
Quantum Circuits and Logic Gates

André Chailloux

Contents

1 The formalism of quantum computing and quantum circuits 3
1.1 The Qubit . 5

1.1.1 Vector spaces and definitions . 5
1.1.2 Unitary operations . 7
1.1.3 Measurements . 9

1.2 Two qubits . 11
1.2.1 Definition, tensor product and entanglement 11
1.2.2 Measurements on 2 qubits . 13

1.3 n-qubit systems, unitaries and projective measurements 14
1.4 Quantum circuits . 15

1.4.1 The Solovay-Kitaev theorem and the gate model. 16
1.4.2 Simulating classical circuits with quantum circuits 17

2 First examples of interesting quantum circuits 20
2.1 The Deutsch-Jozsa algorithm . 20
2.2 Simon’s problem . 22
2.3 Bell inequalities and the CHSH game . 23

2.3.1 The setting . 23

1

Foreword

These lectures notes are intended for Masters students of Sorbonne Université attending
the course Quantum Circuits and Logic Gates. They contain a mostly self-contained
introduction to quantum computing with the mathematical and conceptual tools required
for understanding the power of quantum computing and why it has gained so much interest
in the last decades. There are no prerequisites in computer science or in quantum physics.
Since we use linear algebra to formalize the model of quantum computing, familiarity with
basic notions of linear algebra will be helpful.

If you have difficulties understanding some material in these lecture notes, a good
thing to do is to read some other lecture notes where things will be explained in a different
manner and maybe you will get a key information that wasn’t here. I strongly recommend
Ronald de Wolf’s lecture notes1 which cover most of the topics we will present here and
are very well written. You can also check the book Quantum Information and Quantum
Computation by Nielsen and Chuang which is still the reference textbook for quantum
computing.

These lecture notes are written on the fly for the course of autumn 2021. There will
probably be some typos and mistakes (hopefully not too many) in the first iterations
of these lecture notes. Remarks, comments on these lecture notes are very welcome,
particularly if you find some typos or mistakes. You can contact me at andre.chailloux@inria.fr.

1https://homepages.cwi.nl/~rdewolf/qcnotes.pdf

2

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Chapter 1

The formalism of quantum
computing and quantum circuits

Quantum mechanics is one of the most important discoveries of the last century in theoretical
physics. Thanks to quantum mechanics, we know that at a very small scale, particles
behave very differently than what we thought before. At this scale, particles are at several
states at the same time and they are modified when observed. Even though these concepts
have been developed in the late 1930’s, there are still many mysteries related to this
theory because of its counterintuitive nature. Still, many experiments have confirmed the
quantum nature of the world.

In the mid-80’s, the physicist Richard Feynman had a remarkable idea: If we can control
some quantum particles, we are able to simulate physical systems in a more efficient way.
From his article [Fey82], quantum computing was born. The basic idea is that instead of
working on bits that take the value 0 or 1, we work on qubits that are superpositions of
bits. A qubit takes the value 0 and 1 with some related coefficients.

There are two main advantages of quantum computing. By manipulating qubits in
superposition, we could be able to make some computations in parallel and solve some
problems much more quickly than in the classical case. In 1994, Peter Shor discovered that
factoring (see Figure 1.1) can be done in polynomial time by a quantum computer [Sho94].
This means that every cryptographic application based on the hardness of factoring
(including RSA) can be broken using a quantum computer. This result raised much
interest in quantum computing which has now become a very wide and fruitful research
topic. Another witness of quantum superiority : Grover showed that one can find an
item in database of size n in time O(

√
n) [Gro97] using a quantum computer instead of

O(n) for a classical computer. However, such quantum algorithms are still very difficult
to implement since it is hard to control many qubits simultaneously.

Another important feature of quantum states is that they lose their quantum behavior
when observed. As long as a quantum state is not observed, it is in a superposition of
states. However, when it is observed, it chooses probabilistically in which state it is. This
means in particular that a quantum state changes when observed. In 1984, Bennett and
Brassard [BB84] showed how to use this fact to perform quantumly a cryptographic task:
Key Distribution (Figure 1.2). Their protocol doesn’t use any computational assumption

3

Figure 1.1: Factoring

� Input: any number n = p · q where p, q are prime numbers and p, q 6= 1

� Goal: find p and q

For example, if n = 657713791279, the goal is to find out that 657713791279 =
660661 · 995539. Typically, when n has 100 digits (when p, q can have each around 50
digits), the problem is hard for a classical computer but could be easily solved by a
quantum computer.

i.e. they don’t need to assume that a computational problem is hard. Instead, the security
is unconditional and relies on the laws of quantum computing. This kind of unconditional
security is impossible to achieve in the classical computation model. Since then, Quantum
Cryptography has also been developed in many directions. Note also that it is already
possible to implement such protocols in practice. The cost and efficiency of quantum
cryptography is still worse than its classical counterpart but it becomes more and more a
viable solution and several companies sell such quantum devices.

Figure 1.2: Key distribution

Alice and Bob communicate quantumly. At the end, they want to share a common
string k. Eve should not be able to gather information about the key k without Alice
and Bob noticing.

So quantum computing is very promising. But how did we discover these results?
What can we do using quantum computing. The first thing of course is to look at the laws
of quantum mechanics such as Schrödinger’s equation

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 .

4

It’s not clear how to use these laws of quantum mechanics for factoring numbers
for instance. Fortunately, several people, notably David Deutsch translated the laws
of quantum mechanics into a model of quantum computing which can be used without
any knowledge of the underlying physics [Deu85]. Actually, there are different computing
models for quantum computing and all of them give us all the power of quantum computing.
The most standard model of quantum computing: the Discrete Variable model. This
model, which is the textbook model for most applications in quantum computing, is what
we will present in these lecture notes.

1.1 The Qubit

In classical computing, bits are the basic units of information and each bit can take the
value 0 or 1. In this section, we will discuss the quantum equivalent of a bit, called qubit.

1.1.1 Vector spaces and definitions

Definition of a qubit

We consider the vector space C2 over the field C. Elements of this vector space will be
represented as column vectors with 2 elements. This means any element ~v of C2 can be

written ~v =
(
α
β

)
with α, β ∈ C. Let also ~0 =

(
0
0

)
be the zero vector. We consider the

canonical addition and multiplication defined as follows:(
α1
β1

)
+
(
α2
β2

)
=
(
α1 + α2
β1 + β2

)
; γ

(
α
β

)
=
(
γα
γβ

)
for any γ ∈ C.

The canonical basis of C2 is (~e0, ~e1) with ~e0 =
(

1
0

)
and ~e1 =

(
0
1

)
and we have

(
α
β

)
=

α~e0 + β~e1 for any α, β ∈ C.

On this vector space C2, we add the canonical inner product 〈·, ·〉 defined as follows:

For ~v1 =
(
α1
β1

)
and ~v2 =

(
α2
β2

)
, we define 〈~v1, ~v2〉 = α1α2

∗ + β1β2
∗.

where z∗ is the complex conjugate of z for z ∈ C. The vector space C2 with this inner
product is a Hilbert space. This inner product has the following properties:

1. The inner product is conjugate symmetric: 〈~v1, ~v2〉 = (〈~v2, ~v1〉)∗ for any ~v1, ~v2 ∈ C2.

2. The inner product is linear in its first argument: 〈γ1~v1 + γ2~v2, ~w〉 = γ1〈~v1, ~w〉 +
γ2〈~v2, ~w〉 for any ~v1, ~v2, ~w ∈ C2 and γ1, γ2 ∈ C.

