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Foreword

This manuscript for my Habilitation à Diriger les Recherches contains a selection of my work
that I did after my thesis. I will now very briefly describe the different topics I have worked on
since my thesis - many of which I won’t talk about here - which also serves as a shout-out for all
my coauthors.

After my thesis that dealt with the theoretical analysis of quantum cryptographic primi-
tives, I worked on cryptographic primitives and multipartite entanglement verification schemes
in real physical scenarios, which lead to their practical implementation. This was joint work
with Eleni Diamanti, Iordanis Kerenidis, Anna Pappa, Damian Markham, Paul Jouguet, Tom
Lawson, Matthieu Legré, Patrick Trinkler, Stephanie Wehner, Will McCutcheon, Bryn Bell, Alex
McMillan, Mhlambululi Mafu, John Rarity, and Mark Tame [PCDK11, PCW+12, PJL+14]. I
also worked on quantum oblivious transfer and relations with entangled games and random access
codes. These were joint works with Jamie Sikora, Gus Gutoski, Iordanis Kerenidis and Srijita
Kundu [CKKS14, SCK14, CGS16].

I discovered interesting research questions around the complexity class QMA(2) jointly with
Or Sattath [CS12]. I also worked with Giannicola Scarpa on parallel repetition of entangled
games [CS14a, CS14b], and with Iordanis Kerenidis and Mathieu Laurière on quantum commu-
nication complexity [CKL17]. I also worked on trying to understand the mysteries of Mochon’s
quantum weak coin flipping with Iordanis Kerenidis, Dorit Aharonov, Löıck Magnin and Maor
Ganz [ACG+16].

Later, I worked on cryptography that used relativistic principles for bit commitment and
zero-knowledge protocols for NP, as well as for position verification. These were joint works with
Anthony Leverrier, Kaushik Chakraborty, Rémi Bricout, Frédéric Grosshans, Andrea Olivo, Ulysse
Chabaud and Yann Barsamian [CCL15, CCL16, CL17, BC17, OCCG20, CB21].

With colleagues from my Inria team, I worked on algorithms for quantum cryptanalysis for
code-based and lattice-based cryptography as well as more general algorithms for the collision
problem. This was joint work with Maria Naya-Plasencia, André Schrottenloher, Thomas Debris,
Rémi Bricout and Matthieu Lequesne, Simona Etinski and Johanna Loyer [CNS17, BCDL19,
Cha19, CL21, CDAE21, CL23]

I also worked on quantum security proofs for public key cryptography as well as symmetric
key cryptography in joint works with Thomas, Maria, Simona, Gaëtan Leurent, André, Ritam
Bhaumik, Xavier Bonnetain and Yannick Seurin [CD20, Cha19, BBC+21, CE23].

I was lucky to participate in the second round of NIST’s competition for post-quantum signa-
ture schemes. We submitted the code-based signature WAVE, jointly with Gustavo Banegas, Kévin
Carrier, Alain Couveur, Thomas Debris-Alazard, Philippe Gaborit, Pierre Karmpan, Johanna
Loyer, Ruben Niederhagen, Nicolas Sendier, Benjamin Smith and Jean-Pierre Tillich [BCC+23].

Recently, I worked with Jean-Pierre on interesting developments of Regev’s reduction for
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codes [CT24] and I also discovered with Thomas the joys of packing bounds and association
schemes [CD24].

In this manuscript, I present a personal view of a few of these research topics. However my
research wouldn’t have been one tenth as interesting without the great research collaborations and
encounters that I have done throughout these years.

Here is also the good place for warmly thanking everyone that accepted being part of my jury.
Claude, Ronald and Jérémie for accepting to review this habilitation and Eleni, Elham, Sophie,
Frédéric, Damian, Nicolas and Iordanis for being in my jury. Every single one of you has had a
positive and inspiring influence on the researcher I have become.
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Introduction

This manuscript will have two parts. In the first part, I will present quantum information tools
known as a quantum learning in sequence lemmata and show how they can be used to bound the
value of some entangled games. I then show how this can be applied to relativistic cryptography,
which corresponds to multi-prover cryptographic protocols where we ensure the non-signalling
requirement between the provers by adding spacetime constraints. In the second part of the
manuscript, I will present a few results revolving around the quantum collision problem as well as
quantum algorithms for the Shortest Vector Problem used in lattice-based cryptography.

A habilitation thesis in France is often non-technical. Nevertheless, there will be some moments
where I will provide some proofs or proof sketches. The goal is to present some of the key ideas
around the work I present here, and it is sometimes necessary to give formal definitions. On the
other hand, when formalizing everything damages the reading flow and the clarity, I omit some
technical discussions and stay at a high level when conveying the main ideas. I now summarize
the contributions presented in this thesis.

Chapter 1. Learning in Sequence lemmata and entangled games

If we encode some classical bits into a quantum state ρ, a particularly interesting feature of
quantum information is that trying to learn one of the encoded bits via a measurement will
modify ρ and hence can potentially destroy the information we have on other bits. The first part
of this manuscript aims at understanding and bounding as tightly as possible this phenomenon in
terms of learning in sequence lemmata. In its simplest form, a learning in sequence lemma states
the following: suppose you are given a state ρx0,x1 that depends on two bits x0, x1 and suppose
you can recover x0 and x1 from ρx0,x1 with some respective probabilities p0 and p1. What is the
probability can you learn both bits (x0, x1)? While I used many variants of these statements as
powerful technical tools in several of my papers, I haven’t had the occasion to present them in a
standalone fashion, which is the aim of this first chapter, where I will also show connections to
entangled games.

Chapter 2. Relativistic zero-knowledge for NP
Relativistic cryptography is a way to bypass impossibility results for (quantum) bit commitment
using a multi-prover setting, and using spacetime constraints to ensure that the provers cannot
communicate. There is a known relativistic bit commitment protocol by Simard, and the goal
of this chapter is to see how it can be used in a zero-knowledge protocol. Here, we choose the
zero-knowledge protocol for Hamiltonian Cycle by Blum - which is an NP complete problem.
The reason we chose this protocol over 3-colouring for instance is that in the relativistic setting,
its security against entangled provers translates into bounds for the value of an entangled game
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which is easily analysable using the tools of the previous chapter. This was the first proposal for
a relativistic zero-knowledge protocol for NP which is secure against entangled provers.

Chapter 3. Practical aspects of relativistic zero-knowledge

The relativistic protocol studied in the previous chapter had a small challenge size, which helped
in analysing its security but it is not very efficient. Indeed, Blum’s protocol requires to commit
to all the bits of the adjacency matrix of the underlying graph and this results in a large com-
munication in the protocol. Since the relativistic protocol has some strict spacetime constraints,
the communication between the parties has to be very fast and we have to use a more efficient
protocol.

To do so, we consider more practical cryptographic constructions, namely signature schemes.
Many signature schemes are built from zero-knowledge protocols using the Fiat-Shamir transform
and the efficiency of the signature scheme is directly related to the efficiency of the zero-knowledge
protocol. We choose Stern’s signature scheme for the Syndrome Decoding problem, which is closely
related to the problem of decoding a linear code. This problem is NP-complete and is also believed
to be hard for random instances against quantum computers. Moreover, Stern’s zero-knowledge
protocol is quite efficient, which makes it a good candidate. We provide a full security analysis of
the resulting relativistic zero-knowledge protocol for Syndrome Decoding, by extending the tools
of the first chapter. The protocol was actually efficient enough so that we could perform a practi-
cal implementation of it without specific hardware, over ethernet cables or over standard internet
connection.

We now move to the second part of this thesis on quantum algorithms.

Chapter 4. Quantum collision problem with small quantum memory

The collision finding problem - or Element Distinctness in the community of quantum query
complexity - is a fundamental problem that has many applications, notably in cryptography. It is
well known that for efficiently computable hash functions f : {0, 1}n → {0, 1}n, finding a collision
i.e. x, y ̸= x such that f(x) = f(y) can be done in average time O(2n/3) using a quantum algorithm
and that this is optimal.

It seems that the question is totally solved and that there is nothing to do. The catch is
that all of these algorithms use a lot of quantum resources: they use as much quantum memory
as time and also require QRAM (Quantum Random Access Memory) operations which will not
necessarily be possible even if quantum computers are built. In a joint work with Maŕıa Naya-
Plasencia and André Schrottenloher, we show how to find collisions in time O(22n/5) on random
functions f : {0, 1}n → {0, 1}n using only O(poly(n)) quantum memory and no QRAM.

Chapter 5. Quantum lower bounds for permutation symmetric func-
tions

The problem of determining whether a collision in f exists is permutation symmetric, in the sense
that if we permute the inputs of f this doesn’t change whether a collision in f exists or not.
We also know that we have at most a polynomial advantage in the quantum case for solving this
problem. Aaronson and Ambanis showed that there is at most a polynomial quantum speed-up for
problems which have strong symmetries. In this chapter, I show how to generalize this result to a
weaker type of symmetries and also to improve their result from a query complexity perspective.
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Chapter 6. Quantum algorithm for the Shortest Vector Problem

In this last chapter, I will present quantum algorithms for the Shortest Vector Problem where,
given a Euclidean lattice, the goal is to find the shortest non-zero vector (or in some variants,
just a short vector) of the lattice. This problem is of particular importance because some of
the best attacks on lattice-based cryptography use the BKZ basis reduction algorithm, which
uses as a subroutine an algorithm for solving SVP. For a d-dimensional lattice, we improve the
best quantum algorithm for SVP from 20.265d+o(d) to 20.257d+o(d) which reduces by a few bits the
quantum security of most lattice-based cryptography schemes. We extend previous work that used
locality sensitive filtering by noticing that the problem boils down to a collision problem to which
we add a geometrical constraint. We then use a quantum walk, extending the quantum walk on
the Johnson graph for collision finding, to solve this problem.
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Chapter 1

Learning in sequence Lemmata and
bounding the value of entangled games

While I was still a PhD student, I was working on proving lower bounds for quantum coin flipping
and bit commitment. Since we knew how to construct bit commitment from oblivious transfer,
it was natural to extend the lower bounds we had to oblivious transfer. This seemed like a
straightforward result and I was at first reluctant to look at this problem in detail, thinking it
had very small scientific interest. I was extremely wrong on that one. It turned out that there
are some interesting technical difficulties when extending the lower bound from bit commitment
to oblivious transfer. In order to solve these issues, we had to introduce the notion of quantum
learning in sequence lemmata, which are at the core of several of my later research results.

In this chapter, I will first present how we first encountered the need for a learning in sequence
lemma as well as some generalizations. Then, I present how they can be used to prover lower
bounds for the entangled value of some 2-player game.

1.1 Lower bounds for Quantum Oblivious Transfer from Bit Com-

mitment

We consider here only one variant of oblivious transfer, Quantum Random 1-out-of-2 Oblivious
Transfer, which we will simply denote QROT. In a QROT protocol, Bob has 2 random bits x0, x1
and Alice wants to learn a bit xi for i ∈ {0, 1}. A QROT protocol should ensure that Alice learns
xi but not the other bit x1−i and also that Bob doesn’t learn i. We present here a formal definition
of QROT1.

Definition 1.1. A QROT protocol is a quantum protocol between Alice and Bob such that:

• Bob outputs two bits (x0, x1) or ‘Abort’ and Alice outputs two bits (i, y) or ‘Abort’.
• If Alice and Bob are honest, they never abort, y = xi, Bob has no information about i and
Alice has no information about x1−i. Also, x0, x1 and i should be uniformly random bits.

• Alice and Bob’s optimal cheating probabilities are respectively

A∗QROT = sup{Pr[Alice guesses (x0, x1) and Bob does not Abort]},
B∗QROT = sup{Pr[Bob guesses i and Alice does not Abort]}

where the two suprema are taken over all cheating strategies for Alice and Bob respectively.

