QII Exercise sheet 4

Analysis around the fingerprint state

Consider the state $|\psi_{x_1x_2x_3x_4}\rangle = \frac{1}{2} \left((-1)^{x_1} |00\rangle + (-1)^{x_2} |01\rangle + (-1)^{x_3} |10\rangle + (-1)^{x_4} |11\rangle \right)$ that depends on 4 bits x_1, x_2, x_3, x_4 .

Exercise 1. We assume $x_2, x_3, x_4 = 0$. Consider the states $|\phi_b\rangle = |\psi_{b000}\rangle$. This is 2-qubit state on some registers AB where A is the register corresponding to the first qubit and B is the register corresponding to the second qubit.

- 1. Give an expression for $|\phi_0\rangle$ and $|\phi_1\rangle$.
- 2. Compute $\rho_b^A = tr_B |\phi_b\rangle \langle \phi_b |$ for both b = 0 and b = 1.
- 3. Compute $\Delta(\rho_0^A, \rho_1^A)$. Give a measurement that, given ρ_b^A , outputs b with probability P_b with $\frac{1}{2}(P_0 + P_1) = \frac{3}{4}$ and argue that this measurement is optimal.

Exercise 2. We still assume $x_2, x_3, x_4 = 0$. Our goal is to analyze what is the probability of recovering x_1 assuming we now have access to the full state $|\phi_{x_1}\rangle$ (so Alice and Bob are together here).

- 1. Compute $\langle \phi_0 | \phi_1 \rangle$. Argue that there is a measurement that, given $| \phi_b \rangle$ for $b \in \{0, 1\}$, outputs b with probability P_b with $\frac{1}{2}(P_0 + P_1) = \frac{1}{2} + \frac{\sqrt{3}}{4}$.
- 2. Find the measurement that distinguishes $|\phi_0\rangle$ and $|\phi_1\rangle$ wp. $\frac{1}{2} + \frac{\sqrt{3}}{4}$. One can use without proof $\frac{1}{2} + \frac{\sqrt{3}}{4} = \cos^2(\pi/12)$.

Exercise 3. We now don't have $x_2, x_3, x_4 = 0$ anymore. Assume we are in one of the two following cases

- 1. $x_1 = x_2 = x_3 = x_4$.
- 2. $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$, but the 4 bits are not all equal.

Give a measurement on $|\psi_{x_1x_2x_3x_4}\rangle$ that determines with certainty in which case we are.

Fidelity relation

Exercise 4. Our goal is to show the following result given in class: for any quantum states ρ, σ , we have

$$\max_{\zeta} \{ \frac{1}{2} F^2(\rho, \zeta) + \frac{1}{2} F^2(\zeta, \sigma) \} = \frac{1}{2} + \frac{F(\rho, \sigma)}{2}.$$
(1)

1. Show that for any angles $\alpha, \beta \in [0, \pi/2]$

$$\cos(\alpha + \beta) \ge \cos^2(\alpha) + \cos^2(\beta) - 1.$$

(*Hint:* you can use the following inequality that comes from the concavity of the cos function on $[0, \pi]$:

$$\forall x, y \in [0, \pi] : \cos(\frac{x+y}{2}) \ge \frac{1}{2} (\cos(x) + \cos(y)).$$

as well as known trigonometric equalities)

2. Using the angle distance, show that

$$\max_{\zeta} \{ \frac{1}{2} F^2(\rho, \zeta) + \frac{1}{2} F^2(\zeta, \sigma) \} \le \frac{1}{2} + \frac{F(\rho, \sigma)}{2}.$$

3. For any states ρ, σ , show that there exists ζ st.

$$\frac{1}{2}F^{2}(\rho,\zeta) + \frac{1}{2}F^{2}(\zeta,\sigma) \ge \frac{1}{2} + \frac{F(\rho,\sigma)}{2}.$$

(Hint: Consider purifications $|A\rangle$, $|B\rangle$ of ρ , σ from Ulhmann's theorem and look at the state "in between" $|A\rangle$ and $|B\rangle$.)