3. The inner product of an element with itself is positive definite: 〈~0,~0〉 = 0 and
〈~v,~v〉 > 0 for any ~v ∈ C2 different than ~0.

This inner product induces the norm ‖~v‖ =
√
〈v, v〉. For ~v =

(
α
β

)
, we have ‖~v‖ =

√
αα∗ + ββ∗ =

√
|α|2 + |β|2 which is the Euclidian norm. This is indeed a norm since it

satisfies the following properties:

5

1. Positive definiteness and nonnegativity: ‖~v‖ ≥ 0 for any ~v ∈ C2 and ‖~v‖ = 0⇔ ~v =
~0.

2. Absolute homogeneity: ‖γ~v‖ = |γ| ‖~v‖ for any ~v ∈ C2 and γ ∈ C.

3. Triangle inequality: ‖~v1 + ~v2‖ ≤ ‖~v1‖+ ‖~v2‖ for any ~v1, ~v2 ∈ C2.

Two vectors ~v, ~w are said to be orthogonal if their inner product is 0, and we write ~v⊥~w
in this case. We have now all the tools to define a quantum bit

Definition 1.1. The set of quantum bits, usually called qubits, is the set of vectors ~v of C2

of norm 1. Each qubit can be written as

(
α
β

)
∈ C2 with |α|2 + |β|2 = 1 and reciprocally,

any element

(
α
β

)
∈ C2 satisfying |α|2 + |β|2 = 1 is a qubit.

The Dirac notation

A qubit will be represented by a ‘ket’ which is the following symbol |·〉. This notation

was introduced by Dirac in order to represent quantum states. We define |0〉 =
(

1
0

)
and

|1〉 =
(

0
1

)
so we write the canonical basis as {|0〉 , |1〉}. We can write for example

|ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1

meaning that the qubit |ψ〉 is the vector

(
α
β

)
. We say that |ψ〉 is in superposition of |0〉

and |1〉 and α, β are the amplitudes of |ψ〉.

The ‘bra’ notation: for a vector “ket psi” |ψ〉 = α |0〉 + β |1〉 =
(
α
β

)
, we define “bra

psi” as follows
〈ψ| = (α∗ β∗)

〈ψ| is a line vector of C2. In particular 〈0| = (1 0) and 〈1| = (0 1). This notation is useful
for example as it allows us to interpret the inner product 〈~v1|~v2〉 as 〈~v1| · |~v2〉, where the
symbol · is a multiplication between a line vector and a column vector.

Example of qubits and different basis

Definition 1.2. A basis of C2 is a pair of vectors {~v0, ~v1} such that α~v0 + β ~v1 = ~0 iff.
α = β = 0. Such a basis is said to be orthogonal it additionally satisfies ~v0⊥~v1. It is said
to be orthonormal if it is orthogonal and ‖~v0‖ = ‖~v1‖ = 1. This means an orthonormal
basis is a pair of orthogonal qubits.

Proposition 1.3. For any quantum state |ψ〉 and for any orthonormal basis {|e0〉 , |e1〉}
there exists α, β ∈ C such that

|ψ〉 = α |e0〉+ β |e1〉 and |α|2 + |β|2 = 1.

We say that we write or decompose |ψ〉 in the basis {|e0〉 , |e1〉}. We also have α = 〈e0|ψ〉
and β = 〈e1|ψ〉. Also, since |α|2 + |β|2 = 1, there exists γ ∈ [0, π/2] and θ ∈ [0, 2π] such
that |ψ〉 = cos(γ) |e0〉+ eiθ sin(γ) |e1〉.

6

Figure 1.3: Graphical representation of a qubit. Each point of the circle is a qubit with
real amplitudes. Conversely, any qubit with real amplitudes can be represented by a point
on the circle.

|1〉
|+〉

|0〉

|−〉

|ψ〉
3π
16

Definition 1.4. The basis {|0〉 , |1〉} is called the computational basis ot the standard basis.
The basis {|+〉 , |−〉} is called the Hadamard basis where

|+〉 = 1√
2

(|0〉+ |1〉) |−〉 = 1√
2

(|0〉 − |1〉) .

This notation |+〉 , |−〉 will be extensively used in these lectures notes.

As an example of decomposition, we can write for example |0〉 = 1√
2 (|+〉+ |−〉)

and |1〉 = 1√
2 (|+〉+ |−〉). Here is also an example of a qubit |ψ〉 decomposed in the

computational basis and in the Hadamard basis.

|ψ〉 = cos(π/16) |0〉+ sin(π/16) |1〉 = cos(3π/16) |+〉+ sin(3π/16) |−〉 .

In the case the amplitudes are real, we have the following graphical representation of a
qubit. We saw the definition of a qubit. We will now show how to manipulate these qubits.
There are 2 types of operations that we can perform on a qubit: unitary operations and
measurements.

1.1.2 Unitary operations

Definition 1.5. For a matrix U =
(
a c
b d

)
, let U† = (U∗)ᵀ be the conjugate transpose of

U i.e. U† =
(
a∗ b∗

c∗ d∗

)
.

Definition 1.6. A unitary operation, (also called quantum unitary, unitary matrix or just

unitary) is a matrix U =
(
a c
b d

)
such that U†U =

(
1 0
0 1

)
. This also implies that

UU† = I hence U† is the inverse of U .

Unitaries on qubits have the following property

7

Proposition 1.7. A 2× 2 matrix U is unitary iff. it satisfies the following properties.

1. |a|2 + |b|2 = |c|2 + |d|2 = 1.

2.

(
a
b

)
⊥
(
c
d

)
meaning that ac∗ + bd∗ = a∗c+ b∗d = 0.

Proof. For any matrix U =
(
a c
b d

)
, we write

U†U =
(
a∗ b∗

c∗ d∗

)
·
(
a c
b d

)
=
(
|a|2 + |b|2 a∗c+ b∗d
ac∗ + bd∗ |c|2 + |d|2

)
.

One can immediately see that U†U is the identity matrix iff. the above 2 properties are
satisfied, which completes the proof.

We can now state our first rule of quantum computing on qubits.

Rule 1.8 (Unitary operations on single qubits). It is possible to apply any unitary

U =
(
a c
b d

)
to a qubit |ψ〉 = α |0〉 + β |1〉. The output is the qubit U · |ψ〉 where we

perform a standard matrix/vector multiplication. If we apply U to |ψ〉 = α |0〉+β |1〉,
we therefore have

U · |ψ〉 = (αa+ βc) |0〉+ (αb+ βd) |1〉 .

We will often omit the · and just write U |ψ〉 or sometimes U(|ψ〉). One can check that
the output is indeed a qubit i.e. that it has norm 1. Indeed, we have

‖U |ψ〉‖2 = (αa+ βc)(αa+ βc)∗ + (αb+ βd)(αb+ βd)∗

= |α|2(|a|2 + |b|2) + |β|2(|c|2 + |d|2) + αβ∗(ac∗ + bd∗) + α∗β(a∗c+ b∗d)
= |α|2 + |β|2 = 1

By definition, a unitary U is a linear operation meaning that for |ψ〉 = α |0〉 + β |1〉, we
have U |ψ〉 = αU |0〉+ βU |1〉.

Example of unitary operations.

Consider a state |ψ〉 = α |0〉+ β |1〉. Here are some examples of unitaries.