1There are several small variants of this definition. Here, we define QROT such that x0, x1 are part of Bob’s
output and not part of his input, which is simpler to use.
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• The cheating probability of the protocol is defined as P ∗QROT = max{A∗QROT, B∗QROT}

QROT has many cryptographic applications as it is universal for secure multi-party com-
putation. There are many classical constructions of oblivious transfer that use computational
assumptions, for example Rabin’s Oblivious Transfer [Rab81]. We know also from the work of
Mayers, as well as Lo and Chau, [May97, LC97] that QROT cannot be performed perfectly (i.e.
with P ∗QROT = 1

2 ) without computational assumptions. During my thesis as well as in later years,
I worked on trying to prove unconditional lower bounds on P ∗QROT for any QROT.

In order to prove such lower bounds, we relate QROT to another important cryptographic
primitive which is Quantum Bit Commitment (QBC). In a bit commitment scheme, Alice wants
to commit to a bit b to Bob such that: (1) Bob has no information about b after the commit phase
and (2) if Alice wants to reveal b then she cannot change her mind and reveal another value for b
than the one she committed to. Commitment schemes have a lot of applications in cryptography,
for example for constructing zero-knowledge protocols, which can then for example be used to
construct signature schemes.

We now formally define QBC and show how to relate the cheating probabilities of these 2
primitives.

Definition 1.2. A QBC scheme is a quantum interactive protocol between Alice and Bob with two
phases, a Commit phase and a Reveal phase.

• In the Commit phase, Alice interacts with Bob in order to commit to a bit b.

• In the Reveal phase, Alice interacts with Bob in order to reveal b. Bob decides to accept or
reject depending on the revealed value of b and his final state. We say that Alice successfully
reveals b if Bob accepts the revealed value.

We define the following security requirements for the commitment scheme.

• Completeness: If Alice and Bob are both honest then Alice always successfully reveals the bit
b she committed to.

• Sum-binding property: In order to determine the cheating probability of a cheating Alice A∗,
we ask A∗ to be able to reveal any of the values b = 0 and b = 1 for a fixed commit phase
that depends on A∗, this is captured by the quantity below.

P ∗(A∗) = 1
2 (Pr[Alice successfully reveals b = 0] + Pr[Alice successfully reveals b = 1])

where these success probabilities are taken for the same commit phase, but potentially for
different strategies when revealing b = 0 or b = 1. This means a cheating strategy for Alice is
characterized by a cheating strategy for the commit phase and two different cheating strategies
for the reveal phase, depending on whether she has to reveal b = 0 or b = 1. We then define

A∗BC = sup
A∗
{P ∗(A∗)},

where the supremum is for all cheating strategies for Alice described above, which can be
computationally unbounded.

• Hiding property: For any cheating Bob and for honest Alice, we define Bob’s cheating prob-
ability as

B∗QBC = sup
B∗
{Pr[Bob guesses b after the Commit phase]}.

where the supremum is taken over all cheating strategies for Bob, which can be computation-
ally unbounded.
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• The cheating probability of the protocol is defined as P ∗QBC = max{A∗QBC, B∗QBC}

There are actually other interesting variants for the binding property, such as the CDMS-
binding property [CDMS04] or the collapse-binding property[Unr16] which are more suited for
a cryptographic setting. Since we are only interested in the stand-alone unconditional security
without considering composability issues, we stick to the sum-binding definition.

In order to relate best cheating strategies for QBC and QROT, we use a standard construction
that builds a QBC protocol from a QROT protocol.

QBC via QROT

1. Commit phase: Alice wants to commit to a bit b. Alice and Bob perform a QROT protocol
so Alice has (i, y = xi) and Bob has (x0, x1). Alice sends c = b⊕ i to Bob.

2. Reveal phase: Alice reveals b and y = xi = xb⊕c to Bob. Bob checks that y = xb⊕c. He
accepts if the condition is satisfied, otherwise he aborts.

Let’s compare the cheating probabilities of these 2 protocols. We first have:

B∗QBC = Pr[Bob guesses b after the Commit phase]
= Pr[Bob guesses i after the Commit phase] = B∗QROT.

where the second equality uses the fact that i = b⊕ c and that c is public after the Commit phase.
Now, fix a cheating strategy A∗ for Alice. For fixed commit phase, notice that Alice successfully
reveals b iff. she correctly guessed xb⊕c (where c is fixed from the commit phase). Therefore, we
have

P ∗(A∗) = 1
2 (Pr[Alice successfully reveals b = 0] + Pr[Alice successfully reveals b = 1]) ,

= 1
2 (Pr[Alice guesses x0] + Pr[Alice guesses x1])

which gives

A∗QBC = 1
2 (Pr[Alice guesses x0] + Pr[Alice guesses x1]) .

Moreover, we have

A∗QROT = Pr[Alice guesses (x0, x1)].

So we want to relate these 2 quantities, i.e. on the one hand the average probability for Alice
of learning each bit xi and on the other hand her probability of learning both bits. This is the first
time such a question appeared in my work, a similar question appeared for example in [CSST11],
already for bounding the entangled value of 2 player games. In the next section, I will present
more formally this kind of statements, as well as generalizations that I made and which were used
in several papers of my future work, both for cryptographic applications and for bounding the
value of entangled 2 player games.
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1.2 Quantum learning in sequence lemmata

Consider the following scenario: Alice has two strings x0, x1 ∈ {0, 1}n and Bob has a state ρx0,x1

that depends on these two strings. This means Alice and Bob share the state∑
x0,x1∈{0,1}n

P (x0, x1)|x0, x1⟩⟨x0, x1| ⊗ ρx0x1 ,

for some probability function P . Suppose Bob can recover x0 from his state ρx0,x1 with probability
p0 and x1 from ρx0,x1 with probability p1. What is the probability that he can learn both strings
(x0, x1)? In order to answer this type of questions, we introduce learning in sequence lemmata.
The first one is described below

Lemma 1 (Learning in sequence lemma). Let a = 1
2 (p0 + p1). If a ≥ 1

2 , we have in the above
scenario:

1. Bob has a measurement that on input ρx0,x1 outputs (x0, x1) with probability at least
a(2a− 1)2.

2. if x0, x1 are bits, Bob has a measurement that on input ρx0,x1 outputs x0⊕x1 with probability
at least (2a− 1)2.

Sketch. We will not go too deep in the proof of this statement but just present the main idea.
Bob being able to guess each xi with probability pi means that there exist two quantum POVM
measurements {M i

a}a∈{0,1}n for i ∈ {0, 1} such that∑
x0,x1∈{0,1}n

P (x0, x1)tr(M0
x0

ρx0,x1) = p0

∑
x0,x1∈{0,1}n

P (x0, x1)tr(M1
x1

ρx0,x1) = p1

From these measurements, we construct a 4n outcome measurement {Nij}i,j∈{0,1}n defined as

Nij = 1
2
(
M1

j M0
i + M0

i M1
j

)
.

One can check that this is indeed a valid quantum measurement, which corresponds to the following
strategy:

• with probability 1
2 : run M0 on ρx0,x1 to get a guess for x0 and then M1 on the resulting

state to get a guess for x1 and output (x0, x1),
• with probability 1

2 : run M1 on ρx0,x1 to get a guess for x1 and then M0 on the resulting
state to get a guess for x0 and output (x0, x1).

In the case of bits, we proved in [CKS10] using geometric arguments that if the {M i
a} are projective

measurements, then the probability to output the correct (x0, x1) with this strategy is at least
a(2a − 1)2, where a = 1

2 (p0 + p1). From this result, we then extend to any measurement using
Naimark’s dilation theorem. We generalize in [SCK14] in the case of strings.

In order to prove the second bullet, where x0, x1 are bits, we use the same strategy as above
but output x0 ⊕ x1 instead of (x0, x1). The advantage we gain in this case is that the guess of
x0 ⊕ x1 can be correct when both values of x0, x1 are wrong. The value (2a − 1)2 was proven
in [SCK14].
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The idea of the above proof is that if we have a projective measurement that guesses each
xi with high probability then performing one measurement after the other will give a fairly high
probability of learning both strings. The difficulty is of course that the first measurement will
modify the state and possibly destroy the information about the second string but if p0, p1 are
high enough, this first measurement will only mildly modify the state.

As a first application, we have, using the notations of the previous section

A∗QROT ≥ f(A∗QBC) with f(x) = x(2x− 1)2.

We used this bound in [CKS10] to relate bounds between quantum oblivious transfer and quantum
bit commitment, and showed that P ∗QROT ≥ 0.5852.2 But the reason I introduce this topic is that
it has many implications for some of my future work. What will be of particular interest in such
learning in sequence lemmata is the contraposition of this statement. If Bob has a state ρx0,x1

and if we have an upper bound on his probability of guessing (x0, x1) or x0 ⊕ x1 (in our setting
via non-signalling arguments), then we can upper bound Bob’s maximal probability of learning
x0 and x1 separately. As a first example, we show how to easily recover the entangled value of the
CHSH game.

1.2.1 Using a learning sequence lemmata to prove the upper bound on the CHSH
game

We start from the standard CHSH game. Alice and Bob receive respective random inputs x, y ∈
{0, 1} and win the game if they respectively output a, b such that a⊕ b = x · y. Let ω∗(CHSH) be
the entangled value of CHSH, i.e. the maximal winning probability over all quantum strategies of
Alice and Bob that can share an entangled state.

We consider a quantum strategy S for CHSH consisting of a state |ϕ⟩ shared between Alice and
Bob, a measurement for Alice and a measurement for Bob. Alice receives her input x, performs
this measurement and gets an output a. In order to win the CHSH game, Bob, after obtaining his
input y, has to output b such that a⊕ b = x · y. In other terms:

• If y = 0, Bob must output b = a, so he must guess a.

• If y = 1, Bob must output b = x⊕ a so he must guess x⊕ a.

This means that after Alice’s measurement, and ignoring her residual quantum state, Alice and
Bob share a state of the form ∑

x,a

P (x, a)|x, a⟩⟨x, a| ⊗ ρx,a,

and

Pr[Alice and Bob win CHSH using S] = 1
2 (Pr[Bob guesses a] + Pr[Bob guesses x⊕ a]) .

We know that Bob cannot guess x = (a⊕ (x⊕ a)) with probability greater than 1
2 because of

no-signalling. By using the contrapositive of Lemma 1, we have

(2 Pr[Alice and Bob win CHSH using S]− 1)2 ≤ 1
2 ,

which implies Pr[Alice and Bob win CHSH using S] ≤ cos2(π/8). Since this is true for any strat-
egy S, this implies ω∗(CHSH) ≤ cos2(π/8) and we recover Cirel’son’s bound [Cir80]. This shows
as well that the second item of Lemma 1 is tight for some values since we recover the optimal
entangled value of CHSH.

2This is actually quite far from the best known quantum protocol for oblivious transfer, which is P ∗(QROT) = 3
4

so the optimal value for QROT is still open.
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1.2.2 The CHSHQ game and a generalized learning in sequence in lemma

Let’s pick a prime power Q and let’s consider a generalization of CHSH on the finite field FQ,
which is defined as follows

CHSHQ game

• Alice and Bob respectively receive a uniformly random X ∈ FQ and a random Y ∈ FQ.
They output respectively A ∈ FQ and B ∈ FQ.

• They win the game iff. A + B = X ∗ Y , where +, ∗ are the addition and multiplication in
the field FQ.

One can see that in the case Q = 2, we recover the original CHSH game. A natural question is
whether it is possible to bound the entangled value of CHSHQ using a learning in sequence lemma.
First, let’s fix an input/output pair (X, A) for Alice and notice that if Bob can give winning
outputs for two different inputs Y, Y ′ then Bob can recover X. Indeed, on input Y , Bob must
output B = X ∗ Y − A and on input Y ′, Bob must output B′ = X ∗ Y ′ − A. If these equalities
are satisfied, we have

X = (B −B′)
(Y − Y ′) ,

where the division is the division in FQ. Here, it is well defined since Y ̸= Y ′. So for a fixed
input/output pair (X, A) for Alice, we can analyse the CHSHQ game as follows:

• Alice has Q strings {By}y∈FQ
where By = X ∗ y −A.

• Bob has a random input Y ∈ FQ and they win the game iff. he guesses BY .

