〉 sent.

1. Let ρk1 be the state that Alice sends as a function of k1. Describe the mixed
states ρ0 and ρ1. Let |v〉 = cos(π/8) |0〉+sin(π/8) |1〉 and

∣∣v⊥〉 = − sin(π/8) |0〉+
cos(π/8) |1〉. Show that

ρ0 = cos2(π/8)|v〉〈v|+ sin2(π/8)|v⊥〉〈v⊥| (1)

ρ1 = sin2(π/8)|v〉〈v|+ cos2(π/8)|v⊥〉〈v⊥| (2)

2. Compute the statistical distance between ρ0 and ρ1.

3. Compute Eve’s optimal strategy to guess k1. What is the measurement that
achieves this guessing probability? What can you say about the overall security
of the scheme.

Solution:
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1. Let |v〉 = cos(π/8) |0〉 + sin(π/8) |1〉 and
∣∣v⊥〉 = − sin(π/8) |0〉 + cos(π/8) |1〉.

We have ρ0 = 1
2

(|0〉〈0|+ |+〉〈+|) = cos2(π/8)|v〉〈v| + sin2(π/8)|v⊥〉〈v⊥| and
ρ1 = 1

2
(|1〉〈1|+ |−〉〈−|) = sin2(π/8)|v〉〈v| + cos2(π/8)|v⊥〉〈v⊥|. This can be

checked by computing the density matrices.

2. ∆(ρ0, ρ1) =
(
cos2(π/8)− sin2(π/8)

)
= 1√

2
.

3. The optimal probability of distinguishing ρ0 and ρ1 is 1
2

+ ∆(ρ0,ρ1)
2

= 1
2

+
√

2
4

=
cos2(π/8). You can achieve this probability by measuring in the {|v〉 ,

∣∣v⊥〉}
basis. If Eve tries to recover information about K at this point then she can
only recover partial information about K.

Exercise 2. We consider another cheating strategy. The second cheating strategy
for Eve consists in intercepting and storing the states |ψi〉 at step 2 and wait until
she sees b′, I, J after step 5 in order to get some information about the key.

1. Show that with this strategy, Alice can recover all the string k.

2. The issue with this strategy is the test at step 6. If Eve intercepts |φi〉 then Bob
doesn’t get any state at the end of step 2. For each i, Eve sends a state |ξi〉
which is independent of bi and ki (since Eve doesn’t know them). For a index
i, compute the probability that Bob outputs ci for each choice b′i, depending on
|ξi〉. Show that the probability of outputting b′i = bi and ki 6= ci is 1

4
.

3. Conclude on the efficiency of this cheating strategy.

Solution:

1. Eve keeps |ψi〉 = |ki〉bi and then receives b′1, . . . , b
′
n as well as I. From this

information, Eve can recover all of bi. If she measures each |ψi〉 in the bi basis,
she can recover each ki.

2. If Bob chooses b′i = 0, he outputs ci wp. |〈ξi|ci〉|2. If b′i = 1, he outputs ci wp.
| 〈ξi|H |ci〉 |2. Assume that bi = b′i. This happens wp 1

2
since these bits are

uniform random bits and independent. Assume these are both 0. Let pc the
probability that Bob outputs ci = c. We clearly have p0 + p1 = 1. Moreover,
since ki is random, we have Pr[ki 6= ci] = 1

2
p0 + 1

2
p1 = 1

2
. A similar analysis

can be done when bi = b′i = 1. We conclude that the probability that bi = b′i
and ki 6= ci is 1

4
.

3. With this strategy, Eve can recover a bit of key but is caught wp. 1
4

each time.
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Exercise 3. We consider yet another cheating strategy in the case the classical chan-
nel is not authenticated, meaning that Eve can modify the messages sent in the clas-
sical portion. Show how can Eve can cheat in this setting (recall that she can also
tamper the quantum channel).

Solution: Eve performs a man in the middle attack and measures: she intercepts
all the classical messages. She impersonated Bob when interacting with Alice and
impersonates Alice when interacting with Bob. At the end, Eve shares with Alice a
key K1 and with Bob a key K2.