� Bit flip X =
(

0 1
1 0

)
: X |0〉 = |1〉 ;X |1〉 = |0〉 ⇒ X(α |0〉+ β |1〉) = β |0〉+ α |1〉.

� Phase flip Z =
(

1 0
0 −1

)
: Z |0〉 = |0〉 ;Z |1〉 = − |1〉.

� θ-Phase flip Zθ =
(

1 0
0 eiθ

)
: Zθ |0〉 = |0〉 ;Zθ |1〉 = eiθ |1〉.

8

� HadamardH = 1√
2

(
1 1
1 −1

)
: H |0〉 = 1√

2 (|0〉+ |1〉) = |+〉 and H |1〉 = 1√
2 (|0〉 − |1〉) =

|−〉 .

Proposition 1.9. For any orthonormal basis {|e0〉 , |e1〉}, there exists a unitary U such that
U |0〉 = |e0〉 and U |1〉 = |e1〉. This implies that U† |e0〉 = |0〉 and U† |e1〉 = |1〉. This
unitary can be written

U = |e0〉〈0|+ |e1〉〈1| ; U† = |0〉〈e0|+ |1〉〈e1|.

If we write |e0〉 = α0 |0〉 + β0 |1〉 and |e1〉 = α1 |0〉 + β1 |1〉. The unitary U is the matrix(
α0 α1
β0 β1

)
.

Proposition 1.10. For any two orthonormal basis {|e0〉 , |e1〉} and {|f0〉 , |f1〉}, there exists
a unitary U such that U |e0〉 = |f0〉 and U |e1〉 = |f1〉.

Proposition 1.11. Let U and V be two unitaries. Then UV and V U are also unitaries.
Also, (UV)† = V †U†.

1.1.3 Measurements

Measurements are the second kind of admissible quantum operations on a qubit.

Rule 1.12. [Measurements on single qubits] We are allowed to perform measurements
on qubits. A measurement on a qubit |ψ〉 is the following operation

|ψ〉 = α |0〉+ β |1〉 Measurement−−−−−−−−→
{

outcome 0 wp. |α|2. |ψ〉 collapses to |0〉
outcome 1 wp. |β|2. |ψ〉 collapses to |1〉

So a measurement on a state |ψ〉 outputs a bit b (the outcome) probabilistically
depending on the amplitudes of |ψ〉. The state then collapses to a computational
basis state that depends on the outcome of the measurement.

A quantum measurement is the only to extract some information about a qubit.
Typically, if we are given |ψ〉 = α |0〉+β |1〉, we have no way of determining the amplitudes
α and β. The only thing we can do is to apply some unitary operations and in the end
perform a measurement, which will give us only 1 bit of information about |ψ〉 while a
qubit is characterized by 2 complex numbers! Notice that since the state |ψ〉 collapses to
a computational basis state, we cannot perform another measurement to get some more
information about |ψ〉. This is a serious limitation of quantum computing. On the one
hand, we can manipulate qubits which are in a superposition of |0〉 and |1〉 but we can
only extract a small amount of information from these qubits.

There are actually different formulations of what happens to the qubit |ψ〉 after the
measurement. In some formulations, the qubit is destroyed, in others there is a collapse as
we chose for the measurement rule. The two formulations are equivalent since if the state
|ψ〉 is destroyed, we can always recreate the state |b〉 from the output b of the measurement.
Our formulation will be however more consistent with the mathematical formulation of

9

measurements that we will use later. This measurement we presented is usually called
measurement in the computational basis.

Measurement in another basis

We can generalize the above measurement to other basis.

Definition 1.13. For any orthonormal basis B = {|e0〉 , |e1〉}, we can measure any state
|ψ〉 in the basis B which corresponds to the following:

|ψ〉 = α |e0〉+β |e1〉
Measurement in basis B−−−−−−−−−−−−−−−−−−−→

{
outcome 0 wp. |α|2 = | 〈e0|ψ〉 |2. |ψ〉 collapses to |e0〉
outcome 1 wp. |β|2 = | 〈e1|ψ〉 |2. |ψ〉 collapses to |e1〉

This definition generalizes measurements in the computational basis. We show that
we can perform such measurements for any basis only using Rule 1.8 and Rule 1.12.

Proposition 1.14. One can perform a measurement in any basis {|e0〉 , |e1〉} by performing
unitary operations and a measurement in the computational basis.

Proof. Fix a basis B = {|e0〉 , |e1〉} and let U be the unitary st. U |e0〉 = |0〉 and U |e1〉 =
|1〉. Such a unitary U exists from Proposition 1.10. Consider any state |ψ〉 = α |e0〉 +
β |e1〉. In order to measure |ψ〉 in basis B, we can equivalently first apply U , perform a
measurement in the computational basis and then apply U†. Indeed

|ψ〉 Measurement in basis B−−−−−−−−−−−−−−−−−−−→
{

outcome 0 wp. |α|2. |ψ〉 collapses to |e0〉
outcome 1 wp. |β|2. |ψ〉 collapses to |e1〉

and

|ψ〉 U−→ α |0〉+β |1〉 Measurement in basis {|0〉,|1〉}−−−−−−−−−−−−−−−−−−−−−−−→
{

outcome 0 wp. |α|2. |ψ〉 collapses to |0〉
outcome 1 wp. |β|2. |ψ〉 collapses to |1〉

U†

−−→
{

outcome 0 wp. |α|2. |ψ〉 collapses to |e0〉
outcome 1 wp. |β|2. |ψ〉 collapses to |e1〉

Circuit representation

The 2 rules are the 2 only admissible operations that we can perform on single qubits.
We can alternatively apply any of these operations. For example, if we start from a qubit
|ψ〉, the circuit depicted below corresponds to: starting from |ψ〉, applying U , applying V ,
measuring in the computational basis and getting outcome b and then performing W on
the resulting state.

b
...

|ψ〉 U V W

While there are applications, such as Quantum Key Distribution, that require only single
qubits and operations, the theory is much more interesting by manipulating several qubits
at the same time. We now study the case of 2 qubits, which will already exhibit a key
aspect of quantum computing and quantum mechanics: entanglement.

10

1.2 Two qubits

1.2.1 Definition, tensor product and entanglement

A qubit represents a quantum system that can be in a superposition of 2 different physical
states called 0 and 1. Two qubits represent two of these systems, or equivalently a quantum
system that can be in a superposition of 4 states 00, 01, 10 and 11.

Definition 1.15. A 2-qubit state is an element of the vector space C4 of norm 1. It can
therefore be written

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 with |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

with the convention:

|00〉 =

1
0
0
0

 ; |01〉 =

0
1
0
0

 ; |10〉 =

0
0
1
0

 ; |11〉 =

0
0
0
1

 .

Definition 1.16. A unitary on 2 qubits is a 4 × 4 complex matrix U satisfying UU† =
U†U = I where U† is the conjugate transpose of U .

Similarly as for the 1-qubit case, for any orthonormal basis {|e0〉 , |e1〉 , |e2〉 , |e3〉}, the

matrix U =
∑3
i=0 |ei〉〈i| is a unitary. More precisely, it is the unitary such that U |i〉 = |ei〉,

and can also be written

U =

e0

e1

e2

e3

 =

α0

00 α1
00 α2

00 α3
00

α0
01 α1

01 α2
01 α3

01
α0

10 α1
10 α2

10 α3
10

α0
11 α1

11 α2
11 α3

11

where we define αij as follows: for each i ∈ 0, 1, 2, 3, |ei〉 =

∑
j∈{0,1}2 αij |j〉. Reciprocally,

any unitary U is written can be written like this which implies that for any unitary U ,
each column of U has norm 1 and the columns are pairwise orthogonal.