• Bob’s probability of guessing any pair (BY , BY ′) for Y ̸= Y ′ (on average on the pair (X, A))
is at most 1

Q since this pair allows him to guess X, which happens with probability 1
Q from

no-signalling.

This scenario is similar to the case of CHSH but Alice has more than 2 strings so we can’t apply
Lemma 1. In [CL17] we proved a more general learning in sequence lemma that deals with this
setting

Lemma 2. Assume Alice has any Q strings B1, . . . , BQ and Bob has a state ρB1,...,BQ
. Let

V = Ei∈[Q]
[
maximum probability that Bob can guess Bi from ρB1,...,BQ

]
E = Ei,j ̸=i∈[Q]

[
maximum probability that Bob can guess (Bi, Bj) from ρB1,...,BQ

]
We have E ≥ 1

64

(
V − 1

Q

)3
.

From this generalized lemma, one can get an upper bound on the entangled value CHSHQ.
Indeed, from the above discussion, and using a similar argument as the one for bounding the
entangled value of CHSH, we have

1
Q
≥ 1

64

(
ω∗ (CHSHQ)− 1

Q

)3
,

which implies

ω∗(CHSHQ) ≤ 1
Q

+ 4
Q1/3 .
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1.3 General bounds on entangled games using learning in sequence
lemmata

We want to generalize the above approach to bound the value of some entangled games. In the
above, the bound on the ω∗(CHSHQ) comes from a strong bound on winning the game when Bob
gets simultaneously two different inputs and then using our learning in sequence lemma to bound
ω∗(CHSHQ). In order to generalize this approach, we first formally present several definitions
related to entangled games.

Definition 1.3. A 2-player game G = (IA, IB , OA, OB , V, p) is defined by finite input and output
sets IA, IB and OA, OB as well as an accepting function V : OA × OB × IA × IB → {0, 1} and a
probability function p : IA × IB → R+.

While our results can be slightly more general, we restrict our presentation here to 2-players
games with inputs taken uniformly at random from their input set.

Definition 1.4. A game G = (IA, IB , OA, OB , V, p) is said to be on the uniform distribution iff.
p(x, y) = 1

|IA||IB | for any (x, y) ∈ IA × IB.

In our argument for bounding ω∗(CHSHQ), we used the property that for any input/output
pair (x, a) for Alice and for any input y for Bob, there was at most (here actually a unique) b such
that V (x, y, a, b) = 1. A game with this property is called a projective game and is an important
requirement for our argument.

Definition 1.5. A game G = (IA, IB , O, V, p) is a projection game if ∀(x, y) ∈ IA×IB and ∀a ∈ OA,
|{b : V (a, b, x, y) = 1}| ≤ 1.

We also propose a relaxation of the above definition

Definition 1.6. A game G = (I, O, V, p) is S-projective if ∀(x, y) ∈ IA × IB and ∀a ∈ OA, |{b :
V (a, b, x, y) = 1}| ≤ S.

In our bounds for CHSH and CHSHQ, we crucially used the fact that it was hard for Bob to win
when getting simultaneously 2 different inputs. This motivates the following definition of Gcoup,
which is the game G where Bob gets a couple of different inputs and must give a valid output
separately for each one of them.

Definition 1.7. For any game G = (IA, IB , OA, OB , V, p) on the uniform distribution we define
Gcoup = (IA, (IB × IB), OA, (OB ×OB), Vcoup, pcoup) where:

• pcoup(x, y, y′) = 1
|IA||IB |(|IB |−1) for any (x, y, y′) ∈ IA × IB × IB such that y ̸= y′.

• Vcoup(a, b, b′, x, y, y′) = 1 iff. V (a, b, x, y) = 1 ∧ V (a, b′, x, y′) = 1.

We can now present our main statements, which were proven in [CL17] and which follow from
Lemma 2

Proposition 1.1. Let G = (IA, IB , OA, OB , V, p) be a projective game on the uniform distribution.

ω∗(Gcoup) ≥ 1
64

(
ω∗(G)− 1

|IB |

)3
,

which implies

ω∗(G) ≤ 1
|IB |

+ 4 (ω∗(Gcoup))1/3
.
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We also show how to extend this result to the case G is S-projective

Proposition 1.2. Let G = (IA, IB , OA, OB , V, p) be an S-projective game on the uniform distribu-
tion.

ω∗(Gcoup) ≥ 1
64S

(
ω∗(G)− 1

|IB |

)3
,

which implies

ω∗(G) ≤ 1
|IB |

+ 4 (S · ω∗(Gcoup))1/3
.

These bounds will be very important to prove the security of relativistic protocols in cryptog-
raphy, which is the topic we will cover in the next two chapters.
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Chapter 2

Relativistic cryptography

The goal of relativistic cryptography is to exploit the no superluminal signalling (NSS) principle
in order to perform various cryptographic tasks. NSS states that no information carrier can travel
faster than the speed of light in a vacuum. Note that this principle is closely related to the
non-signalling principle that says that a local action performed in a laboratory cannot have an
immediate influence outside of the lab. NSS is more precise since it gives an upper bound on the
speed at which such an influence can propagate. Apart from this physical principle, we want to
ensure information-theoretic security meaning that the schemes proposed cannot be attacked by
any classical (or quantum) computers, even with unlimited computing power.

The idea of using the NSS principle for cryptographic protocols originated in a work by Kent in
1999 [Ken99] as a way to physically enforce a no-communication constraint between the different
agents of one party (the idea of splitting up a party into several agents dates back to [BOGKW88],
but without any explicit implementation proposal). The original goal of Kent was to bypass the
no-go theorems for quantum bit-commitment [May97, LC97].

The original idea of [BOGKW88] was revisited by Crépeau et al. in [CSST11] (see also [Sim07])
in order to construct a relativistic bit (and string) commitment. In this chapter, I will present
this relativistic bit commitment scheme and show how to construct a relativistic zero-knowledge
protocol for the Hamiltonian Cycle problem, which is NP-complete. In order to prove the
security of these schemes against quantum adversaries, we will have to bound the entangled value
of some two-player games, which we do using the tools of the previous chapter.

2.1 Relativistic string commitment

Recall the definitions of bit-commitment from Section 1.1. Alice wants to commit to a bit d ∈ {0, 1}
and Bob wants to make sure that Alice doesn’t change her mind when she reveals this bit d. The
idea here is that we split Alice (resp. Bob) into 2 agents A1,A2 (resp. B1,B2). The 2 agents for
Alice cooperate as do the 2 agents for Bob. We will add some location/timing constraints such
that A1 and A2 cannot communicate with each other during the protocol (and the same for B1
and B2). We detail these spacetime constraints after the description of the protocol.
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Simard’s Relativistic Bit Commitment Protocol

1. Preparation phase: A1,A2 share a random string a ∈ FQ. Here, Q is a prime power and FQ

refers to the Galois field of order Q. A1,A2 also know the bit d they want to commit to.

2. Commit phase: B1 sends a random b ∈ FQ to A1, who returns y = a + (d ∗ b), where +, ∗
are the addition and multiplication in FQ.

3. Reveal phase: A2 reveals d and a to B2. B1,B2 share their information with each other and
check that a = y + (b ∗ d).

This protocol is illustrated in the figure below.

Figure 2.1: The relativistic FQ bit commitment

After the commit phase, Bob (here B1) has the string y = a + (b ∗ d). Because a is random
he has no information about d and the protocol is perfectly hiding. In order to prove the binding
property of the protocol against cheating Alice, we need to add timing constraints:

Timing constraints for the protocol. The two pairs (A1,B1) and (A2,B2) are such that B1 and
B2 are at a certain distance D. We want to add space-time constraints so that the message (a, d)
B2 receives is independent of the string b sent by B1. Let t1 be the time where B1 sends b and let
t2 the time where B2 receives (a, d). If

t2 − t1 < Dc, where c is the speed of light in a vacuum

then the no superluminal signalling ensures that (a, d) is independent of b. This statement will
allow us to prove the unconditional security of this scheme against cheating Alice. Notice that
the timing and distance constraint are only on the B1,B2 which are honest when analysing the
binding property.

Binding property We now want to analyse Alice’s cheating possibilities in this bit commitment
scheme. As per Definition 1.2, we fix a commit phase and look at the probabilities for Alice to
reveal d = 0 and d = 1. We fix therefore the strings (b, y). Now, if A2 wants to reveal d = 0, she
has to send a = y and if he wants to reveal d = 1, he has to reveal a = y + b. Notice that A2
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knows both y and y + b, then she can recover b which happens with probability at most 1
Q from

no-signalling - here enforced by the space-time constraints. We therefore have

Proposition 2.1. Alice’s cheating probability P ∗A for the binding property satisfies

P ∗A ≤
1
2 + 1√

2Q
.

Proof.

P ∗A = 1
2 (Pr[A2 successfully reveals d = 0] + Pr[A2 successfully reveals d = 1])

= 1
2 (Pr [A2 guesses y] + Pr [A2 guesses y + b]) .

We know from non-signalling that A2 can guess b with probability 1
Q . Therefore, by using

Lemma 1, we have
1
Q
≥ P ∗A(2P ∗A − 1)2,

which implies P ∗A ≤ 1
2 + 1√

2Q
.

Another way to look at this statement is that the above probability is exactly the probability
for A1 and A2 to win the CHSHQ,2 game, defined below:

CHSHQ,2 game

• A1 receives a random string b ∈ FQ, A2 has a random bit d ∈ {0, 1}. They output respec-
tively y ∈ FQ and a ∈ FQ.

• They win the game iff a = y + b ∗ d.

Here, Bob acts as a referee. One can notice that analysing Alice’s cheating probability can be
done by bounding the entangled value fo the above game. This means P ∗A ≤ ω∗(CHSHQ,2) and we
have ω∗(CHSHQ,2) ≤ 1

2 + 1√
2Q

using our first learning in sequence lemma. Notice also that this is

quite efficient since the amount of communication between the players is O(log(Q)).
One could ask here why is d ∈ {0, 1} chosen at random in the entangled game while it is chosen

by Alice in the commitment scheme. The thing is that the entangled game is only here to analyse
the case where Alice is cheating so according to the binding security definition, there isn’t a bit d
they want to commit to, rather the binding property asks to quantify the probability that Alice
can reveal respectively d = 0 and d = 1 after a fixed commit phase, and this translates to choosing
d uniformly at random in the entangled game.

2.2 Relativistic zero-knowledge for NP

The above results are promising for relativistic cryptography but have a limited scope. Indeed, bit
commitment schemes are used as parts of larger cryptosystems. The only study of the compos-
ability of the FQ bit commitment scheme was done in [FF16], where they used many instances of
this commitment scheme in order to increase the time between the commit phase and the reveal
phase. There has not been any proposition to use this scheme for a more general purpose.
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One natural application of bit commitment are zero-knowledge protocols. In such a protocol,
a prover wishes to convince a verifier that a given statement is true without revealing any extra
information. A zero-knowledge protocol is already a more advanced cryptographic primitive and
has more direct applications such as identification schemes [GMR89].

2.2.1 Blum’s protocol for Hamiltonian Cycle

In order to construct a zero-knowledge protocol, we first start from a promise problem (LYes, LNo)
and for a given x ∈ LYes, a prover should be able to convince a verifier that x ∈ LYes without
conveying any additional information to the verifier. This is formalized by the existence of a
polynomial-time simulator that can sample the distribution of transcripts generated during the
zero-knowledge protocol. On the other hand, if x ∈ LNo then even an all powerful prover shouldn’t
be able to convince the verifier that x ∈ LYes.

Here, we will consider the zero-knowledge construction for Hamiltonian Cycle, which is an
NP complete problem.

Definition 2.1. For a graph G = (V, E), the adjacency matrix AdjG of G is a binary symmetric
matrix satisfying (AdjG)ij = 1 iff. (i, j) ∈ E.

Definition 2.2. A cycle of a vertex set V is a set C ⊆ V×V such that C = {(v1, v2), (v2, v3), . . . , (v|V |, v1)}
where {v1, . . . , v|V |} = V .

Definition 2.3. A Hamiltonian cycle of a graph G = (V, E) is a cycle C of V such that C ⊆ E.

