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QII Exercise sheet 1

PART I: Distinguishing the one time shift from a random
permutation

Let n ∈ N∗, N = 2n and [N] = {0, . . . ,N − 1}. Let ω = e
2iπ
N the canonical Nth root

of unity. Let SN the set of permutations from [N] to [N] and let FN the quantum
Fourier transform acting on n qubits. Recall that ∀k ∈ [N], we have FN(|k〉) =
1√
N

∑N−1
j=0 ω

jk |j〉. For each s ∈ [N], we define the function

Shifts(x) := (x+ s) mod N.

For any classical function f from [N ] to [N ], we define the quantum unitary Of such
that for each x, z ∈ [N], Of (|x〉 |z〉) = |x〉 |f(x)⊕ z〉. In particular, Of (|x〉 |0n〉) =
|x〉 |f(x)〉.

We are given a black box quantum circuit Of such that

� With probability 1
2
, f = Shifts for a randomly chosen s ∈ [N] (CASE 1).

� With probability 1
2
, f = σ for a randomly chosen σ ∈ SN (CASE 2).

We only have a black box access to Of meaning that we don’t have access to the
internal wirings of the circuit. The only thing we can do is perform the unitary Of .
Our goal is, given Of , to determine, with only one application of the quantum circuit
Of whether we are in CASE 1 or in CASE 2.

We consider the following distinguishing protocol:
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Distinguishing Protocol given Of .

1. Start from |ψ0〉 = |0n〉 |0n〉 and apply the Fourier transform FN on the first register.

2. Apply the quantum unitary Of to both registers.

3. Apply the Fourier transform FN on the second register.

4. Apply the inverse Fourier transform F−1N on the first register.

5. Measure both registers in the computational (standard) basis to get some outcome
(y, y′)

Exercise 1 (Preliminary question). Let GN the quantum unitary operation acting on
n qubits such that ∀k ∈ [N], we have G(|k〉) = 1√

N

∑N−1
j=0 ω

−jk |j〉. For each k ∈ [N],

compute GN(FN(|k〉)). Show that GN is the inverse of FN.

Solution: Fix k ∈ [N]. We have

GN(FN(|k〉)) = GN(
1√
N

N−1∑
j=0

ωjk |j〉) =
1

N

N−1∑
j=0

ωjk
N−1∑
l=0

ω−jl |l〉 =
1

N

N−1∑
l=0

(
N−1∑
j=0

ωj(k−l)) |l〉 .

If k = l, we have
∑

j ω
j(k−l) = N. If k 6= l, we have

∑
j ω

j(k−l) = 0. We conclude
that GN(FN |k〉) = |k〉. Since this holds for each k, by linearity, we conclude that GN

is the inverse of FN.

Exercise 2 (One time Shift). We first study what happens in the distinguishing
protocol when f = Shifts for a fixed s ∈ [N].

1. For a fixed s, Let |ψsi 〉 the state after step i of the distinguishing protocol given
OShifts. Compute |ψs1〉 , |ψs2〉 , |ψs3〉 , |ψs4〉.

2. For each y, what is the probability Py,y of measuring (y, y) during step 5? Show

that Peq =
∑N−1

y=0 Py,y = 1.

Solution:

1. |ψs1〉 = 1√
N

∑N−1
x=0 |x〉 |0〉.
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2. |ψs2〉 = 1√
N

∑N−1
x=0 |x〉 |x+ s〉.

3. |ψs3〉 = 1
N

∑N−1
x=0 |x〉

∑N=1
j=0 ω

j(x+s) |j〉.

4. |ψs4〉 = 1
N
√
N

∑N−1
x=0

∑N−1
l=0 ω

−xl |l〉
∑N=1

j=0 ω
j(x+s) |j〉.

The probability of measuring (y, y) is | 1
N
√
N
ωys
∑

x ω
x(y−y)|2 = 1

N
. From there, we

immediately have Peq = 1. Notice that this is independent of s.

Exercise 3 (Random permutation). We now study what happens in the distinguishing
procedure when f = σ for a random permutation σ ∈ SN.

1. For a fixed permutation σ, Let |φσi 〉 the state after step i of the distinguishing
protocol given Oσ. Compute |φσ1〉 , |φσ2〉 , |φσ3〉 , |φσ4〉.

2. For each y, what is the probability Qy,y of measuring (y, y) on average on σ?
Show that Qeq =

∑
yQy,y = 2

N
. One can use the following formula which holds

for any y ∈ {1, . . . ,N− 1}.

Eσ←SN
[|
∑
x

ωy(σ(x)−x)|2] =
N2

N− 1

where Eσ←SN
[·] denotes the expected value over a random permutation σ.

Solution:

1. |φσ1〉 = 1√
N

∑N−1
x=0 |x〉 |0〉.

2. |φσ2〉 = 1√
N

∑N−1
x=0 |x〉 |σ(x)〉.