We now define the tensor product of 2 qubits and of 2 unitaries.

Definition 1.17. Consider a qubit α |0〉+ β |1〉 and another qubit α′ |0〉+ β′ |1〉. The joint
state of these 2 qubits is described using the tensor product ⊗, and is

(α |0〉+ β |1〉)⊗ (α′ |0〉+ β′ |1〉) = αα′ |00〉+ αβ′ |01〉+ βα′ |10〉+ ββ′ |11〉 .

The tensor product between 2 qubits really corresponds to the concatenation of the
physical systems. This is why we often drop the ⊗ symbol and just write |x〉 |y〉 , |x, y〉
or even |xy〉 instead of |x〉 ⊗ |y〉. In particular, the 2 qubit computational basis states
|00〉 , |01〉 , |10〉 , |11〉 can be seen as the tensor products |0〉⊗|0〉 , |0〉⊗|1〉 , |1〉⊗|0〉 , |1〉⊗|1〉.
In terms of circuit, we represent |ψ1〉 ⊗ |ψ2〉 as:

|ψ1〉
|ψ2〉

11

We now define the tensor product for unitaries.

Definition 1.18. Consider 2 unitaries U1 and U2 each acting on 1 qubit. U1 ⊗ U2 is a
unitary acting on 2 qubits st. for any qubits |ψ1〉 , |ψ2〉, we have

(U1 ⊗ U2)(|ψ1〉 ⊗ |ψ2〉) = U1 |ψ1〉 ⊗ U2 |ψ2〉 .

So the unitary (U1⊗U2) acting on 2 qubits corresponds to applying U1 to the first qubit
and U2 to the second qubit. In the circuit representation, we write (U1⊗U2)(|ψ1〉⊗|ψ2〉) =
U1 |ψ1〉 ⊗ U2 |ψ2〉 as follows:

|ψ1〉 U1

|ψ2〉 U2

An important property of 2-qubit states is the notion of entanglement, which is motivated
by the following claim.

Proposition 1.19. Not every 2 qubit state |φ〉 is of the form |v〉 ⊗ |w〉 for some qubits
|v〉 , |w〉.

Proof. Consider the state |φ〉 = 1√
2 (|00〉+ |11〉). |φ〉 is indeed a valid 2-qubit state as

it is an element of C4 of norm 1. Assume by contradiction that |φ〉 = |v〉 ⊗ |w〉 for some
qubits |v〉 , |w〉. We write |v〉 = α |0〉+ β|1〉 and |w〉 = α′ |0〉+ β′|1〉. This gives

|v〉 ⊗ |w〉 = αα′ |00〉+ αβ′ |01〉+ βα′ |10〉+ ββ′ |11〉 .

Since |φ〉 = |v〉 ⊗ |w〉, we necessarily have (1) αα′ = ββ′ = 1√
2 and (2) αβ′ = βα′ = 0.

The second condition implies α = 0 or β′ = 0 which implies αα′ = 0 or ββ′ = 0 which
contradicts the first condition.

The existence of entangled is very important in quantum computing (and in quantum
physics in general). For an 2-qubit entangled state, this means we cannot say in which
state each qubit is, rather we have to consider the 2-qubits as a whole1.

Definition 1.20. A 2-qubit state |ψ〉 is can be written as |v〉 ⊗ |w〉 for some qubits |v〉 , |w〉
is called a product state. A 2-qubit state which is not a product state is an entangled state.

Definition 1.21. A 2 qubit state |ψ〉 is called maximally entangled iff. there exists an

orthonormal basis {|e0〉 , |e1〉}, θ ∈ [0, 2π] and γ ∈ C with |γ| = 1 st. |ψ〉 = γ
(

1√
2 |0〉 |e0〉+ eiθ |1〉 |e1〉

)
.

1Actually, we will still be able to say something about each individual qubit when we learn about
density matrices and mixed states but still, the information about any 2-qubit entangled state will be
more than the information about each individual qubit.

12

There are 4 useful 2-qubit maximally entangled states, which are called the Bell states∣∣Φ+〉 = 1√
2

(|00〉+ |11〉)∣∣Φ−〉 = 1√
2

(|00〉 − |11〉)∣∣Ψ+〉 = 1√
2

(|01〉+ |10〉)∣∣Ψ−〉 = 1√
2

(|01〉 − |10〉)

1.2.2 Measurements on 2 qubits

Let B = {|e1〉 , |e2〉 , |e3〉 , |e4〉} be an orthonormal basis of the vector space C4. We can
perform a measurement w.r.t. this basis. For any state |ψ〉 = α1 |e1〉+ α2 |e2〉+ α3 |e3〉+
α4 |e4〉, we have

|ψ〉 Measurement in basis B−−−−−−−−−−−−−−−−−−−→

outcome 1 wp. | 〈e1|ψ〉 |2. |ψ〉 collapses to |e1〉
outcome 2 wp. | 〈e2|ψ〉 |2. |ψ〉 collapses to |e2〉
outcome 3 wp. | 〈e3|ψ〉 |2. |ψ〉 collapses to |e3〉
outcome 4 wp. | 〈e4|ψ〉 |2. |ψ〉 collapses to |e4〉

Similarly as for the 1 qubit case, we can do measurements in any basis by performing
unitaries and a measurement in the computational basis. A 2 qubit state can have

Proposition 1.22. For any 2 qubit state |ψ〉. For any orthonormal basis {|e0〉 , |e1〉} of
the vector space C2. There exists α, β ∈ C as well as qubits |f0〉 , |f1〉 (not necessarily
orthogonal) such that

|ψ〉 = α |e0〉 |f0〉+ β |e1〉 |f1〉 .

Proof. You will prove this proposition in the exercise session.

Similarly as above, we also have the following

Proposition 1.23. For any 2 qubit state |ψ〉. For any orthonormal basis {|e0〉 , |e1〉} of
the vector space C2. There exists α, β ∈ C as well as qubits |f0〉 , |f1〉 (not necessarily
orthogonal) such that

|ψ〉 = α |f0〉 |e0〉+ β |f1〉 |e1〉 .

Partial measurements

When we have a 2-qubit state, it is possible to measure only 1 qubit. What is the resulting
state? Consider any 2-qubit state |ψ〉 and an orthonormal basis B = {|e0〉 , |e1〉} of C2.
Using the previous propositions, we can write

|ψ〉 = α |e0〉 |f0〉+ β |e1〉 |f1〉 = α′ |f ′0〉 |e0〉+ β′ |f ′1〉 |e1〉

for some α, β, α′β′ ∈ C and quantum states |f0〉 , |f1〉 , |f ′0〉 , |f ′1〉. We can perform a partial
measurements on |ψ〉 as follows:

13

|ψ〉 Measure 1st qubit in basis B−−−−−−−−−−−−−−−−−−−−−−→
{

outcome 0 wp. |α|2 collapses to |e0〉 |f0〉
outcome 1 wp. |β|2 collapses to |e1〉 |f1〉

|ψ〉 Measure 2nd qubit in basis B−−−−−−−−−−−−−−−−−−−−−−→
{

outcome 0 wp. |α′|2 collapses to |f ′0〉 |e0〉
outcome 1 wp. |β′|2 collapses to |f ′1〉 |e1〉

1.3 n-qubit systems, unitaries and projective measurements

We consider a the vector space Cd with the canonical basis {|0〉 , . . . , |d− 1〉} with

|0〉 =

1
0
0
...