The prover will convince the verifier that a given graph G = (V, E) has a Hamiltonian cycle, i.e.
a cycle going through each vertex exactly once, without revealing any information, in particular
no information about this cycle. Yes instances will correspond to the case where G has a Hamil-
tonian cycle and No instances to the case where such a Hamiltonian cycle does not exist. Since
Hamiltonian Cycle is NP complete, a zero-knowledge protocol for this problem can be used to
obtain a zero-knowledge protocol for arbitrary NP problems. There is a known zero-knowledge
protocol for Hamiltonian Cycle using bit commitment first presented by Blum [Blu87]. In
this protocol, the prover actually runs in polynomial time, and the only advantage he has is that
he knows (in some auxiliary input) a Hamiltonian cycle of the graph when we are in a Yes instance.

Zero-knowledge protocol for Hamiltonian Cycle using bit commitment

Input: a graph G = (V, E) containing a Hamiltonian cycle.
Auxiliary input: a Hamiltonian cycle C of G.

1. The prover picks a random permutation Π : V → V . He commits to each of the bits of
AdjΠ(G).

2. The verifier sends a random bit (called the challenge) chall ∈ {0, 1} to the prover.

3. Opening phase:

• If chall = 0, the prover decommits to all the elements of AdjΠ(G), and reveals Π.
• If chall = 1, he reveals only the bits (of value 1) of the adjacency matrix that correspond
to a Hamiltonian cycle C′ of Π(G).

4. The verifier checks that these decommitments are valid and correspond, for chall = 0 to
AdjΠ(G) and, for chall = 1, to a Hamiltonian cycle.
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This protocol has perfect completeness, meaning that the protocol always succeeds when both
parties are honest and we have a Yes instance. It has soundness error 1

2 if we use a perfect com-
mitment scheme meaning that if G doesn’t have a Hamiltonian cycle, a (potentially all powerful)
cheating prover can succeed the protocol with probability at most 1

2 . Finally, it is perfectly zero-
knowledge (again if we use a perfect commitment scheme) and there exists a simulator that can
sample from the transcript distribution of the protocol.

2.2.2 Constructing a relativistic zero-knowledge protocol from a zero-knowledge
protocol with commitments.

It is natural to combine this zero-knowledge protocol with the FQ relativistic bit commitment
protocol. The (single-round) FQ relativistic bit commitment protocol is secure against quantum
adversaries but it doesn’t directly imply that the zero-knowledge protocol remains secure. The
generic strategy we use is depicted in the figure below.

Figure 2.2: On the left: a 3 round zero-knowledge protocol using bit commitment. On the right:
the resulting relativistic zero-knowledge using the relativistic FQ commitment scheme. The prover
splits into P1, P2 and the verifier splits into V1, V2. The messages B, Y correspond to the commit
phase of the FQ commitment scheme.

This can be directly applied to the zero-knowledge protocol for Hamiltonian Cycle using
the relativistic FQ commitment scheme. We obtain the following protocol.
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Relativistic zero-knowledge protocol for Hamiltonian Cycle

Input — The provers P1, P2 and the verifiers V1, V2 are given a graph G = (V, E).
Auxiliary Input — The provers P1 and P2 know a Hamiltonian cycle C of G.
Preprocessing — P1 and P2 agree beforehand on a random permutation Π : V → V and on

an n× n matrix A ∈MFQ
n where each element of A is chosen uniformly at random in FQ.

Protocol —

1. Commitment to each bit of MΠ(G) : V1 sends a matrix B ∈MFQ
n where each element

of B is chosen uniformly at random in FQ. P1 outputs the matrix Y ∈ MFQ
n such

that ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗ (MΠ(G))i,j).

2. The verifier sends a random bit chall ∈ {0, 1} to the prover.

3. • If chall = 0, P2 decommits to all the elements of MΠ(G), i.e. he sends all the
elements of A to V2 and reveals Π.

• If chall = 1, P2 reveals only the bits (of value 1) of the adjacency matrix that
correspond to a Hamiltonian cycle C′ of Π(G), i.e. for all edges (u, v) of C′, he
sends Au,v as well as C′.

4. The verifier checks the timing constraints and he also checks that those decommit-
ments are valid and correspond to what the provers have declared. This means that:

• if chall = 0, the prover’s opening A must satisfy ∀i, j ∈ [n], Yi,j = Ai,j + (Bi,j ∗
(MΠ(G))i,j).

• if chall = 1, the prover’s opening A must satisfy ∀(u, v) ∈ C′, Yu,v = Au,v +Bu,v,
proving that (MΠ(G))u,v = 1 for each (u, v) ∈ C′.

Security analysis. If both players are honest and G contains a Hamiltonian cycle then the protocol
always succeeds. Indeed, the original protocol from Blum has perfect completeness. Moreover,
the FQ bit commitment always succeeds when done honestly.

The zero-knowledge property comes quite directly from the perfect zero-knowledge property
of the original scheme for Hamiltonian cycle and the fact that the relativistic bit commitment
is perfectly hiding, the interest reader can look at [CL17] for a full proof of the zero-knowledge
property.

Soundness, especially against provers P1, P2 that can share entanglement, is definitely the most
challenging part. We express the soundness as the value of an entangled game, and then bound
this value by using the techniques we introduced in the previous chapter. A generic way of doing
this of doing this is depicted in Figure 2.3.

In the case of our relativistic protocol for Hamiltonian cycle, the resulting game becomes the
following:
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Figure 2.3: On the left: a relativistic zero-knowledge protocol using the FQ commitment scheme.
On the right: the associated entangled game used to analyse the soundness of the relativistic
zero-knowledge protocol. P1, P2 are the two players of this entangled game and the verifiers play
the role of the referee.

RZK-HAM(G) entangled game played between P1 and P2

Public parameter. a graph G = (V, E) with |V | = n.

Input. P1 receives a random B ∈MFq
n and P2 receives a random chall ∈ {0, 1}.

Output. P1 outputs Y ∈MFq
n . Regarding P2’s output.

• If chall = 0, P2 outputs (Π, A) where Π is a permutation on V and A ∈MFq
n .

• If chall = 1, P2 outputs a cycle C′ of V and field elements Aij ∈ Fq for (i, j) ∈ C′.

Verification. The verification procedure for the game is the following

• If chall = 0, P1 and P2 win iff. ∀i, j ∈ [n], Yij = Aij + (Bij ∗ (AdjΠ(G))ij).
• If chall = 1, P1 and P2 win iff. ∀i, j ∈ C′, Yij = Aij + Bij .

If G contains a Hamiltonian cycle then this game can be won with probability 1 where P1 and
P2 use the same strategy as in our relativistic zero-knowledge protocol for Hamiltonian Cycle
in the honest setting.

If G does not contain a Hamiltonian cycle, then we have the following proposition

Proposition 2.2. If G does not contain a Hamiltonian cycle, then ω∗(RZK-HAM(G)) ≤ 1
2 +(

64n!n2

Q

)1/3
.

Proof Sketch. Fix G that doesn’t contain a Hamiltonian cycle. Fix any input/output pair (B, Y )
for P1. Notice that when chall = 0, for a fixed Π, there is a unique A such that (Π, A) is a winning
output for P2. Similarly, when chall = 1, for a fixed C, there is a unique {Aij}ij∈C such that
(C, {Aij}ij∈C) is a winning output for P2. Since there are at most n! possibilities for Π or for C,
we conclude that the game is n!-projective (where P2 plays the role of Bob).

Now, we study the coupled game RZK-HAM(G)coup. Here, Alice receives B ∈ MFq
n and Bob

receives the two challenges chall = 0 and chall = 1 (so there is no randomness in his input

anymore). Alice outputs some matrix Y ∈ MFq
n and Bob must give a valid output (Π, A0)

corresponding to challenge 0 and (C, A1) corresponding to challenge 1. First notice that there
exists (u, v) ∈ C such that (AdjΠ(G))uv = 0 or else C would be a Hamiltonian cycle for Π(G) which
contradicts the fact that G (hence Π(G)) has no Hamiltonian cycle.
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Now assume that Bob gives outputs that win the game. We have in particular

Yuv = A0
uv

Yuv = A1
uv + Buv

which gives Buv = A0
uv − A1

uv. This means Bob can guess Buv for pair (u, v) unknown to him.
Since the Bij for (i, j) ∈ V × V are uniformly random elements of FQ unknown to Bob so he can

guess one of them with probability at most |V |
2

Q = n2

Q . This means

ω∗(RZK-HAM(G)coup) ≤ n2

Q
.

In order to conclude, we can use Proposition 1.2 where recall that RZK-HAM(G) is an n! projective
game with challenge size 2 on P2’s side. We therefore obtain

ω∗(RZK-HAM(G)) ≤ 1
2 +

(
64n!n2

Q

)1/3

.

As a direct corollary, we have if we are in a No instance, cheating provers will be able to

cheat with probability at most 1
2 +

(
64n!n2

Q

)1/3
in the relativistic zero-knowledge protocol for

Hamiltonian Cycle. First notice that the amount of communication is O(log(Q) so it is fine to
take Q exponential in n in order to have the soundness close to 1

2 and the protocol remains fairly
efficient.

In order to decrease the soundness error, there are different possibilities. One could perform
parallel repetition, in which case we have to study the game RZK-HAM(G)⊗k. One can show
that the entangled value of this game goes to 0 as k increases for example using parallel repetition
theorems such as [CS14a, CWY15] or directly using Proposition 1.2. In this case, it is actually
enough to perform sequential repetition of this protocol for which bounds are tighter.

If we take Q = Θ(n!poly(n)), we can achieve soundness 1
2 + 1

poly(n) . We can then decrease this

soundness error to negl(n) for example by repeating this protocol n times sequentially. Because
we commit to n2 bits (each bit of a permuted adjacency matrix of G), the total amount of

communication at each round is O(n2 log(Q)) = Õ(n3). While this is polynomial, this will still be
a bit too large in order to be practical, meaning that the communication per round is too large
in order to satisfy the space-time constraints. In the next chapter, we present another protocol in
order to overcome this issue.
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Chapter 3

Relativistic zero-knowledge protocol
over the internet

In this chapter, we will be interested in more practical aspects of relativistic zero-knowledge
protocols for NP. How realistic are the space-time constraints and how close are we to constructing
such a relativistic zero-knowledge protocol? The protocol we presented in the previous chapter
manipulates adjacency matrices so we have to perform many FQ commitments with a very large
Q so the communication that has to be done is too high to ensure the space-time constraints.
In [CMS+20], the authors construct a relativistic zero-knowledge protocol for the 3-colouring
problem. This protocol is very efficient but because the challenge size is quite large (a random edge
of the graph and not a single bit), the analysis against entangled provers is quite cumbersome and
the number of repetitions becomes prohibitive if one requires security against entangled provers.

In order to circumvent these issues, we present another proposal for relativistic zero-knowledge
for NP based on the Syndrome Decoding problem. This is a problem used in code-based cryp-
tography, and we will use here Stern’s zero-knowledge scheme [Ste93] which was used before for
post-quantum signature schemes. We then combine it with the FQ relativistic string commitment.
This protocol will have a moderate amount of communication, but also a small amount of rounds
to decrease the soundness error. We also present an implementation of this scheme by looking
more carefully into the timing constraints that have to be satisfied. We finally provide at the end
of the chapter more details of the pros and cons of these different proposals (see Table 3.1).

3.1 Stern’s zero-knowledge protocol for syndrome decoding

The syndrome decoding problem. The Hamming weight |v|H of a binary vector v is the number
of 1 coordinates of this vector.

Problem 1 (Syndrome Decoding - SD(n, k, w)).

• Instance: a matrix H ∈ {0, 1}(n−k)×n, a column vector (called a syndrome) s ∈ {0, 1}n−k,
• Goal: output a column vector e ∈ {0, 1}n such that He = s and |e|H = w.