* * *

Exercise 4 (Quantum Weak Coin Flipping). Alice and Bob interact and want to flip
a random coin. Alice wins if they agree on outcome “0” and Bob wins on outcome
“1”. Describe the construction seen in class (without looking at its description in the
lecture notes) that shows how to use a bit commitment protocol with cheating proba-
bilities P ∗A, P

∗
B to perform a coin flipping protocol with the same winning probabilities.

Hint: consider a protocol where Alice commits to a bit b, receives a message from
Bob and then reveals b.

Solution: We consider the following protocol

• Alice chooses a random bit b and commits to b.

• Bob chooses a random c ∈ {0, 1} and sends c to Alice.

• Alice reveals b. The output of the coin flipping protocol is the bit a = b ⊕ c.
They agree on the value of Bob doesn’t abort.

Bob wins if he sends c = b ⊕ 1 so if he guessee b. This happens wp. at most P ∗B.
On the other hand, for any commit phase, Alice wins if she reveals b = c. Since c is
random, her probability of winning is

1

2
Pr[Alice successfully reveals b = 0] +

1

2
Pr[Alice successfully reveals b = 1] = P ∗A.

Exercise 5 (Loss tolerant quantum coin flipping protocols with single qubits). We
study the following generic bit commitment based quantum coin flipping scheme:
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Parameters : two bipartite states |Φ0
AB〉 and |Φ1

AB〉. In particular we are inter-
ested in ρ0 = TrA(|Φ0

AB〉) and ρ1 = TrA(|Φ1
AB〉)

Protocol :

1. Alice picks a random bit a, creates |Φa
AB〉 and sends the B part to Bob.

2. Bob picks a random bit b and sends it to Alice.

3. Alice reveals her bit a and sends the second part of |Φa
AB〉 to Bob. Bob checks

that he has the correct state by projecting the state he has onto |Φa
AB〉.

4. The outcome of the coin is c = a⊕ b.

Cheating probabilities : Here, cheating Alice’s goal is to enforce outcome
c = 0 while cheating Bob’s goal is to enforce c = 1. We can use that the cheating
probabilities for Alice and Bob can be written as

P ∗A = max Pr[Alice cheats] =
1

2
+
F (ρ0, ρ1)

2

P ∗B = max Pr[Bob cheats] =
1

2
+

∆(ρ0, ρ1)

2

We also define P ∗, the cheating probability of the protocol as P ∗ = max(P ∗A, P
∗
B).

Our goal is to study these protocols where the states ρa are single qubits.

1. We add a parameter x ∈ ]0, 1[ and consider a protocol with states ρ0 = |0〉〈0|
and
ρ1 = (1−x)|0〉〈0|+x|1〉〈1|. In this case, what are the cheating probabilities for
Alice and Bob? Find x such that P ∗ is minimal. Show that this minimum P ∗

is equal to 1+
√

5
4

(which is ≈ 81%).

2. We now consider a parameter x ∈ ]1/2, 1[ and a protocol with states
ρ0 = x|0〉〈0| + (1 − x)|1〉〈1| and ρ1 = (1 − x)|0〉〈0| + x|1〉〈1|. In this case,
what are the cheating probabilities for Alice and Bob? Find x such that P ∗ is
minimal. Show that this minimum P ∗ is equal to 1

2
+
√

2
4

(which is ≈ 85%).
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Losses: We are now interested in the case where there are losses in the quan-
tum channel. Losses imply that when Alice sends her qubit to Bob during step
1, he might not receive anything. If Bob didn’t receive any qubit, he declares
’Loss’ to Alice and they start again. Our goal is to see if a cheating Bob can
use this to his advantage. A cheating Bob also has losses but when he actually
receives the state ρa, he can still declare ’Loss’ and start the protocol again.

3. We consider the first studied protocol with ρ0 = |0〉〈0| and ρ1 = (1− x)|0〉〈0|+
x|1〉〈1|, for any x ∈ ]0, 1[. Find a measurement {|e0〉 , |e1〉} for Bob with the
following properties:

• Pr[Bob outputs |e0〉 |Bob has ρ0] = 1

• Pr[Bob outputs |e0〉 |Bob has ρ1] < 1

Use this measurement to describe (informally) a cheating strategy for Bob that
works with probability 1 in the presence of losses.