 , |1〉 =

0
1
0
...

 . . . |j − 1〉 =

0
...
0
1

 .

" |0〉 usually refers to a single qubit but it can also represent a d-dimensional qudit as it
is the case here. It is usually clear from context in which case we are.

For two d-dimensional vectors of Cd, ~v =
∑d−1
j=0 αj |j〉 and ~v′ =

∑d−1
j=0 α

′
j |j〉, we have

the canonical inner product

〈~v, ~v′〉 =
d−1∑
i=0

α∗iα
′
i

and the associated norm

‖~v‖ =
√
〈~v,~v〉 =

√√√√d−1∑
i=0
|αi|2.

Definition 1.24. A d-dimensional qudit |ψ〉 is a vector |ψ〉 =
∑d−1
j=0 αj |j〉 with

∑d−1
j=0 |αj |2 =

1. We also define 〈ψ| = (|ψ〉∗)ᵀ =
(
α∗0 α∗1 . . . α∗d−1

)
. An n-qubit state is a d-

dimensional qudit with d = 2n. A qutrit is a 3-dimensional qudit.

The computational basis of C2n

is sometimes written {|0〉 , . . . , |2n − 1〉} and sometimes
{|0n〉 , . . . , |1n〉} = {|s〉}s∈{0,1}n , where each basis element is described using an n-bit
string. In the latter, we have |s1s2 . . . , sn〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sn〉 =

⊗n
i=1 |si〉 for all

s1, . . . , sn ∈ {0, 1}.

Definition 1.25. A d-dimensional unitary is a complex d × d matrix U such that UU† =
U†U = I.

Definition 1.26. A k-outcome projective measurement acting on d-dimensional qudits is
an ensemble of projectors M = {P1, . . . , Pk} where

∑k
i=1 Pi = I and the projectors are

pairwise orthogonal2.When measuring a state |ψ〉 using measurement M , we get outcome

i wp. ‖Pi |ψ〉‖2
and the state collapses to Pi|ψ〉

‖Pi|ψ〉‖ .

2This means PiPj = PjPi = δijPi where δij is the Kronecker delta symbol: δij = 1 if i 6= j and δij = 0
otherwise.

14

Rule 1.27 (General rule of quantum computing). There are 2 admissible operations
on d-dimensional qudits: d-dimensional unitaries as well as projective measurement
on a d-dimensional space.

On projectors and projective measurements

Projectors have the following property

Proposition 1.28. For any projector P acting on d-dimensional qudits. There exist l
pairwise orthogonal d-dimensional qudits |e1〉 , . . . , |el〉 such that P =

∑l
i=1 |ei〉〈ei|. P

satisfies P |ei〉 = |ei〉 for i ∈ [l] and for any |v〉 orthogonal to all the |ei〉, P |v〉 = ~0. l is
the dimension of the projector.

Proposition 1.29. In dimension d, A projector P of rank r ≤ d is a matrix of the
form

∑
i∈[r] |ei〉〈ei| for some pairwise orthogonal quantum states {|ei〉}i∈[r]. Consider an

orthonormal basis B = {|e1〉 , . . . , |er〉 , |f1〉 , . . . , |fd−r〉} of the vector space Cd. For any

state |ψ〉 =
∑r
i=1 αi |ei〉+

∑n−d
j=1 βj |fj〉, we have

P |ψ〉 =
r∑
i=1

αi |ei〉 and ‖P |ψ〉‖ =

√√√√ r∑
i=1
|αi|2 ≤ 1.

Projective measurements generalize measurements in a given basis. Indeed, measuring
in a basis B = {|e1〉 , . . . , |ed〉} is equivalent to performing the projective measurement
M = {P1, . . . , Pd} where for each i ∈ [d], Pi = |ei〉〈ei| is the 1-dimensional projector
acting on d-dimensional qudits. Again we can construct any projective measurement with
unitary operations and a measurement in the computational basis. Can you see how to
do this?

Quantum registers

A k-qubit quantum register is simply the set of k-qubit quantum states, and correspond
to a specific physical system described by k qubits. The idea of using registers is the
following: if we have a state |ψ〉 on n + m qubits and we will often apply operations on
the first n qubits or the last m qubits, we say that |ψ〉 is in some registers A and B where
A is an n-qubit register and B an m-qubit register, and we write |ψ〉AB . Then we can say
we apply a unitary or a measurement on register A for example instead of always saying
on the n first qubits.

1.4 Quantum circuits

A natural formulation of a quantum algorithm is to start from n qubits initialized at
|0n〉 (or a d-dimensional qudit), and then successively apply the 2 admissible operations:
unitary operations and measurements.

Applying 2 unitaries U1 and U2 one after the other is equivalent to applying the unitary
(U2U1) so we can assume the algorithm performs a unitary, then perform a measurement,
then applies a unitary, performs another measurement and so on.

15

Here, we will consider only algorithms where we first perform all the unitary operations,
which corresponds to a single big unitary, and then perform measurements in the computational
basis. These quantum algorithms are actually as powerful as general algorithm, and we
defer the proof of this statement when we will be more used with the model of quantum
circuits.

So quantum algorithms we consider are of the following form:

|0n〉 U

y

|ψy〉

Auxiliary qubits

Instead of constructing U : |ψ〉 → U |ψ〉, it is often easier to construct the unitary
U ′ : |ψ〉 |0〉Aux → U(|ψ〉) |0〉Aux. These extra qubits used are called auxiliary qubits
or ancilliary qubits. Having these extra qubits is totally admissible and counts as an
implementation of U . What is important however is that they start at |0〉 and end at |0〉
(even though they can be in other states during the computation)

1.4.1 The Solovay-Kitaev theorem and the gate model.

We said that any unitary on n qubits is an admissible quantum operation, meaning that
it is in theory possible to implement but we didn’t say how hard it is to perform such
a unitary. A unitary U on n qubits is represented by a 2n × 2n matrix so if we take
n = 100, we need 2200 complex numbers to specify U , which is the number of particles in
the universe.

In the classical setting, we decompose large function on n bits into elementary gates.
The most common set of gates is the set G = {NOT,AND,OR} which is universal meaning
that any classical function can be computed using only elements of this gate set, and the
running time of the algorithm is the number of gates used. We will use a similar model in
the quantum setting.

In the quantum setting, we need a set of elementary gates that will allow us to construct
all unitaries. It’s not possible to achieve this perfectly but there are set of elementary gates
that can perform this approximately. This is the Solovay-Kitaev theorem

Theorem 1.30 (Solovay-Kitaev Theorem). Take the family of gates G = {CNOT, H, Zπ/4}.
Any unitary U of dimension d can be approximated by applying O(d2 log4(1

ε)) gates from G
with accuracy ε. In other words, from the description of U , one can construct a sequence
G1, . . . , GN ∈ G with N = O(d2 log4(1

ε)) and

‖GN . . . G1 − U‖ ≤ ε,

where ‖GN . . . G1 − U‖ = max|ψ〉 ‖GN . . . G1 |ψ〉 − U |ψ〉‖ is the operator norm.