The Syndrome Decoding problem is NP-complete and also believed to be hard for random
instances even against quantum computers. It is the canonical hard problem for code-based
cryptography. In order to construct a zero-knowledge protocol for this scheme, we first have
to split the instances of our problem into Yes instances and No instances. For the SD(n, k, w)
problem, Yes instances are the pairs (H, s) such that a solution (i.e. a vector e ∈ {0, 1}n such that
He = s and |e|H = w) exists. No instances are the pairs (H, s) where no such solution exists. We
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now describe Stern’s zero-knowledge protocol [Ste93] for the Syndrome Decoding problem which
requires a string commitment scheme.

Again, the protocol is only described in the honest setting, i.e. when we have a Yes instance,
and the prover has access to a solution e of the instance in some auxiliary input.

Stern’s single round zero-knowledge protocol for SD.

Paramters: Integers n, k, w with k, w ≤ n
Input: A matrix H ∈ {0, 1}(n−k)×n, a column vector s ∈ {0, 1}n−k.
Auxiliary input: A column vector e ∈ {0, 1}n such that |e|H = w and He = s.
Protocol:

1. The prover picks a random permutation σ acting on [n] and a random column vector t ∈
{0, 1}n. Let s′ = Ht, z1 = (σ, s′), z2 = σ(t), z3 = σ(t ⊕ e), where permuting a vector
means permuting its coordinates. He commits to z1, z2 and z3 separately using a string
commitment.

2. The verifier sends a uniformly random challenge c ∈ {1, 2, 3}.
3. The prover opens zc′ for the two values c′ different from c.

4. The verifier checks the validity of the 2 commitments and also performs the following checks:
• if c = 1, accept iff. |z2 + z3|H = w.
• if c = 2, accept iff. H · σ−1(z3) = s⊕ s′.
• if c = 3, accept iff. H · σ−1(z2) = s′.

Without going into too much detail, let’s see what information the verifier has at the end of
protocol. If c = 1, he has z2 + z3 = σ(e) so he has a permutation of the solution e but doesn’t
know σ. This allows him still to check that the weight of e is w. The other two challenges are here
to ensure that Hσ−1(z2 + z3) = s since we should have Hσ−1(z2 + z3) = He = s in the honest
case.

Regarding the security against a cheating prover, one can show that the prover cannot answer
simultaneously the 3 challenges of the verifier unless he knows a solution to the syndrome decoding
problem or unless he can break the binding property of the commitment scheme. This means if
we use a perfect commitment scheme, even an all powerful prover can convince a verifier wp. at
most 2

3 in the case the input doesn’t have a valid solution e.

3.1.1 Description of our 1-round relativistic zero-knowledge protocol for NP

We combine the FQ relativistic string commitment and Stern’s single round zero-knowledge pro-
tocol in order to get our 1-round relativistic zero-knowledge protocol for SD. Again, P and V are
split into 2 agents P1,P2 and V1,V2. In the honest case, we require V1,V2 to be at some distance
D. We present this protocol in Figure 3.1.

We prove the security of this scheme. Completeness and the zero-knowledge property follow
quite directly from the security of Stern’s signature scheme and of the FQ commitment scheme.
Regarding the binding property, we will again need to bound the value of an entangled game,
which we call RZK-SD. The game is constructed in the same way as we did in the previous
chapter (see Figure 2.3).
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Input: Integers n, k, w, a matrix H ∈ {0, 1}(n−k)×n, a vector s ∈ {0, 1}n−k. A parameter Q used
for the commitment.
Auxiliary input (in the Yes case): A column vector e ∈ {0, 1}n such that |e|H = w and He = s.
Pre-processing: P1,P2 agree beforehand on a random permutation σ acting on [n], on a random
column vector t ∈ {0, 1}n as well as on 3 strings a1, a2, a3 ∈ FQ. Let s′ = Ht. Let also
z1 = (σ, s′), z2 = σ(t), z3 = σ(t⊕ e), where permuting a vector means permuting its coordinates.
Treat each zi as an element of FQ (we choose Q large enough so that we can embed the sets in
which z1, z2, z3 are into FQ).
Protocol:

1. Phase 1: V1 sends 3 random strings b1, b2, b3 ∈ FQ at time τ1. P1 sends back yi = ai + bi ∗zi

for each i ∈ {1, 2, 3}. V1 receives these at time θ1.

2. Phase 2: V2 sends a uniformly random challenge c ∈ {1, 2, 3} to P2 at time τ2. P2 sends
zc′ , ac′ for the two values c′ different from c. V2 receives these at time θ2.

Checking procedure: The verifier checks the 2 commitments i.e. that yc′ = ac′ +bc′ ∗zc′ for c′ ̸= c,
as well as the timing constraints

θ1 < τ2 + D/c ; θ2 < τ1 + D/c.

He also performs the following checks that come from Stern’s zero-knowledge protocol:

• if c = 1, accept iff. |z2 + z3|H = w.

• if c = 2, accept iff. H · σ−1(z3) = s⊕ s′.
• if c = 3, accept iff. H · σ−1(z2) = s′.

Figure 3.1: 1-round Relativistic zero-knowledge protocol for SD using the FQ commitment scheme.

RZK-SD(H, s) game played between P1 and P2

• P1 receives B = b1, b2, b3 ∈R FQ. P2 receives c ∈R 1, 2, 3.
• P1 outputs Y = y1, y2, y3 ∈ FQ and P2 outputs Z = {(ac′ , zc′)}c′ ̸=c where each ai ∈ FQ. We
have z1 ∈ S1 = Pn × {0, 1}n, where Pn is the set of permutation on [n] and z2, z3 ∈ {0, 1}n.

• We first check the constraint yc′ = ac′ + zc′ ∗ bc′ for c′ ̸= c. To do this, we embed both S1
and {0, 1}n into FQ and we consider the zc′ as elements of FQ. We take Q large enough so
that this embedding is always possible. Then:

1. if c = 1, we also require |z2 + z3|H = w.
2. if c = 2, we also require H · σ−1(z3) = s⊕ s′.
3. if c = 3, we also require H · σ−1(z2) = s′.

Without going into the full proof of the value of this entangled game, we can give the main
ideas. In Stern’s protocol the prover isn’t able to correctly answer all 3 challenges without breaking
the commitment scheme. This will translate into the fact that for a fixed input/output pair, P2
can give good answers for the 3 challenges at the same with probability at most 1

Q . In order to
use similar arguments as before, we need a learning in sequence lemma that deals with learning
triplets of strings and not pairs of strings. In [CB21], we prove the following
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Lemma 3. Assume Alice and Bob share the state∑
x0,x1,x2∈FQ

P (x0, x1, x1)|x0x1x2⟩⟨x0x1x2| ⊗ ρx0x1x2 ,

and there exist measurements {M i
x} for i ∈ {0, 1, 2} that on input ρx0x1x2 , outputs xi with proba-

bility pi and let a = 1
3 (p0 + p1 + p2). If a ≥ 2

3 then there exists a quantum measurement that on
input ρx0x1x2 outputs (x0, x1, x2) with probability PT satisfying

PT ≥
9
2

(
a− 2

3

)4
. (3.1)

The proof is actually similar to the case of two measurements (Lemma 1), we consider the
measurement

Nx0,x1,x2 = 1
6

∑
τ∈P erm{0,1,2}

Mτ(0)
x0

Mτ(1)
x1

Mτ(2)
x2

,

where Perm{0,1,2} is the set of permutations in {0, 1, 2}. By a thorough calculation we can obtain
Equation 3.1. Using this, we are able to show that

Proposition 3.1. For parameters n, k, w, if (H, s) is a No instance of the syndrome decoding prob-
lem, then

ω∗(RZK-SD(H, s)) ≤ 2
3 +

(
2
9 ·

n!24n

Q

)1/4

.

The key idea is to use Equation 3.1 combined with the fact that in a No instance, Bob can
answer simultaneously to his 3 possible inputs (for a fixed input/output pair for Alice) wp. at
most 1

Q . The n!24n term comes from the fact that the game is not projective. We refer to the full

paper [CB21] for a detailed proof of these different steps. This proposition allows us to prove the
following theorem

Theorem 3.1. Our 1-round relativistic zero-knowledge protocol for NP based on Stern’s protocol has

perfect completeness, perfect zero-knowledge and has soundness 2
3 +
(

2
9 ·

n!24n

Q

)1/4
if the space-time

constraints are satisfied.

This means that for No instances, an all powerful cheating prover can convince the verifier with

probability at most 2
3 +

(
2
9 ·

n!24n

Q

)1/4
. By taking Q = 1012n!24n, the soundness becomes smaller

than 2
3 + 0.001. This seems like a very large Q but recall that sending an element of FQ requires

log2(Q) and performing additions and multiplications in a field of this size is still very efficient.

3.2 Full protocol and implementation

Our full loss-tolerant relativistic zero-knowledge protocol for NP is described in Figure 3.2. We
repeat our 1-round protocol R times sequentially and allow for a λ fraction of rounds where the
space-time constraints are not satisfied, for eg. because of losses in the signal. We just present
the general protocol and the timing constraints
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Parameters: (n,k,w) for the SD problem. A parameter Q for the commitment used. A parameter
D gives the distance between the 2 verifiers, and a time parameter ∆T to delimit the time of a
round, a time parameter TShift to determine the time shift between the 2 phases of the protocol.
A number of rounds R and an allowed fraction of losses λ.

1. The 2 provers and verifiers agree together on an initial time T1 on which they start the
protocol.

2. For i from 1 to R: run the 1-round relativistic ZK protocol with the FQ commitment scheme.

V1 sends his first message at time τ1
i

△= T1 + (i − 1) ∗∆T , and V2 sends his first message at

time τ2
i

△= T1 + (i − 1) ∗ ∆T + TShift. Let θ1
i be the time at which V1 receives the message

from P1 and θ2
i the time at which V2 receives the message from P2.

3. At the end of the protocol, the verifiers check the space-time constraints for each i from 1 to
R, i.e. check that θ1

i < τ2
i + D/c and θ2

i < τ1
i + D/c. Let F be the number of rounds where

these space-time constraints are not satisfied.

4. The verifiers accept if they accept each iteration of the zero-knowledge protocol when the
space-time constraints were satisfied and if F ≤ ⌈λR⌉.

Figure 3.2: Full loss-tolerant relativistic zero-knowledge protocol for NP

Timing constraints. We added an extra parameter Tshift that will make the space-time con-

straints easier to satisfy. For round i, let TPhase1
i

△= θ1
i − τ1

i and TPhase2
i

△= θ2
i − τ2

i . In phase 1, V1
sends 3 strings in FQ, P1 does a computation and sends back 3 strings in FQ. In phase 2, V2 sends
a challenge in {1, 2, 3} and gets back 2 messages in FQ. This explains why phase 1 is longer than
phase 2. The timing constraints become for each i:

θ1
i < τ2

i + D/c ⇒ TPhase1
i − TShift < D/c (3.2)

θ2
i < τ1

i + D/c ⇒ TPhase2
i + TShift < D/c (3.3)

Here, we see why we use TShift. Since the 2 phases take different times, the first constraint would
be harder to achieve than the second one with TShift = 0. By taking TShift to be an estimate of
1
2
(
T Phase1

i − T Phase2
i

)
for an average i, we make the two constraints essentially equally hard to

satisfy.

Our two scenarios. We perform a demonstration of this full scheme using only regular laptops as
well as standard network links (ethernet or wifi). We run the experiment in 2 different scenarios.

1. V1 and P1 are in the same room and are connected through a direct ethernet cable. V2 and
P2 are in a different location but also connected through an ethernet cable. The distance
between V1 and V2 is about 400km

2. V1 and P1 (resp. V2,P2) are in different cities and communicate through the usual internet.
For each i,Vi,Pi are about 400km away. We put V1,V2 at distance about 9000km.

These scenarios are illustrated by the following, with examples of cities for which these con-
straints are satisfied, see Figure 3.3.

The authors of [ABC+21] considered the computational problems where the best quantum
algorithms run in time 2100 so we consider the same setting, which means we have 100 bits of
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Figure 3.3: Scenarios that we consider for which we demonstrate the feasibility of our full rela-
tivistic zero-knowledge protocol for NP.

quantum security. This gives following parameters that appear in the two scenarios.

n = 1704, k = 769, w = 216
R = 340, F = 22, Q = 223209 − 1

Let D be the distance between V1 and V2 and let D′ be the distance between V1,P1 (and
also between V2,P2). Depending on our scenario, we have the following parameters; where
c ≈ 299.8km/sec in the speed of light in vacuum.

