QII Exercise sheet 3

Exercise 1. For a matrix $\rho = \sum_i \lambda_i |e_i\rangle \langle e_i|$ in spectral decomposition, we define $\rho^2 = \sum_i \lambda_i^2 |e_i\rangle \langle e_i|$. Show that ρ is a pure state iff. $tr(\rho^2) = 1$.

Exercise 2. Consider the POVM $F = \{F_0, F_1, F_2, F_3\}$ with each $F_i = M_i M_i^{\dagger}$ and

$$M_0 = \frac{1}{\sqrt{2}} |0\rangle \langle 0|$$
$$M_1 = \frac{1}{\sqrt{2}} |+\rangle \langle +|$$
$$M_2 = \frac{1}{\sqrt{2}} |-\rangle \langle -|$$
$$M_3 = \frac{1}{\sqrt{2}} |1\rangle \langle 1|$$

- 1. Write F_0 . Show that F is a POVM.
- 2. For a given state $|\phi\rangle$, what is the probability of getting each outcome *i* and what is the resulting state after this measurement?
- 3. Start with the state $|0\rangle$ and perform the POVM F. Is it possible that the resulting state is $|1\rangle$?
- 4. Start with the state |0⟩ and perform the POVM F. You get some outcome i and the resulting state is |ψ_i⟩. Now perform the POVM F again on |ψ_i⟩ to get a new outcome j and resulting state |ψ_{ij}⟩. Compute the probability p_{ij} to get outcomes i and j this way. Is it possible that the resulting state becomes |1⟩ after these two measurements? If yes, with what probability does this happen?

Exercise 3. Consider 2 quantum states ρ, σ , and an m-outcome POVM $F = \{F_1, \ldots, F_m\}$ where each $F_i = M_i M_i^{\dagger}$ and $\sum_i F_i = I$. We define

$$p_i = tr(F_i \rho)$$
 and $q_i = tr(F_i \sigma)$.

Our goal is to show that

$$\Delta(\rho, \sigma) \ge \Delta(p, q).$$

with $\Delta(p,q) = \frac{1}{2} \sum_i |p_i - q_i|.$

1. To what correspond the values p_i and q_i ?

- 2. We perform the spectral decomposition $\rho \sigma = \sum_i \lambda_i |e_i\rangle\langle e_i|$. We define $Q = \sum_{i:\lambda_i \ge 0} \lambda_i |e_i\rangle\langle e_i|$ and $S = \sum_{i:\lambda_i < 0} -\lambda_i |e_i\rangle\langle e_i|$, so that $\rho \sigma = Q S$ and $|\rho \sigma| = Q + S$. Show that for each $i \in [m]$. $|p_i q_i| \le tr(F_i(Q + S))$.
- 3. Conclude that $\Delta(\rho, \sigma) \geq \Delta(p, q)$.

Exercise 4. Assume Alice has 2 states ρ_0 and ρ_1 and sends to Bob ρ_b for a randomly chosen $b \in \{0, 1\}$. Use the previous exercise to show the result given in class that Bob can guess b wp. at most $\frac{1}{2} + \frac{\Delta(\rho_0, \rho_1)}{2}$. (Hint: any strategy for Bob can be expressed as a 2-outcome POVM $\{F_0, F_1\}$ where outcome i corresponds to his guess. Express his winning probability as a function of $tr(F_0, \rho_0)$ and $tr(F_1, \rho_1)$).