16

|0n〉 U U |0n〉 ⇒ |0n〉

CNOT
Z Rπ/8

≈ U |0n〉

CNOT
H Z

H
CNOT

Rπ/8

CNOT
Rπ/8

X H Z

Rπ/8 H

Figure 1.4: Any quantum unitary on n qubits can be approximately computed using a
circuit that consists of 1 and 2 qubit gates. However, this number of gates often grows
exponentially in n.

Corollary 1. Any 1 or 2 qubit gates can be approximated by applying O(log4(ε)) gates from
G with accuracy ε.

If we know how to implement the gates in G, then the running time of computing a
unitary U will be the number of 1 and 2 qubit gates in G needed to properly approximate
U . This definition depends on the gate set G which is to some extent unsatisfying. From
the above corollary, we know that any 1 and 2 qubit gate can be efficiently approximated
with a few gates from G. Therefore, we make the simplifying assumption that any 1 and
2-qubit gate takes time 1, which is the quantum gate model.

Definition 1.31 (The quantum gate model). In the quantum gate model, the quantum
running time of a unitary U is the amount of 1 and 2-qubit gates needed to apply U . The
running time of a single-qubit measurement in 1.

A first useful property is that if one can implement U using N one or two qubit gates
then one can implement U† with the same number of gates as follows: write U = UN . . . U1
where U1, . . . , UN are one or two qubit gates. This means U†1 , . . . , U

†
N are ale one or two

qubit gates and we have U∗ = U∗N . . . U
∗
1 .

1.4.2 Simulating classical circuits with quantum circuits

Reversible classical circuits

Classical circuits use NOT,AND,OR gates while quantum unitaries are reversible so it
is not clear whether quantum circuits are more powerful than classical circuits. We will
show that this is indeed the case. In order to do this, we define the Toffoli gate:

Definition 1.32. The Toffoli gate takes 3 input bits and outputs 3 bits, and does the
following:

Toffoli(x, y, z) = (x, y, z ⊕ (x ∧ y)).

The Toffoli gate is a reversible gate meaning that Toffoli−1 is well defined.

Proposition 1.33. Any classical circuit computing a function f(x) consisting of N gates in
the set {NOT,AND,OR} can be computed using O(N) Toffoli gates only.

17

U

]
CNOT

Z Rπ/8

CNOT
H Z

H
CNOT

Rπ/8

CNOT
Rπ/8

X H Z

Rπ/8 H

U†

]R†π/8 Z†

CNOT†
Z† H†

CNOT†
R†π/8

CNOT†
H†

R†π/8
CNOT†

Z† H† X†

H† R†π/8

Figure 1.5: Constructing U† from U . Just start from the end and reverse all the gates one
by one. U† has the same number of gates as U .

n m
x C f(x) ⇒

n

m

j

x

CRev

x

0m+j
f(x)
junk(x)

Figure 1.6: Any circuit C computing a function f with T gates can be transformed into
a reversible circuit CRev that consists only of O(T) Toffoli gates that computes f(x) by
preserving the input x, eventually with some junk state junk(x).

Simulating classical circuits with quantum circuits

The Toffoli gate can also be interpreted as a quantum unitary on 3 qubits, satisfying
Toffoli(|x, y, z〉) = |x, y, z ⊕ (x ∧ y)〉 for any x, y, z ∈ {0, 1}. Since the circuit CRev consists
only of Toffoli, and because Toffoli gates can also be interpreted as quantum unitaries on
3 qubits, we can directly transform CRev into a quantum unitary U such that

U(|x〉
∣∣0m+j〉) = |x〉 |f(x)〉 |junk(x)〉 .

This already shows that any function f that can be computed classically in time T can be
computed with a quantum computer in time O(T) so quantum computers are at least as
powerful as classical computers (up to the O(·) factor).

This is already interesting but we will improve this construction by removing the junk.

Proposition 1.34. For any function f : {0, 1}n → {0, 1}m that can be computed classically
with a circuit that runs in time T , there exists a quantum circuit on n + m qubits that
runs in time O(T) that can perform the unitary

Uf : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 .

where ⊕ here is the bitwise xor3. This construction will use auxiliary qubits.
3This means if y = y1 . . . ym and f(x) = z1 . . . , zm, y ⊕ f(x) = (y1 ⊕ z1) . . . (ym ⊕ zm).

18

|x〉

CRev C†Rev

|x〉

|y〉 |y ⊕ f(x)〉

∣∣0j〉 ∣∣0j〉

|0m〉 |0m〉

Figure 1.7: Construction Of from CRev.

Proof. We fix a function f : {0, 1}n → {0, 1}m for which we have a circuit C with T gates
computing f . We construct the reversible circuit Crev from C using Proposition 1.33 that
has O(T) Toffoli gates and uses n+m+j wires. We now give a construction Uf which is a
unitary on n+m qubits with j+m additional auxiliary qubits. We consider the following
procedure

1. On input |x〉n |y〉m |0〉j |0〉m, first swap the second and forth registers to get |x〉n |0〉m |0〉j |y〉m.

2. Apply CRev on the 3 first registers to get the state |x〉 |f(x)〉 |junk(x)〉 |y〉.

3. For i from 1 to m, apply a CNOT gate between the ith wire of the second register and
the ith wire of the forth register. We then have the state |x〉 |f(x)〉 |junk(x)〉 |y ⊕ f(x)〉.

4. Apply C†Rev on the three first registers to get the state |x〉 |0〉 |0〉 |y ⊕ f(x)〉.

5. Swap the second and forth register to get the state |x〉 |y ⊕ f(x)〉 |0〉 |0〉.

19

Chapter 2

First examples of interesting
quantum circuits

2.1 The Deutsch-Jozsa algorithm

We present here our first example of a quantum algorithm that performs better than
classical algorithms. It is extremely hard to prove in the usual model of computation
that a quantum algorithm performs better than all classical algorithms. However, such
statements are much easier to do in more specific models. We consider the following
problem

Input: A function f : {0, 1}n → {0, 1}.
Promise: f is either a constant function or a balanced function, meaning that |{x :
f(x) = 0}| = |{x : f(x) = 1}| = 2n−1.
Goal: Find in which of these 2 cases we are.

As we said, it is extremely hard to prove in the usual model of computation that a
quantum algorithm performs better than all classical algorithms. However, such statements
are much easier to do in more specific models. Here, we will work in the query complexity
model. Algorithms we consider will only have a black box access to f - quantum algorithm
will have access to Of .

Proposition 2.1. There exists a quantum algorithm that gives the correct answer with
probability 1 with a single quantum query.

Proof. We first give the circuit description of our algorithm and then analyze each step of
the computation.

20

|0n〉

H

Of

H

y

H H

H H

H H

|0〉 H Z |−〉

1. Start with the n+ 1-qubit state

|φ0〉 = |0n〉 |0〉 .

2. Apply H⊗n on the first n qubits and the unitary (ZH) on the last qubit.to obtain

|φ1〉 = |+n〉 |0〉 = 1√
2n

∑
x∈{0,1}n

|x〉 |−〉 .

3. Apply Of on the whole state to get

|φ2〉 = 1√
2n

∑
x∈{0,1}n

|x〉 1√
2

(
|f(x)〉 −

∣∣∣f(x)
〉)

= 1√
2n

∑
x∈{0,1}n

(−1)f(x) |x〉 |−〉 .