1. Scenario 1: D = 400km, D′ = 10m, D/c ≈ 1.33ms, ∆T = 2ms, Tshift = 0.5ms. With these
parameters, the space-time constraints are satisfied for T P hase1

i < 1.83ms and T P hase2
i <

0.83ms.

2. Scenario 2: D = 9000km, D′ = 400km, D/c ≈ 30ms, ∆T = 40ms, Tshift = 2.5ms.
With these parameters, the space-time constraints are satisfied for T P hase1

i < 32.5ms and
T P hase2

i < 27.5ms.

We show in Figures 3.4 and 3.5 the real running times of the different phases. With these
parameters, we finally manage to show the following:

Theorem 3.2. In our experiments, the probability that the verifier rejects an honest run of the
protocol is 2−102 (Completeness error), the soundness is 2−103 and it is perfect zero-knowledge.

From a theoretical point of view, we present the different parameters of the different relativistic
zero-knowledge protocols in Table 3.1, each with its upsides and downsides.
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Figure 3.4: T Phase1 and T Phase2 for Scenario 1 with 10000 rounds, times are aggregated in intervals
of size 0.01ms.
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Figure 3.5: T Phase1 and T Phase2 for Scenario 2 with 10000 rounds, times are aggregated in intervals
of size 0.1ms.

#Bytes/Round #Repetitions # Provers Quantum Sec
[CL17] 1.89 MB 100 2 ✓
[ABC+21] 2 B 106 2 ×
[ABC+21] 2 B 1019 3 ✓
This work 17.03 KB 340 2 ✓

Table 3.1: Parameters for different zero-knowledge proposals for 100 security bits.
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Chapter 4

Quantum algorithms for the collision
problem with small quantum memory

We now start the second part of this thesis, which focuses on quantum algorithms. In this chapter,
we study the collision problem where, given a function f , the goal is to find x ̸= y such that
f(x) = f(y). There are several slight variants of this problem. Here, we consider the case where
f : {0, 1}n → {0, 1}m is a random function to which we have (quantum) black box access.

The collision problem

Input: a random function f : {0, 1}n → {0, 1}m with black box access.
Goal: find x, y ̸= x such that f(x) = f(y).

We will be interested both in the time complexity and the query complexity of this problem,
and assume a query to the function f takes time 1. The classical and quantum complexity of this
problem is very well understood.

Proposition 4.1 (for eg. [vOW99]). There exists a classical algorithm that runs in time Õ(2m/2)
and performs Õ(2m/2) calls to f that finds a collision in f with high probability.

Moreover, one can show that we require at least Ω(2m/2) classical queries to f to find a collision
so the above algorithm is close to optimal.

Proposition 4.2 ([AS04, Amb05, Zha15]). There exists a quantum algorithm due to Ambanis that

runs in time Õ(2m/3) and performs O(2m/3) queries to Of that finds a collision in f with high
probability. Moreover, we require at least Ω(2m/3) queries to f to find a collision so this algorithm
is close to optimal.

This shows a quantum speed-up for the collision problem. However, Ambainis’ algorithm
requires O(2m/3) quantum memory as well as efficient QRAM (Quantum Random Access Memory)
operations on registers of size O(2m/3). There is however still an ongoing discussion on the
feasibility of such operations [JR23]. Notice that this is inherent to quantum algorithms, the
classical algorithm of [vOW99] for collision finding only requires poly(m) memory. Therefore, a
natural question arises

Is it possible to have quantum speed-ups for the collision problem without using QRAM
and with minimal quantum resources?

In a joint work with Maŕıa Naya-Plasencia and André Schrottenloher [CNS17], we positively
answer this question for the case m = n.
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Theorem 4.1. There exists a quantum algorithm for the collision problem with m = n that runs in
time Õ(22m/5), performs Õ(22m/5) queries to Of and succeeds with high probability. This algorithm
uses O(m) qubits, no QRAM operations and O(2m/5) classical memory.

Our main idea is to adapt the quantum algorithm from Brassard, Hoyer and Tapp [BHT98]
(hereafter called BHT algorithm) by adding the idea of distinguished points.

4.1 The BHT algorithm and the use of QRAM

We limit our presentation to the case n = m. The BHT quantum algorithm for collision finding
can be described as follows:

The BHT algorithm

Input: a random function f : {0, 1}n → {0, 1}n with black box access to Of : |x⟩|y⟩ → |x⟩|f(x)⊕y⟩.
The algorithm also has an extra parameter r.

1. Pick a random subset I ⊆ {0, 1}n of size 2r. Construct the list L = {f(i)}i∈I and sort it.
2. Let g : {0, 1}n → {0, 1} satisfying g(y) = 1⇔ (y /∈ I ∧ ∃i ∈ I, f(y) = f(i)).
3. Apply Grover’s algorithm on g. Find y such that g(y) = 1.
4. Find i ∈ I such that f(i) = f(y). Output (i, y).

Complexity analysis. Constructing and sorting the list L takes time and queries Õ(2r). We then

apply Grover’s algorithm on g. Grover’s algorithm runs in time O
(

1√
ε
(TI + Tg)

)
where ε is the

fraction of solutions, TI is the time to construct the uniform superposition of inputs (here {0, 1}n)
and Tg is the running time to compute g. This means the total running time is

Õ(2r) + O

(
1√
ε

(TI + Tg)
)

(4.1)

In our case, we have ε which is close to 2r

2n with high probability over the choice of the function f ,
Ti = O(n) and Tg = O(n) since L is sorted so one can check membership in L using dichotomic
search. The total running time becomes

Õ

(
2r +

√
2n

2r

)
,

which gives a running time of Õ(2 n
3 ) for r = n

3 .

The use of QRAM in the BHT algorithm. A crucial step for making the above time efficient is
to be able to efficiently compute the function g. This is why we sort L so that we can perform
dichotomic search on the list L and hence efficiently compute g. The efficiency of computing g
therefore highly relies on efficient RAM operations of the form

RAM(L[0], . . . , L[|L| − 1], i)→ L[i].

This is absolutely fine in the classical setting. However, when we perform Grover’s algorithm
on g, we have to construct the unitary Og : |x⟩|y⟩ → |x⟩|y ⊕ g(x)⟩. We have a procedure that
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efficiently computes Og given an efficient algorithm for g but if g uses RAM operations then Og

will necessarily use as many QRAM operations which are of the form

QRAM : |i, 0⟩ → |i, L[i]⟩ with classical access to L. (4.2)

In our example, the size of L is exponential in n and performing this operation efficiently (typically
in time O(log(|L|)) seems much more tricky, you need to have somehow a reading head in quantum
superposition and read all the list elements in superposition efficiently. While this is not forbidden
by the laws of quantum mechanics, it is an additional quantum hardware challenge which might
not be ultimately doable.

4.2 Quantum algorithm for collision finding with small quantum
memory

We now present our quantum algorithm with little quantum resources. We assume we don’t have
access to QRAM so how can we compute g? We need, given a classical list L, to construct a
quantum unitary U : |x⟩|0⟩ → |x⟩|“x ∈ L”⟩. This can be fairly easily done in time O(|L|) using n
qubits. Indeed, for each i ∈ {0, . . . , |L|−1}, put L[i] in a quantum register, test whether it is equal
to x and then discard this register. This means that one can construct Og in time O(|L|) without
QRAM but if we plug this in the analysis of the BHT algorithm, all the quantum speed-up is
gone, and this for any choice of parameter r.

4.2.1 The idea of distinguished points

To circumvent this issue, our idea was not only to have smaller lists but also better lists i.e. lists
from which we will find collisions more easily. Let

DPu = {x : ∃z ∈ {0, 1}n−u, f(x) = 0 . . . 0︸ ︷︷ ︸
u times

||z}

be the set of distinguished points with parameter u. The idea is to adapt the BHT algorithm and
look for a collision only on inputs which are distinguished points and to construct the list L only
using images of distinguished points. This will allow us to find collisions with greater probability
while keeping the list L small. More precisely, our algorithm is the following

Algorithm using Distinguished Points

Input: a random function f : {0, 1}n → {0, 1}n with black box access to Of .
Parameters: integers r, u.

1. Find a random subset I ⊆ DPu of size 2r using Grover search. Construct the list L =
{f(i)}i∈I .

2. Let g : DPu → {0, 1} satisfying g(y) = 1⇔ (y /∈ I ∧ ∃i ∈ I, f(y) = f(i)).
3. Apply Grover on g to find y such that g(y) = 1. Calls to g are done without QRAM.
4. Find i ∈ I such that f(i) = f(y). Output (i, y).

Proposition 4.3. The above algorithm runs in time and queries

Õ

(
2r2 u

2 +
√

2n−u

2r

(
2u/2 + 2r

))
.
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In particular, with r = n/5 and u = 2n/5, the above algorithm runs in time and queries Õ(22n/5).

Proof Sketch. The first term corresponds to constructing the list L. Finding a random x ∈ DPu

takes time and queries Õ(2u/2) using Grover’s algorithm, so constructing the whole list L takes

time and queries Õ(2r+ u
2 ). As in Equation 4.1, the total running time is

Õ(2r2 u
2 ) + O

(
1√
ε

(TI + Tg)
)

.

Here, the fraction of solutions is ε ≈ 2r

2n−u with high probability. Moreover, constructing the state
1√
|DPu|

∑
x∈DPu

|x⟩ can be done by applying Grover’s algorithm (without the final measurement)

on the function h(x) = 1 iff. x ∈ DPu. This gives TI = Õ(2u/2). Finally Tg = Õ(|L|) = Õ(2r).
This is the step where we significantly lose from not using QRAM. Putting everything together,
we get our result.

Notice that the above algorithm doesn’t use QRAM and uses O(n) qubits. Moreover, the

classical memory is the size of the list which is Õ(2n/5). It is an interesting application of Grover’s
algorithm where the running TI is non-trivial.

4.2.2 Variants of the result

The same idea of distinguished points can be used in related scenarios. For example, consider the
following problem:

Problem 2 (Multi-target preimage search). Given access to a random function f : {0, 1}n →
{0, 1}n and a list L = {y1, . . . , yt}, where each yi is a random element of {0, 1}n. Find x ∈ {0, 1}n

and i ∈ [t] such that f(x) = yi.

Again, with a small amount of quantum memory and without QRAM, it seems unclear how to
solve this problem in time better than O(2n/2). Using the idea of distinguished points, we prove
the following:

Proposition 4.4. There exists a quantum algorithm that solves the multi-target preimage search
problem on random functions in quantum time TQ without QRAM using MQ quantum memory
and MC classical memory where

TQ = Õ(2n/2−t/6) + min(2t, 23n/7) ; MQ = poly(n) ; MC = min{2t/3, 2n/7}.

We are not going to prove this statement here but once we have the idea of distinguished
points, finding this algorithm is fairly easy. The running time TQ is minimal for t = 3n

7 and is

equal to 23n/7. Notice that the complexity here is worst than the one for collision finding. This
is because the list L is given to us and we have to extract distinguished points from it, instead of
directly constructing a list of distinguished points from the set {0, 1}n using Grover’s algorithm.

Proposition 4.5 (Searching many collisions.). Given a random function f : {0, 1}n → {0, 1}n on
n bits, there exists a quantum algorithm using O(n) qubits and outputting 2c collisions:

• if c ≤ n
3 , in time Õ

(
22n/5+4c/5), using 2n/5+2c/5 classical memory;

• if n ≥ c > n
3 , in time Õ

(
2n/2+c/2), using 2c classical memory.

This can be done again with distinguished points only by changing the parameters u and |L|. In
[CNS17], we also present results on collision finding with multiple quantum processors, as well as
applications in the cryptographic setting, which we won’t detail here.
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4.3 Discussion

Open Problem 1. Can we solve the collision problem in time O(2n/3) for random functions using
poly(n) quantum memory? Or on the opposite, can we show a Ω(22n/5) lower bound for this
problem? Or is the optimal algorithm somewhere in between?