4. We consider the second studied protocol with ρ0 = x|0〉〈0|+ (1− x)|1〉〈1| and
ρ1 = (1 − x)|0〉〈0| + x|1〉〈1|, for any x ∈ ]1/2, 1[. Show that a measurement
{|e0〉 , |e1〉} for Bob such that:

• Pr[Bob outputs |e0〉 |Bob has ρ0] = 1

• Pr[Bob outputs |e0〉 |Bob has ρ1] < 1

cannot exist.
Conclusion: This shows that even if the second protocol has a larger cheating
probability, he cannot use the same strategy as in the for the previous protocol
in order to cheat with probability 1.

5. Finally, we consider the protocol with ρ0 = 1
2
|0〉〈0|+ 1

2
|2〉〈2| and ρ1 = 1

2
|1〉〈1|+

1
2
|2〉〈2|. For this protocol, describe (informally) a cheating strategy that allows

Bob to cheat with probability 1 in the presence of losses.

Solution:

1.

P ∗A =
1

2
+
F (ρ0, ρ1)

2
=

1

2
+

√
1− x
2

P ∗B =
1

2
+

∆(ρ0, ρ1)

2
=

1

2
+
x

2
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P ∗A is an increasing function of x and P ∗B is a decreasing function of x so the
minimum of P ∗ is achieved for P ∗A = P ∗B. This happens for x =

√
1− x or

for x2 + x − 1 = 0. The only correct solution is x =
√

5
2
− 1

2
. This gives

P ∗ = 1+
√

5
4
≈ 81%.

2.

P ∗A =
1

2
+
F (ρ0, ρ1)

2
=

1

2
+
√
x(1− x)

P ∗B =
1

2
+

∆(ρ0, ρ1)

2
=

1

2
+

2x− 1

2
= x

P ∗A is an decreasing function of x for x ∈ [1/2, 1] and P ∗B is an increasing
function of x so the minimum of P ∗ is achieved for P ∗A = P ∗B. This happens
when x−1/2 =

√
x(1− x) or for 2x2−2x+1/4 = 0. The only correct solution

is x = 2+
√

2
4

. This gives P ∗ = 2+
√

2
4
≈ 85%.

3. We take |e0〉 = |0〉 and |e1〉 = |1〉. If Alice has 0, Bob has ρ0 = |0〉〈0| and his
measurement gives outcome |0〉 with probability 1. If Alice has 1, Bob has ρ1

and his measurement gives outcome |0〉 with probability 〈0|ρ1|0〉 = 1− x 6= 1.

We consider the following cheating strategy for Bob. When receiving Alice’s
qubit, he measures in the {|0〉 , |1〉} basis. If he measures |0〉, he declares ’Loss’
and they start again. If he measures |1〉, he continues the protocol. In this
second case, Bob knows that Alice has a = 1 so he has full control of the output
of the coin since now, c = b.

4. Consider a measurement {|e0〉 , |e1〉} such that Pr[Bob outputs |e0〉 |a = 0] =
1. We have

Pr[Bob outputs |e0〉 |a = 0] = 〈e0|ρ0|e0〉 = x|〈0|e0〉|2 + (1− x)|〈1|e0〉|2 = 1

Since x ∈ [1/2, 1[, this gives |〈0|e0〉|2 = |〈1|e0〉|2 = 1. This implies

Pr[Bob outputs |e0〉 |a = 1] = 〈e0|ρ1|e0〉 = (1− x)|〈0|e0〉|2 + x|〈1|e0〉|2 = 1

which shows that a measurement {|e0〉 , |e1〉} with the required properties is
impossible.

5. Bob measures in the {|0〉 , |1〉 , |2〉} basis. On outcome |2〉, he declares ’Loss’.
On outcome |a〉, he declares b = a. If he measures |a〉 then Alice necessarily
has bit a. This strategy always gives c = a⊕ b = 1.
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