Analysis around the fingerprint state

Consider the state $|\psi_{x_1x_2x_3x_4}\rangle = \frac{1}{2} \left((-1)^{x_1} |00\rangle + (-1)^{x_2} |01\rangle + (-1)^{x_3} |10\rangle + (-1)^{x_4} |11\rangle \right)$ that depends on 4 bits x_1, x_2, x_3, x_4 .

Exercise 1. We assume $x_2, x_3, x_4 = 0$. Consider the states $|\phi_b\rangle = |\psi_{b000}\rangle$. This is 2-qubit state on some registers AB where A is the register corresponding to the first qubit and B is the register corresponding to the second qubit.

- 1. Give an expression for $|\phi_0\rangle$ and $|\phi_1\rangle$.
- 2. Compute $\rho_b^A = tr_B |\phi_b\rangle \langle \phi_b|$ for both b = 0 and b = 1.
- 3. Compute $\Delta(\rho_0^A, \rho_1^A)$. Give a measurement that, given ρ_b^A , outputs b with probability P_b with $\frac{1}{2}(P_0 + P_1) = \frac{3}{4}$ and argue that this measurement is optimal.

Exercise 2. We still assume $x_2, x_3, x_4 = 0$. Our goal is to analyze what is the probability of recovering x_1 assuming we now have access to the full state $|\phi_{x_1}\rangle$ (so Alice and Bob are together here).

- 1. Compute $\langle \phi_0 | \phi_1 \rangle$. Argue that there is a measurement that, given $| \phi_b \rangle$ for $b \in \{0, 1\}$, outputs b with probability P_b with $\frac{1}{2}(P_0 + P_1) = \frac{1}{2} + \frac{\sqrt{3}}{4}$.
- 2. Find the measurement that distinguishes $|\phi_0\rangle$ and $|\phi_1\rangle$ wp. $\frac{1}{2} + \frac{\sqrt{3}}{4}$. One can use without proof $\frac{1}{2} + \frac{\sqrt{3}}{4} = \cos^2(\pi/12)$.

Exercise 3. We now don't have $x_2, x_3, x_4 = 0$ anymore. Assume we are in one of the two following cases

- 1. $x_1 = x_2 = x_3 = x_4$.
- 2. $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$, but the 4 bits are not all equal.

Give a measurement on $|\psi_{x_1x_2x_3x_4}\rangle$ that determines with certainty in which case we are.

Angle distance

The quantity 1 - F is not a distance since it doesn't satisfy the triangle inequality. Our goal here is to construct a distance out of the fidelity.

Definition 1. For any two quantum states ρ, σ , we define their angle as $Angle(\rho, \sigma) = Arccos(F(\rho, \sigma))$

Fix two pure states $|\psi\rangle$ and $|\phi\rangle$ with $|\langle\psi|\phi\rangle| = \cos(\alpha)$, then $Angle(|\psi\rangle\langle\psi|, |\phi\rangle\langle\phi|) = \alpha$. The notion of angle for mixed states somehow extends the notion of angle that exists for pure states.

The angle is a distance. It satisfies the following properties

- $Angle(\rho, \sigma) = 0 \Leftrightarrow \rho = \sigma$
- $0 \leq Angle(\rho, \sigma) \leq \pi/2$
- $Angle(\rho, \sigma) = Angle(\sigma, \rho)$
- $Angle(\rho, \tau) \leq Angle(\rho, \sigma) + Angle(\sigma, \tau)$

Exercise 4. Our goal is to show the following result: for any quantum states ρ, σ , we have

$$\max_{\zeta} \{ \frac{1}{2} F^2(\rho, \zeta) + \frac{1}{2} F^2(\zeta, \sigma) \} = \frac{1}{2} + \frac{F(\rho, \sigma)}{2}.$$
(1)

1. Show that for any angles $\alpha, \beta \in [0, \pi/2]$

$$\cos(\alpha + \beta) \ge \cos^2(\alpha) + \cos^2(\beta) - 1.$$

(*Hint:* you can use the following inequality that comes from the concavity of the cos function on $[0, \pi]$:

$$\forall x, y \in [0, \pi] : \cos(\frac{x+y}{2}) \ge \frac{1}{2} (\cos(x) + \cos(y)).$$

as well as known trigonometric equalities)

2. Using the angle distance, show that

$$\max_{\zeta} \{ \frac{1}{2} F^2(\rho, \zeta) + \frac{1}{2} F^2(\zeta, \sigma) \} \le \frac{1}{2} + \frac{F(\rho, \sigma)}{2}.$$

3. For any states ρ, σ , show that there exists ζ st.

$$\frac{1}{2}F^{2}(\rho,\zeta) + \frac{1}{2}F^{2}(\zeta,\sigma) \ge \frac{1}{2} + \frac{F(\rho,\sigma)}{2}.$$

(Hint: Consider purifications $|A\rangle$, $|B\rangle$ of ρ , σ from Ulhmann's theorem and look at the state "in between" $|A\rangle$ and $|B\rangle$.)

Exercise 5 (Strong Concavity of the Fidelity). Let p_i and q_i be probability distributions over the same index set, and ρ_i, σ_i also density operators indexed over the same index set. Our goal is to show that

$$F\left(\sum_{i} p_{i}\rho_{i}, \sum_{i} q_{i}\sigma_{i}\right) \geq \sum_{i} \sqrt{p_{i}q_{i}}F(\rho_{i}, \sigma_{i}).$$

- 1. We take purifications $|\psi_i\rangle$ of ρ_i and purifications $|\phi_i\rangle$ of σ_i st. $F(\rho_i, \sigma_i) = \langle \psi_i | \phi_i \rangle$. Argue why this is always possible.
- 2. Let $|\psi\rangle = \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$ and $|\phi\rangle = \sum_{i} \sqrt{q_i} |\phi_i\rangle |i\rangle$. Show that

$$F\left(\sum_{i} p_{i}\rho_{i}, \sum_{i} q_{i}\sigma_{i}\right) \geq |\langle\psi|\phi\rangle|.$$

3. Conclude.

Exercise 6 (Simple bit commitment protocol). We consider the following simple bit commitment protocol:

- Commit phase: If Alice wants to commit to b = 0, she sends |0⟩ to Bob. If Alice wants to commit to b = 1, she sends |+⟩ to Bob.
- Reveal phase: Alice reveals b. If b = 0, Bob measures his qubit in the computational basis and checks whether he got $|0\rangle$. If b = 1, Bob measures his qubit in the computational basis and checks whether he got $|+\rangle$.
- 1. Assuming Alice is honest and she chooses b at random, what is Bob's probability of guessing b after the commit phase?
- 2. Think of the best way to cheat for Alice in the following sense: find a quantum state $|\phi\rangle$ that Alice can send after the commit phase that will allow to successfully reveal any of the 2 values wp. $\cos^2(\pi/8)$.