Proving lower bounds for quantum algorithms is already quite challenging, but it seems much
harder to prove lower bounds when we limit the quantum resources we allow. I like this open
problem because it actually reopens the study of quantum collision algorithms, which we thought
was finished since we knew an optimal algorithm with a matching lower bound. Interestingly,
there are some lower bounds if we bound both the classical and quantum memory [HM23].

Another interesting question is regarding the worst case scenario, meaning when f has poten-
tially only 1 collision. This problem is more often referred as the element distinctness problem.
In this case, BHT type quantum algorithms can solve the problem in time O(23n/4) [BDH+01]
while quantum random walks can solve it in time O(22n/3), which is optimal. We didn’t manage
to use distinguished points to still have quantum speed-ups in this setting with poly(n) quantum
memory. It was actually conjectured by Ambainis that this is not possible. This would mean the
kind of speed-up we obtain for the collision problem only appears when there are many collisions,
as in the case of random functions.
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Chapter 5

Quantum lower bounds for
permutation symmetric functions

5.1 Introduction

The previous chapter showed new quantum algorithms for the collision problem. In this next
chapter, we show how (variants of) generic quantum lower bounds for the collision problem can be
used for proving more general limitations for quantum algorithms in the black box model. Here,
we will only be interested in query complexity.

More precisely, we will study permutation symmetric functions. There are several ways of
defining such functions and we consider the following definitions for a function f : S → {0, 1} with
S ⊆ [M ]n, where [M ] = {1 . . . , M}.

Definition 5.1.

• f is permutation symmetric of the first type iff. ∀π ∈ Sn, f(x) = f(x ◦ π).
• f is permutation symmetric of the second type iff. ∀π ∈ Sn, ∀σ ∈ SM ,

f(x) = f(σ ◦ x ◦ π).

where Sn (resp. SM ) represents the set of permutations on [n] (resp. [M ]) and ◦ is the usual
function composition.

Here, we consider strings x ∈ [M ]n as functions from [n]→ [M ], so

x ◦ π = xπ(1), . . . , xπ(n) ; σ ◦ x ◦ π = σ(xπ(1)), . . . , σ(xπ(n)).

Notice that functions associated respectively to search, where f(x) = 1 iff. ∃i, f(i) = 1 and to
element distinctness, where f(x) = 1 iff. ∃i, j ̸= i such that xi = xj are permutation symmetric
respectively of the first type and of the second type.

We want to relate the randomized query complexity R(f), which corresponds to the minimal
amount of classical queries to x required to compute f(x) with probability at least 2

3 and the
quantum query complexity Q(f), which corresponds to the minimal amount of quantum queries
to x required to compute f(x) with probability at least 2

3 . Aaronson and Ambainis showed that
there is at most a polynomial quantum advantage for permutation symmetric functions of the
second type.

Theorem 5.1 ([AA14]). For any permutation symmetric function f of the second type, R(f) ≤
Õ(Q7(f)).
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In a survey on quantum query complexity and quantum algorithms [Amb17], Ambainis writes:
“It has been conjectured since about 2000 that a similar result also holds for f with a symmetry of
the first type.” In [Cha19], we answer Ambainis’ conjecture and prove the following theorem

Theorem 5.2. For any permutation symmetric function f of the first type, R(f) ≤ O(Q3(f)).

This result not only proves Ambainis’ conjecture, but also improves the exponent from 7 to
3. In the case where M = 2, this result was already known [AA14] with an exponent of 2, which
is tight from Grover’s algorithm. The proof technique is arguably simple, constructive and relies
on the quantum hardness of distinguishing a random permutation from a random function with
small range from Zhandry [Zha15]. We now present Zhandry’s result and then show how to apply
it for our lower bound.

5.2 Zhandry’s lower bound for small range functions

We first introduce a few notations. For any function f , let Im(f) be its range (or image).

Query algorithms. A query algorithm A O is described by an algorithm that calls another function
O in a black box fashion. We will never be interested in the running time or the size of A but
only in the number of calls, or queries, to O. We will consider both cases where the algorithm
A O is classical and quantum. In the latter O will be a quantum unitary. In both cases, we only
consider algorithms that output a single bit.

Oracles. We use oracles to perform black box queries to a function. For any function g, OClassical
g

is a black box that on input i outputs g(i) while Og (without any superscript) is the quantum
unitary satisfying

Og : |i⟩|j⟩ → |i⟩|j + g(i)⟩.

Our proof will use a quantum lower bound on distinguishing a random permutation from a random
function with small range proven in [Zha15]. Following this paper, we define, for any r ∈ [n], the
distribution Dr on functions from [n] to [n] which can be sampled as follows.

• Draw a random function g from [n]→ [r].
• Draw a random injective function h from [r]→ [n].
• Output the composition h ◦ g.

Notice that any function f drawn from Dr is of small range, it satisfies |Im(f)| ≤ r. Let also
Dperm be the uniform distribution on permutations on [n]. Zhandry’s lower bound can be stated
as follows:

Proposition 5.1 ([Zha15]). There exists an absolute constant Λ such that for any r ∈ [n] and any
quantum query algorithm BO performing at most ⌈Λr1/3⌉ queries to O:

∀b ∈ {0, 1},
∣∣Eπ←Dperm

Pr[BOπ outputs b]− EC←Dr
Pr[BOC outputs b]

∣∣ ≤ 2
27 .

This is obtained immediately by combining Theorem 8 and Lemma 1 of [Zha15]1.

1Equivalently, this is obtained immediately by combining Lemma 3.2 and Lemma 3.4 from the arXiv version
quant-ph:1312.1027.
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5.3 Presentation of our result

We now present the proof of our main theorem.

Proof Theorem 5.2: We fix a permutation symmetric function f of the first type as well as an
algorithm A0 that computes f(x) with probability at least 2

3 and making Q(f) queries to Ox.
Our goal is to construct a randomized algorithm that performs O(Q3(f)) queries to OClassical

x and
outputs f(x) with probability at least 2

3 .

The main idea is the following, we want to replace calls to Ox with calls to Ox◦C for a randomly
chosen C ← Dr with r = Θ(Q(f)3). We then show two things: (1) this algorithm will output f(x)
with sufficiently high probability and (2) its output can be emulated with a randomized classical
algorithm performing r queries to x. More in detail, the argument is the following:

1. We first amplify the success probability of A Ox
0 to 20

27 by repeating this algorithm 3 times
and taking the majority vote. This means we have an algorithm A Ox performing 3Q(f)
queries to Ox such that

Pr
[
A Ox outputs f(x)

]
≥ 20

27 (5.1)

2. Notice that f is permutation symmetric so f(x) = f(x ◦ π) for any permutation π. In
particular, this gives us

Eπ←Dperm
Pr
[
A Ox◦π outputs f(x)

]
≥ 20

27 (5.2)

3. Notice that A Ox◦π can be done with 6Q(f) calls to Oπ. Indeed, A Ox◦π performs 3Q(f) to
Ox◦π and each such query can be done with 2 queries to Oπ using the procedure below

|i⟩|j⟩|0⟩ → |i⟩|j⟩|π(j)⟩ → |i⟩|j + (x ◦ π)(j)⟩|π(j)⟩ → |i⟩|j + (x ◦ π)(j)⟩|0⟩,

where we respectively apply Oπ on register (1, 3), Ox on registers (3, 2) and O†π on register
(1, 3).

4. We replace the choice of a random function π with a random small range function C with
parameter r = ⌈216Q3(f)Λ−3⌉ so that the number of queries A O◦π does to Oπ (which is
6Q(f)) is less that ⌈Λr1/3⌉. From Zhandry’s lower bound, we have

EC←Dr
Pr
[
A Ox◦C outputs f(x)

]
≥ Eπ←Dperm

Pr
[
A Ox◦π outputs f(x)

]
− 2

27 ≥
2
3 . (5.3)

5. Construct a randomized algorithm B that performs r classical queries to x and has the

same output distribution as A Ox◦C . This means, Pr[BOClassical
x outputs f(x)] ≥ 2

3 , which
concludes the argument.

We now show how to perform the last step, which is the construction of the classical random-
ized algorithm for f .
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Algorithm BOClassical
x with the same output distribution as A Ox◦C

a We start from a random function C sampled according to distribution Dr, with r =
⌈216Q3(f)Λ−3⌉.

b Query OClassical
x to get all values xi for i ∈ Im(C). This requires |Im(C)| ≤ r queries to

OClassical
x . These queries fully characterize the function x ◦ C, hence the quantum unitary

Ox◦C .

c We consider A Ox◦C as a quantum unitary circuit acting on t qubits. At each step of the
algorithm, we store the 2t amplitudes. When Ox◦C is called, we use its representation from
step 2 to calculate its action on the 2t amplitudes. Other parts of A Ox◦C are treated the
same way. While this uses a lot of computing power, it does not require any queries to
OClassical

x or Ox other than those used at step 2.

The last step outputs the same output distribution than the quantum algorithm A Ox◦C , which
means it outputs f(x) with probability at least 2

3 and performs r queries which implies

R(f) ≤ r = ⌈216Q3(f)Λ−3⌉.

This concludes the proof of our theorem. Notice that after step 2, it is not possible to just
compute f(x◦C), and try to show that it is equal to f(x) since we don’t even always have x◦C ∈ S.
This is yet another example in query complexity where we use the behavior of a query algorithm
on inputs not necessarily in the domain of f .

5.4 Conclusion and Follow ups

This result extends the class of functions for which we can show a polynomial relationship between
the quantum and the randomized query complexity and improves the polynomial in general for
permutation symmetric functions. It was quite surprising to be able to directly prove this result
only by using a quantum lower bound for a specific problem, namely distinguishing random small
range functions with random permutations, which can be seen as a slight generalization of the
collision lower bound.

The first obvious open question is to close the gap between the best known speed-up for
permutation symmetric function - which is quadratic - and the cubic lower bound obtained here.

Open Question 1. Can we show that for permutation symmetric functions, R(f) ≤ O(Q2(f))?

More generally, it seemed that the technique used was very specific to this problem and wouldn’t
have many other applications. However, this method was used to prove quantum lower bounds
for graph properties and more general symmetries [BCG+20].
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Chapter 6

Quantum algorithms for lattice
problems

6.1 Introduction

In this last chapter, we present quantum algorithms for the Shortest Vector Problem (SVP) for
Euclidean lattices. There is an important focus on this problem. First from a complexity point
of view, lattice problems have worst-case to average-case reductions [Ajt96] so there are theoretic
arguments about the average-case hardness of this problem. Then, Regev presented strong links
with the Learning With Errors (LWE) problem and showed how to build cryptosystems from
LWE/SVP [Reg05]. These lattice-based cryptosystems are arguably the leading current proposal
for post-quantum cryptography. A lattice is defined as follows

Definition 6.1. Given a basis B = (b1, . . . , bm) of linearly independent vectors in Rd the lattice
generated by B is defined as L(B) = {

∑m
i=1 zibi, zi ∈ Z}. For simplicity, we will consider only

lattices of full rank i.e. m = d.

The Shortest Vector Problem asks, given a basis B, to find the shortest non-zero vector of L(B)
in Euclidean norm. Of course, if the basis B consisted of orthogonal vectors then the smallest
vector of B would give the smallest non-zero vector of L(B). However, the basis B needn’t be
orthogonal and that makes the problem much harder.

SVP is a central problem in lattice-based cryptography, and its complexity directly impacts the
security of most lattice-based cryptographic schemes. There are two main families of algorithms for
SVP: those based on enumeration [FP85, Kan83, Poh81] and those based on sieving [NV08, MV10].
The latter have a much better asymptotic running time — especially with heuristics that improve
the analysis of these algorithms — but require a very large amount of memory, sometimes as much
as the running time. Despite these strong memory requirements, the current best algorithms for
SVP in practice are based on sieving methods1.

Theorem 6.1 (Best sieving algorithms for SVP,[BDGL16, Laa15]). There exists a classical algo-
rithm that solves SVP in time 20.292d+o(d) and there exists a quantum algorithm that solves SVP
in time 20.265d+o(d).