4. Apply H⊗n on the first n qubits. We get

|ψ3〉 = 1√
2n

∑
x∈{0,1}n

(−1)f(x)

 1√
2n

∑
y∈{0,1}n

(−1)x·y |y〉

 |−〉
= 1

2n
∑

y∈{0,1}n

 ∑
x∈{0,1}n

(−1)f(x)+x·y

 |y〉 |−〉
5. Measure the n first qubits in the computational basis and get some outcome y. If
y = 0n, output “f is constant”. Otherwise, output “f is balanced”.

Let’s now analyze the correctness of our algorithm. Let P0 the probability that y = 0n.
Notice that for any x ∈ {0, 1}n, x·0n = 0 hence we can write

P0 =

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

(−1)f(x)

∣∣∣∣∣∣
2

= 1
22n

∣∣∣∣∣∣
∑

x∈{0,1}n

(−1)f(x)

∣∣∣∣∣∣
2

.

We distinguish 2 cases:

21

1. If f is a constant function, there is a b ∈ {0, 1} st. ∀x ∈ {0, 1}n, f(x) = b. In this

case, we have P0 = 1
22n

∣∣2n(−1)b
∣∣2 = 1 and our algorithm gives the correct answer

wp. 1.

2. If f is balanced, we can write

P0 = 1
22n

∣∣∣∣∣∣
∑

x∈{0,1}n

(−1)f(x)

∣∣∣∣∣∣
2

= 1
22n

∣∣∣∣∣∣
∑

x∈{0,1}n:f(x)=0

1−
∑

x∈{0,1}n:f(x)=1

1

∣∣∣∣∣∣
2

= 0.

and our algorithm gives the correct answer wp. 1.

2.2 Simon’s problem

Simon’s problem is defined as follows

Input: A function f : {0, 1}n → {0, 1}n.
Promise: ∃s = (s1, . . . , sn) ∈ {0, 1}n, (f(x) = f(y)⇔ (x = y) ∨ (x = y ⊕ s)).
Goal: Find s.

From the promise, we have that f is 2-to-1 meaning that for any y ∈ Im(f), there
exists exactly 2 values x0, x1 ∈ {0, 1}n, st. f(x0) = f(x1) = y. Also, this implies that
half of the strings y ∈ {0, 1}n are not in Im(f). For each y ∈ Im(f), let xy be one of the
preimages of y, so f(xy) = f(xy ⊕ s) = y.

We perform the following algorithm:

1. Start from the 2n qubit state, with 2 registers of n qubits.

|ψ0〉 = |0n〉 |0n〉 .

2. Apply H⊗n on the first n qubits to get

|ψ1〉 = |+n〉 |0n〉 = 1√
2n

∑
x∈{0,1}n

|x〉 |0n〉 .

3. Apply Of on the state to get

|ψ2〉 = 1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉 = 1√
|Im(f)|

∑
y∈Im(f)

1√
2

(|xy〉+ |xy ⊕ s〉) |y〉 .

4. Measure the second register and obtain some value y ∈ Im(f). The resulting state
on the first register is

|ψ4(y)〉 = 1√
2

(|xy〉+ |xy ⊕ s〉) .

22

5. Apply H⊗n on the first register to get

|ψ5(y)〉 = 1√
2n

∑
J∈{0,1}n

(
1√
2

(−1)xy ·J + 1√
2

(−1)(xy⊕s)·J
)
|J〉 .

Now, if s · J = 0, we have
(

1√
2 (−1)xy·J + 1√

2 (−1)(xy⊕s)·J
)

=
√

2(−1)xy ·J and if

s·J = 1, we have
(

1√
2 (−1)xy ·J + 1√

2 (−1)(xy⊕s)·J
)

= 0. Therefore, we can write

|ψ5(y)〉 =
√

2
2n

∑
J∈{0,1}n

s·J=0

(−1)xy ·J |J〉 .

6. Measure this state in the computational basis. You get a random J satisfying J ·s =
0.

This algorithm gives us J = (j1, . . . , jn) satisfying J ·s = 0 meaning
∑n
i=1 jisi = 0.

We repeat the above algorithm M times (where M will be determined later), to get M
random values J1, . . . , JM satisfying Jk ·s = 0 for k ∈ [M]. If we write Jki = (jk1 , . . . , jkn)
for k ∈ [M] we have the following system:

j1
1s1 ⊕ j1

2s2 ⊕ . . . ⊕ j1
nsn = 0

j2
1s1 ⊕ j2

2s2 ⊕ . . . ⊕ j2
nsn = 0

...
...

...
...

...
...

...
...

jM1 s1 ⊕ jM2 s2 ⊕ . . . ⊕ jMn sn = 0

Now, the idea is that by taking M large enough, we have enough equations to find s using
Gaussian elimination. We have to take M such that the only solutions to the system are
0n and s. This happens if we can extract n − 1 linearly independent equations, which
happens with overwhelming probability if we take M = 3n. Then, Gaussian elimination
can be done in time poly(M).

2.3 Bell inequalities and the CHSH game

2.3.1 The setting

We consider 2 parties, Alice and Bob that will play a cooperative game, called the CHSH
game, which has the following rules:

� Alice and Bob are isolated in 2 different locations and they cannot communicate
with each other. There is a referee R that can communicate with both of them.

� Alice receives a uniformly random bit x ∈ {0, 1} from the referee and Bob receives
a uniformly random bit y ∈ {0, 1}. Alice sends back to the referee a bit a and Bob
sends back to the referee a bit b.

� Alice and Bob win the game iff.. a⊕ b = x∧ y, which can be checked by the referee.

23

We won’t specifically discuss how we isolate Alice and Bob, but this can be done for
example by putting them in Faraday cages. This ensures that Alice’s answer is independent
of y and that Bob’s answer is independent of x.

Proposition 2.2. For any classical strategy Alice and Bob can win the CHSH game with
probability at most 3

4 .

Proof. Consider a strategy for Alice and Bob for this game. Without loss of generality,
this strategy can be randomized. This means for example Alice’s strategy can be described
as follows: generate a string rA of random bits of size and output a = fA(x, rA) for some
function fA. Similarly, Bob’s strategy can be described as follows: generate a string rB of
random bits and output b = fB(x, rB) for some function fB . We have

P = Pr[Alice and Bob win the game] = ErA,rB

1
4

∑
x,y∈{0,1}

((fA(x, rA)⊕ fB(y, rB)) == x ∧ y)

 .
where ((fA(x, rA)⊕ fB(y, rB)) == x ∧ y) is a number which is equal to 1 if ((fA(x, rA)⊕ fB(y, rB)) = x ∧ y)
and 0 otherwise. The expected value is over the randomness rA, rB of Alice and Bob. First
notice that

P ≤ max
rA,rB

1
4

∑
x,y∈{0,1}

((fA(x, rA)⊕ fB(y, rB)) == x ∧ y)

 .
This means in particular that for any probabilistic strategy for Alice and Bob, there is a
deterministic strategy that performs at least as well. Let r̃A, r̃B such that

max
rA,rB

1
4

∑
x,y∈{0,1}

((fA(x, rA)⊕ fB(y, rB)) == x ∧ y)

 =

1
4

∑
x,y∈{0,1}

((fA(x, r̃A)⊕ fB(y, r̃B)) == x ∧ y)

 .
We also define functions f̃A, f̃B such that f̃A(x) = fA(x, r̃A) and f̃B(y) = fB(y, r̃B). This
means we can write

P ≤ 1
4

 ∑
x,y∈{0,1}

((
f̃A(x)⊕ f̃B(y)

)
== x ∧ y

) .

