QII Exercise sheet 18 - Mockup exam

Exercise 1. For a matrix $\rho = \sum_i \lambda_i |e_i\rangle \langle e_i|$ in spectral decomposition, we define $\rho^2 = \sum_i \lambda_i^2 |e_i\rangle \langle e_i|$. Show that ρ is a pure state iff. $tr(\rho^2) = 1$.

Exercise 2. What is the entropy of the state $\rho = \frac{1}{4} (|0\rangle\langle 0| + |1\rangle\langle 1| + |+\rangle\langle +| + |-\rangle\langle -|)$? **Exercise 3.** Consider the POVM $F = \{F_0, F_1, F_2, F_3\}$ with each $F_i = M_i M_i^{\dagger}$ and

$$M_0 = \frac{1}{\sqrt{2}} |0\rangle \langle 0|$$
$$M_1 = \frac{1}{\sqrt{2}} |+\rangle \langle +|$$
$$M_2 = \frac{1}{\sqrt{2}} |-\rangle \langle -|$$
$$M_3 = \frac{1}{\sqrt{2}} |1\rangle \langle 1|$$

- 1. Write F_0 . Show that F is a POVM.
- 2. For a given state $|\phi\rangle$, what is the probability of getting each outcome *i* and what is the resulting state after this measurement?
- 3. Start with the state $|0\rangle$ and perform the POVM F. Is it possible that the resulting state is $|1\rangle$?
- 4. Start with the state $|0\rangle$ and perform the POVM F. You get some outcome i and the resulting state is $|\psi_i\rangle$. Now perform the POVM F again on $|\psi_i\rangle$ to get a new outcom j and resulting state $|\psi_{ij}\rangle$. Compute the probability that $|\psi_{ij}\rangle = |1\rangle$.

Exercise 4 (Qutrit encoding). Alice has 2 uniformly random btis x_1, x_2 unknown to Bob and wants to send as much information as possible to Bob by sending a single qutrit to Bob. More precisely, she constructs the state

$$|\phi_{x_1,x_2}\rangle = \frac{1}{\sqrt{3}} \left((-1)^{x_1} |0\rangle + (-1)^{x_2} |1\rangle + (-1)^{x_1 \oplus x_2} |2\rangle \right).$$

and sends it to Bob. For $b \in \{0, 1\}$, let ρ_b^1 be Bob's state conditioned on the fact that $x_1 = b$ and let ρ_b^2 be Bob's state conditioned on $x_2 = b$.

1. Write the state $|\phi_{x_1,x_2}\rangle\langle\phi_{x_1,x_2}|$ in matrix form in the basis $\{|0\rangle, |1\rangle, |2\rangle\}$ as a function of x_1, x_2 . Write the density matrices $\rho_0^1, \rho_1^1, \rho_0^2, \rho_1^2$. What is the entropy of each of these states? You can use $\log_2(3) \approx 1.585$.

- 2. Assume Bob wants to learn x_1 from $|\phi_{x_1,x_2}\rangle$. Show that the optimal probability of success is $\frac{5}{6}$ and give a corresponding optimal strategy to learn x_1 .
- 3. Assume Bob wants to learn (x_1, x_2) . Give a simple strategy that succeeds wp. $\frac{5}{12}$.
- 4. Consider the POVM $F = \{F_{00}, F_{01}, F_{10}, F_{11}\}$ with $F_{ij} = \frac{1}{N} |\phi_{i,j}\rangle \langle \phi_{i,j}|$, where N is a normalizing factor.
 - (a) What N should we take such that F is a POVM?
 - (b) Assume Bob wants to learn (x_1, x_2) . Give a strategy that succeeds wp. $\frac{3}{4}$.

Exercise 5. Assume Alice has 2 states ρ_0 and ρ_1 and sends to Bob ρ_b for a randomly chosen $b \in \{0, 1\}$. Use the previous exercise to show the result given in class that Bob can guess b wp. at most $\frac{1}{2} + \frac{\Delta(\rho_0, \rho_1)}{2}$. (Hint: any strategy for Bob can be expressed as a 2-outcome POVM $\{F_0, F_1\}$ where outcome i corresponds to his guess. Express his winning probability as a function of $tr(F_0, \rho_0)$ and $tr(F_1, \rho_1)$).