In a joint work with my student Johanna Loyer [CL21], we provide a new quantum algorithm
for SVP with an improved asymptotic complexity.

1See https://www.latticechallenge.org/svp-challenge/
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Theorem 6.2. There exists a quantum algorithm that solves SVP in time 20.257d+o(d).

We also show space-time trade-offs and quantum resource estimates for this algorithm. We
first present sieving algorithm and then present our improvements.

6.2 Sieving algorithms.

We describe below a sieving algorithm introduced by Nguyen and Vidick [NV08].

NV-sieve algorithm for SVP

Input: a basis B = (b1, . . . , bd) that define a lattice L(B).

Parameter: a real number γ < 1.

1. We initialize the algorithm with a list L of N lattices points x1, . . . , xN ∈ L(B) where for
each i, ∥xi∥ ≤ R for a certain R exponential in d. This can be done for example using Klein’s
algorithm [Kle00].

2. For each i, j ̸= i, we construct yij = xi − xj ∈ L(B) and compute ∥yij∥.
3. Keep N points yij such that ∥yij∥ ≤ γR and start this procedure again by replacing R with

γR.

We initialize with N large lattice points and perform the above in order to find N smaller
points and then we repeat until we find a small lattice point. Such algorithms are extremely hard
to analyse but this becomes much simpler using heuristic arguments. In particular, if we assume
that the points x1, . . . , xN behave as random points on the sphere of radius R, it is much simpler
to compute the probability that the points yij will be of norm γR. This heuristic argument is
justified by numerical simulations and experiments on sieving algorithms [NV08].

Definition 6.2. In the above algorithm, we say that a pair (xi, xj) reduces or is reducible iff.
∥xi − xj∥ ≤ γR.

One can show that as γ → 1, the probability that a pair (xi, xj) reduces is p = 1
2Γd+o(d) with

Γ ≈ 0.2075. If we start from N random points on the sphere, the number of reducible pairs will

be on average p N(N−1)
2 which means we need to take at least N = 2Γd+o(d) so that we can have

at least N reducible pairs after step 3. Typically, we take γ = 1− 1
poly(d) . Each sieving step takes

time O(N2) and we have to repeat this poly(d) times in order to get a short vector so the total
running is poly(d)22Γd+o(d) ≈ 20.415d+o(d).

6.3 Locality sensitive filtering

The main idea of sieving algorithms is to start from N lattices points x1, . . . , xN and to compute
each sum xi − xj in order to find smaller lattice points. This step takes time O(N2) and may
seem very costly. A natural question to ask is whether it is possible to speed up this process?

Locality sensitive filtering can significantly improve lattice sieving algorithms. Take the sphere
of radius R, hereafter denoted Sd(R) and construct a partition {F1, . . . , FC} of Sd(R). Each Fi

will be called a filter and the idea is to check whether pairs (xi, xj) reduce only for points in the
same filter. We want these filters to satisfy the following two requirements: (1) two random points
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in a filter should have a higher probability of reducing than 2 random points on the sphere and
(2) determining in which filter a point is should be done efficiently.

A nice solution to this problem presented by[BCDL19] is to use error correcting codes on the
sphere Sd(R). They start from a random product code C = {c1, . . . , cC} on the sphere and the
filters will be sets Fj = {y ∈ Sd(R) : ⟨y, cj⟩ ≥ cos(α)} for some parameter α. C = |C| and α
will be parameters that are chosen in particular so that these filters approximately partition the
sphere. Random product codes behave similarly to random codes but can be easily decoded so
requirement (2) will be satisfied. Moreover, 2 points close to a certain codeword have a higher
probability of being close to each other hence (1) will also be satisfied. This construction is illus-
trated in Figure 6.1. A sieving step with this locality sensitive filtering works as follows

Sieving step with locality sensitive filtering

Input: a list L = {x1, . . . , xN} of lattice points of norm at most R, a parameter γ < 1.
Goal: construct a list L′ of N lattices points ot norm at most γR.

We initialize L′ = ∅.

1. Construct C points c1, . . . , cC taken from a random product code C on the sphere Sd(R).
2. For each j, construct Uj = Fj ∩ L = {x ∈ L : ⟨x, cj⟩ ≥ cos(α)}. To do this, we initialize

each Uj = ∅. Then for each x ∈ L, we put x in its corresponding filter(s) Uj . Because we
use an efficiently decodable code C, this can be done efficiently for each x and this whole
step can be done in time poly(d)|L|.

3. For each j, for each xk, xl ∈ Uj , xl ̸= xk, compute ykl = xk − xl. If ∥ykl∥ ≤ γR, add ykl to
L′.

4. Repeat from step 1 until |L′| ≥ N .

If we assume that each Uj contains approximately N
C lattice points, we can see that step 3 takes

time O(C( N
C )2) = O( N2

C ). The drawback of this filtering is that we miss many solutions and have
to perform repetitions. Overall, this remains highly beneficial and by optimizing the parameters,
we can take the classical running time from 20.415d+o(d) to 20.292d+o(d). In the quantum setting,
step 3 is done using Grover’s algorithm which improves the whole exponent to 20.265d+o(d).

6.4 The quantum setting

We now present our improved algorithm. We will only focus on step 3 of the above algorithm,
which can be seen as solving the following problem:

Step 3 of the above algorithm for fixed j

• Input: lattice points x1, . . . , xT ∈ Uj = Fj ∩ L.
• Goal: Find all (or most) pairs xu, xv ̸= xu such that ∥xu − xv∥ ≤ γR.

As we said, this was done by Laarhoven by using Grover’s algorithm. What we show is that
performing a second layer of filtering combined with quantum walks can improve this step. We
present this at a very high level, and refer to [CL21] for a full presentation of this algorithm.
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Figure 6.1: Decomposing the sphere Sd into filters

What we do is that we construct a second random product code C′ = c′1, . . . , c′|C′| that lies

in Fj . We then define new filters F ′k = {y ∈ Fj : ⟨y|c′k⟩ ≤ cos(β)} (we do not dive in how we
construct the code C′). We define the function ϕ : Fj → [|C′|] such that ϕ(y) = k iff. y ∈ F ′k. We
assume for simplicity that this function is well defined, i.e. there is a unique k such that y ∈ F ′k,
and we choose parameters so that it is approximately the case. Again, we will only search for
reducible pairs that are in the same filters, meaning that we search for pairs xu, xv such that

(1) ϕ(xu) = ϕ(xv) and (2) ∥xu − xv∥ ≤ γR.

The first condition is a collision constraint while the second condition is geometrical. We can
therefore perform a quantum walk for collision finding: we construct a Johnson graph where each
node contains r-tuples (xu1 , . . . , xur

) as well as the values ϕ(xu1), . . . , ϕ(xur
). A node will be

marked if there is xu, xv ̸= xu such that ϕ(xu) = ϕ(xv) and (xu, xv) reduce so the geometrical
condition will appear in the definition of marked elements. The update when walking in the
Johnson graph is similar to the one for collision finding: when replacing an element xu with some
xu′ , then we just have to compute ϕ(xu′) (which can be done efficiently by our code construction)
and then update the vertex information. There are a few technicalities here and we refer to the
full paper for a detailed presentation of this quantum walk.

Plugging this quantum walk in the quantum sieving algorithm, and for well chosen parameters,
we can show that there exists a quantum algorithm for SVP that runs in time 20.257d+o(d). A
natural question is why we first perform a classical filtering (to construct the filters Fj) and only
within these filters do we perform a quantum walk. Without this first classical filtering, we are in
a regime where there is a very large amount of reducible pairs and finding many of them isn’t sped
up with quantum walks. In our case, the fraction of solutions is much smaller and even though we
must repeat the quantum walk to find a constant fraction of marked vertices, we are in a regime
where this is helpful.
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Figure 6.2: Quantum memory-time
trade-off.

Figure 6.3: QRAM-time trade-off.

6.4.1 Quantum resource estimates and additional results

We now study what are the quantum resources required for our quantum algorithm. In Laarhoven’s
algorithm, we perform Grover’s algorithm on a list of classical stored lattice points, this doesn’t
require a large amount of quantum memory but it does require QRAM operations on large registers
(defined in Chapter 5, Equation 4.2). On the other hand, our algorithm uses quantum walks which
require QRAM and quantum memory which could make it harder to implement in practice.

Our framework actually encompasses the best classical and previous quantum algorithms and
we can perform full trade-offs between time and quantum memory or between time and QRAM
size. These are illustrated by the figures above. We also give examples of values in the table below.

Time τM ′ 0.2925 0.2827 0.2733 0.2653 0.2621 0.2598 0.2570
QRAM γM ′ 0 0.02 0.04 0.0578 0.065 0.070 0.0767

Q. memory µM ′ 0 0 0 0 0.0190 0.0324 0.0495
Comment [BDGL16] alg. [Laa16] alg. Thm 6.2

6.5 Discussion and follow-up work

Impact on lattice-based cryptography. Going from a running time of 20.2653d+o(d) to 20.2570d+o(d)

slightly reduces the security claims based on the analysis of the SVP (usually via the BKZ algo-
rithm). For example, if one claims 128 bits of security using the above exponent then one must
reduce this claim to 124 bits of quantum security. This of course can usually be fixed with a slight
increase of the parameters but cannot be ignored if one wants to have the same security claims as
before.

Improvements. In our algorithm, we use a quantum walk on a Johnson graph to find reducible
pairs. We are in the setting where there are many marked elements (say K) in the graph and we
have to find a constant fraction of them. A natural question that arises is whether we have to
repeat the whole quantum walk O(K) times to find these marked and this is what we did in this
paper. In a joint work with Xavier Bonnetain, André Schrottenloher and Yixin Shen [BCSS23], we
showed it was possible to pay the Setup cost of the quantum walk only once in various scenarios
including the one of this quantum walk. This slightly improved the quantum running time of this
algorithm to 20.2563d+o(d).

Reducing the quantum resources. Another question is whether we can reduce the quantum re-
sources of this algorithm. With Johanna Loyer, we also studied 3 and 4-sieve algorithms [CL23]
where we consider triplets and quadruplets of lattice points instead of pairs. This increases the
time but reduces the classical and quantum memory requirements.
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[CL17] André Chailloux and Anthony Leverrier. Relativistic (or 2-prover 1-round) zero-knowledge
protocol for \mathsf NP secure against quantum adversaries. In Advances in Cryptology
EUROCRYPT 2017, Paris, France, April 30 - May 4, 2017, volume 10212, pages 369–396,
2017.
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and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages
497–527, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

52



[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptology, 12:1–28, 1999.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Info.
Comput., 15(7-8):557–567, May 2015.

53


	Learning in sequence Lemmata and bounding the value of entangled games
	Lower bounds for Quantum Oblivious Transfer from Bit Commitment
	Quantum learning in sequence lemmata
	Using a learning sequence lemmata to prove the upper bound on the  CHSH game
	The  CHSHQ game and a generalized learning in sequence in lemma

	General bounds on entangled games using learning in sequence lemmata

	Relativistic cryptography
	Relativistic string commitment
	Relativistic zero-knowledge for NP
	Blum's protocol for Hamiltonian Cycle
	Constructing a relativistic zero-knowledge protocol from a zero-knowledge protocol with commitments.


	Relativistic zero-knowledge protocol over the internet
	Stern's zero-knowledge protocol for syndrome decoding
	Description of our 1-round relativistic zero-knowledge protocol for NP

	Full protocol and implementation

	Quantum algorithms for the collision problem with small quantum memory
	The BHT algorithm and the use of QRAM
	Quantum algorithm for collision finding with small quantum memory
	The idea of distinguished points
	Variants of the result

	Discussion

	Quantum lower bounds for permutation symmetric functions
	Introduction
	Zhandry's lower bound for small range functions
	Presentation of our result
	Conclusion and Follow ups

	Quantum algorithms for lattice problems
	Introduction
	Sieving algorithms.
	Locality sensitive filtering
	The quantum setting
	Quantum resource estimates and additional results

	Discussion and follow-up work


