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QII Exercise sheet 16

Hidden Matching Problem

Alice has a random string x = (x1, . . . , xn) unknown to Bob with n even. Bob has
a matching M which is a list of n

2
disjoint pairs (i, j) for i, j ̸= i ∈ {1, . . . , n}. For

example for n = 6, the list ((1, 4), (2, 3), (5, 6)) is a possible matching. For n = 10,
the lists ((1, 7), (2, 9), (3, 4), (5, 10), (6, 8)) and ((1, 4), (2, 10), (3, 5), (6, 9), (7, 8)) are
two possible matchings.

Alice and Bob cooperate and we are in the one-way communication model where
Alice is allowed to send a single message to Bob. Bob outputs a triplet (i, j, b). They
win iff. (i, j) ∈M and xi ⊕ xj = b.

Exercise 1. We consider the following quantum protocol for this problem

� Alice creates the state |ψx⟩ = 1√
n

∑n
l=1(−1)xl |l⟩ and sends it to Bob.

� Bob has a matching M =
(
(i1, j1), . . . , (in/2, jn/2)

)
. Let Π = {Πi}i∈{1,...,n/2} be

a projective measurement with Πk = |ik⟩⟨ik|+ |jk⟩⟨jk|. Bob measures using this
measurement. He uses the resulting outcome to output a triplet (i, j, b) in a
way you will show in one of the questions.

1. What is the size of |ψx⟩?

2. Show that Π is a valid quantum measurement.

3. For each k ∈ {1, . . . , n/2}, what is the probability that Bob outputs “k”?

4. Assume Bob gets outcome k, what is the remaining state
∣∣ψkx〉 after the mea-

surement?

5. Show how Bob can output (i, j, b) from his outcome “k” and the state
∣∣ψkx〉.

Exercise 2. Show a randomized strategy where Alice sends a message of size Õ(
√
n)

that succeeds wp. at least 2
3
. Think of the birthday’s paradox.

This is actually optimal for classical one-way communication so it shows an expo-
nential separation between classical and quantum one-way communication complex-
ity. See [GKK+06] for more details.
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Quantum Fingerprinting

We consider a different scenario here where Alice and Bob have respectively a string
x ∈ {0, 1}n and y ∈ {0, 1}n. They each send a message to a referee R that has to
determine whether x = y or not. Alice and Bob do not have shared randomness.

Alice, Bob and the referee cooperate and they win iff. R outputs “0” if x = y
and “1” if x ̸= y.

Assume the referee has a procedure that given any 2 states |ψ1⟩ , |ψ2⟩ outputs “0”
wp 1

2
+ |⟨ψ1|ψ2⟩|2

2
.

Exercise 3. Using states of the form |ψx⟩ = 1√
n

∑
i |i⟩ |xi⟩, give a procedure where

Alice and Bob send states of size ⌈log2(n)⌉+1 and where the referee always succeeds
when x = y and succeeds wp. 1

2
− δ2

2
where δ = 1

n
|{i : xi = yi}|.

Exercise 4. For each c ∈ N∗, there exists a function E : {0, 1}n → {0, 1}cn st.
∀x, y ̸= x ∈ {0, 1}n, |{i ∈ [cn] : E(x)i = E(y)i}| ≤ 9

10
+ 1

15c
. This construction is

known as Justesen codes. Show how to use this function in order to win the game
with constant probability non zero when x ̸= y, by sending O(log(n)) qubits to the
referee.

Exercise 5. For 2 states |ψ1⟩ , |ψ2⟩, we consider the circuit

|0⟩ H H b

|ψ1⟩
SWAP

|ψ2⟩

where the second gate is a control-SWAP defined as

C − SWAP |0⟩ |x⟩ |y⟩ = |0⟩ |x⟩ |y⟩ ; C − SWAP |1⟩ |x⟩ |y⟩ = |1⟩ |y⟩ |x⟩ .
for any x, y ∈ {0, 1}. Show that this circuit performs the procedure of the referee that

outputs 0 wp. 1
2
+ |⟨ψ1|ψ2⟩|2

2
.
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