We will now show that P ≤ 3
4 . Assume by contradiction that for each x, y ∈ {0, 1},

f̃A(x)⊕ f̃B(y) = x ∧ y. This means we have

f̃A(0)⊕ f̃B(0) = 0

f̃A(0)⊕ f̃B(1) = 0

f̃A(1)⊕ f̃B(0) = 0

f̃A(1)⊕ f̃B(1) = 1

If we take the ⊕ of these 4 equations, we obtain 0 = 1 which is a contradiction. This

means there exists x, y ∈ {0, 1}, such that f̃A(x) ⊕ f̃B(y) 6= x ∧ y, from which we can
conclude that P = Pr[Alice and Bob win the game] ≤ 3

4 , and this holds for any classical
strategy.

24

If Alice and Bob share an entangled state then they have a strategy that will win
the above game with probability > 3

4 . This truly amazing since we said that sharing
an entangled state doesn’t allow the players to communicate. This will be true: this
entangled strategy will not reveal any information about their respective inputs but will
allow them to jointly coordinate their output depending on their inputs. This was first
observed by Bell [Bel64] in a more mathematical language and then, this game formulation
was discovered by Clauser, Horne, Shimony and Holt [CHSH69] - hence the name CHSH
game.

Theorem 2.3. There exists an entangled strategy that allows Alice and Bob to win the
CHSH game with probability cos2(π/8) ≈ 85, 35%.

Proof. We assume Alice and Bob share the entangled state∣∣Φ+〉
AB

= 1√
2

(|00〉+ |11〉)AB = 1√
2

(|0〉A |0〉B + |1〉A |1〉B) = 1√
2

(|+〉A |+〉B + |−〉A |−〉B) .

Where recall that |+〉 = 1√
2 (|0〉+ |1〉) and |−〉 = 1√

2 (|0〉 − |1〉). We added a subscript on

the qubits to describe who has each qubit. Alice has the qubit with the subscript A and
Bob has the qubit with the subscript B.

We consider the following strategy for Alice and Bob. We define

|v〉 = cos(π8) |0〉+ sin(π/8) |1〉∣∣v⊥〉 = sin(π/8) |0〉 − cos(π/8) |1〉
|w〉 = cos(π/8) |0〉 − sin(π/8) |1〉∣∣w⊥〉 = sin(π/8) |0〉+ cos(π/8) |1〉

Notice that |v〉⊥
∣∣v⊥〉 and |w〉⊥

∣∣w⊥〉. The different equalities above can be checked. For
example, for the first one, we have

cos(π/8) |+〉+ sin(π/8) |−〉 = cos(π/8)√
2

(|0〉+ |1〉) + sin(π/8)√
2

(|0〉 − |1〉)

= (cos(π/8) + sin(π/8))√
2

|0〉+ (cos(π/8)− sin(π/8))√
2

|1〉

In order to conclude, we can check that

(cos(π/8) + sin(π/8))√
2

= cos(π/8) and
(cos(π/8)− sin(π/8))√

2
= sin(π/8).

The other inequalities are proven in a similar fashion.

� If Alice receives x = 0, she measures her qubit in the basis {|0〉 , |1〉} and outputs
the outcome of this measurement. If she receives x = 1, she measures her qubit in
the basis {|+〉 , |−〉} and outputs the outcome.

� If Bob receives y = 0, he receives his qubit in the basis {|v〉 ,
∣∣v⊥〉} and outputs the

outcome of this measurement. If he receives y = 1, he receives his qubit in the basis
{|w〉 ,

∣∣w⊥〉} and outputs the outcome of this measurement.

25

We now show that for any inputs x, y’ Alice and Bob receive, their outputs a, b will satisfy
a⊕ b = x ∧ y with probability cos2(π/8). We distinguish the 4 cases.

Using the characterization of partial measurements from Section 1.2.2, we have that

� If x = 0 then Alice measures her qubit in the basis {|0〉 , |1〉}.

– Alice outputs 0 wp. 1
2 and the state collapses to |0〉A |0〉B . In particular, Bob

now has the qubit |0〉.
– Alice outputs 1 wp. 1

2 and the state collapses to |1〉A |1〉B . Bob now has the
qubit |1〉.

� If x = 1 then Alice measures her qubit in the basis {|+〉 , |−〉}.

– Alice outputs 0 wp. 1
2 and the state collapses to |+〉A |+〉B . Bob now has the

qubit |+〉.
– Alice outputs 1 wp. 1

2 and the state collapses to |−〉A |−〉B . Bob now has the
qubit |−〉.

Then we consider Bob’s strategy. Depending on Alice’s input/output pair, Bob has
one of the 4 state |0〉 , |1〉 , |+〉 , |−〉.

� If y = 0 then Bob measures his qubit in the basis {|v〉 ,
∣∣v⊥〉}.

– If x = 0 and a = 0. Bob has the state |0〉 and outputs b = 0 with probability
| 〈0|v〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 0 and a = 1. Bob has the state |1〉 and outputs b = 1 with probability
|
〈
1
∣∣v⊥〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 1 and a = 0. Bob has the state |+〉 and outputs b = 0 with probability
| 〈+|v〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 1 and a = 1. Bob has the state |−〉 and outputs b = 1 with probability
|
〈
−
∣∣v⊥〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

� If y = 1 then Bob measures his qubit in the basis {|w〉 ,
∣∣w⊥〉}.

– If x = 0 and a = 0. Bob has the state |0〉 and outputs b = 0 with probability
| 〈0|w〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 0 and a = 1. Bob has the state |1〉 and outputs b = 1 with probability
|
〈
1
∣∣w⊥〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 1 and a = 0. Bob has the state |+〉 and outputs b = 0 with probability
| 〈+|w〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

– If x = 1 and a = 1. Bob has the state |−〉 and outputs b = 1 with probability
|
〈
−
∣∣w⊥〉 |2 = cos2(π/8) in which case we have a⊕ b = x ∧ y.

This shows that for any x, y and actually for any a that Alice outputs with this strategy,
Bob will output b such that a⊕ b = x ∧ y wp. cos2(π/8). We conclude that this strategy
wins the CHSH game wp. cos2(π/8).

26

Bibliography

[BB84] Bennett and Brassard. Quantum cryptography: Public key distribution and
coin tossing. in Proc. Of IEEE Inter. Conf. on Computer Systems and
Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics
Engineers, New York, 1984.

[Bel64] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika,
1:195–200, Nov 1964.

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt.
Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.,
23:880–884, Oct 1969.

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer. Proceedings of the Royal Society of London
Ser. A, A400:97–117, 1985.

[Fey82] Richard Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6&7):467–488, 1982.

[Gro97] Lov K. Grover. Quantum mechanics helps in searching for a needle in a
haystack, 1997.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In IEEE Symposium on Foundations of Computer Science, pages
124–134, 1994.

27

	The formalism of quantum computing and quantum circuits
	The Qubit
	Vector spaces and definitions
	Unitary operations
	Measurements

	Two qubits
	Definition, tensor product and entanglement
	Measurements on 2 qubits

	n-qubit systems, unitaries and projective measurements
	Quantum circuits
	The Solovay-Kitaev theorem and the gate model.
	Simulating classical circuits with quantum circuits

	First examples of interesting quantum circuits
	The Deutsch-Jozsa algorithm
	Simon's problem
	Bell inequalities and the CHSH game
	The setting