3. |φσ3〉 = 1
N

∑N−1
x=0 |x〉

∑N=1
j=0 ω

jσ(x) |j〉.

4. |φσ4〉 = 1
N
√
N

∑N−1
x=0

∑N−1
l=0 ω

−xl |l〉
∑N=1

j=0 ω
j(σ(x)) |j〉.

The probability of measuring (y, y) is equal to | 1
N
√
N

∑
x ω

y(σ(x)−x)|2. First notice

that P0,0 = 1
N

. If y 6= 0, we can use the formula, to conclude that Py,y = 1
N3 · N2

N−1 =
1

N(N−1) . From there, we conclude that Peq = 2
N

.

Exercise 4 (Distinguishing protocol given Of ). Describe a test with the following
properties: if you are in case 1, the test outputs ”CASE1” with probability 1, if you
are in case 2, the test outputs ”CASE2” with probability 1− 2

N
. Moreover, we require

the test to make one oracle call. Can you think of a test that answers the correct
CASE with probability > 1− 2

N
in both cases?
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Solution: Perform the protocol described above, and measure both registers in the
computational basis. If the outcomes are the same, output ”CASE2”. Otherwise,
output ”CASE1”. The answer toQ3 andQ5 give us the respective winning probabilities.
In order both winning probabilities to be > 1 − 1

2N
, we perform the following : if

the outcomes are the same, output ”CASE2” with probability 1− ε and ”CASE1”
with probability ε. If the two outcomes are different, output ”CASE2”. In the first
case, the test succeeds with probability 1 − ε. In the second case, with probability
1− 2(1−ε)

N
. The maximum is achieved for ε = 2

N−2 .

Exercise 5 (Classical complexity). Show that you can’t determine with probability
strictly greater than 1/2 whether you are in CASE 1 or in CASE 2 using a single
classical query to Of . Find a procedure that will succeed with probability close to 1
using 2 classical queries to Of .

Solution: With one classical query, in each case, you get a random string. However,
with 2 queries, perform the following test: query x1, x2 for random different values.
If f(x1) − x1 mod N = f(x2) − x2 mod N then we output CASE 1, otherwise,
we output CASE 2. If we are in CASE 1, this test will always succeed, since
f(x1) − x1 mod N = f(x2) − x2 mod N = s. On the other hand, if we are in
CASE 2, f(x1), f(x2) are different random strings and the probability that f(x1)−x1
mod N = f(x2)− x2 mod N is Ω( 1

N
).

Part II: A few calculations around the QFT

Exercise 1. We consider quantum unitaries on n qubits. Let N = 2n and [N ] =
{0, . . . , N − 1} so that any n qubit state |ψ〉 can be written as |ψ〉 =

∑
i∈[N ] αi |i〉

with
∑

i∈[N ] |αi|2 = 1. Let QFTN : |k〉 →
∑

j∈[N ] ω
jk |j〉 be the Quantum Fourier

transform on n qubits with ω = e
2iπ
N . Recall that (QFTN)−1 : |k〉 →

∑
j∈[N ] ω

−jk |j〉

1. Let V1 = QFTN ◦ QFTN . Compute V1(|k〉) for any k ∈ [N ]. Let |ψ〉 =
1√
2
|0〉+ 1√

2
|1〉. Compute V1(|ψ〉).

(V1) QFTN QFTN
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2. Let n ≥ 3. Let U the unitary such that U(|k〉) = w3k |k〉 for each k ∈ [N ]. Let

V2 = (QFTN)−1◦U◦QFTN . Let |ψ〉 =
√

1
6
|0〉+

√
1
3
|2〉+

√
1
8

(|3〉+ |4〉+ |6〉+ |7〉).

Compute V2(|ψ〉) when n = 3 and when n = 4.

(V2) QFTN U QFT−1N

Solution:

1.

V1(|k〉) = QFTN(
1√
N

∑
j

ωjk |j〉) =
1

N

∑
j,l

ωjkωjl |l〉

=
1

N

∑
l

(∑
j

ω(k+l)j

)
|l〉 = |−k mod N〉 = |N − k〉

V1(|ψ〉) =
1√
2
|0〉 1√

2
|N − 1〉 .

2.

V2(|k〉) = (QFTN)−1 ◦ U ◦
∑
j

1√
N
ωjk |j〉 =

1√
N

(QFTN)−1
∑
j

ωj(k+3) |j〉 = |k + 3 mod N〉

We have therefore for n = 3:

V2(|ψ〉) =

√
1

6
|3〉+

√
1

3
|5〉+

√
1

8
(|6〉+ |7〉+ |1〉+ |2〉) .

and for n = 4:

V2(|ψ〉) =

√
1

6
|3〉+

√
1

3
|5〉+

√
1

8
(|6〉+ |7〉+ |9〉+ |10〉) .
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