Exercise sheet 1

Exercise 1. Let $|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle$. Compute $\rho_A = Tr_B |\psi_{AB}\rangle \langle \psi_{AB}|$ and $\rho_B = Tr_A |\psi_{AB}\rangle \langle \psi_{AB}|$. Write the result in matrix form.

Exercise 2.

1. Consider any $\alpha, \beta \in \mathbb{R}$ with $\alpha^2 + \beta^2 = 1$, as well as 2 states $|\psi_0\rangle = \alpha |0\rangle + \beta |1\rangle$ and $|\psi_1\rangle = \beta |0\rangle - \alpha |1\rangle$. Show that:

$$\frac{1}{2}\left(|\psi_0\rangle\langle\psi_0|+|\psi_1\rangle\langle\psi_1|\right) = \begin{pmatrix}1/2 & 0\\ 0 & 1/2\end{pmatrix}$$

2. Show that the state $\rho = a|0\rangle\langle 0| + (1-a)|1\rangle\langle 1|$ with 0 < a < 1 admits an infinite amount of descriptions of the form $\sum_i p_i |e_i\rangle\langle e_i|$. You can have more than 2 terms in the sum, but the p_i must remain non-negative.

Exercise 3. We have 2 states ρ_0, ρ_1 . Bob is given ρ_b for a randomly chosen $b \in \{0, 1\}$ and his goal is to guess b. Give the optimal measurement as well as his probability of success for the following states.

1. $\rho_0 = |0\rangle \langle 0|, \ \rho_1 = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|).$

2.
$$\rho_0 = |0\rangle \langle 0|, \ \rho_1 = |+\rangle \langle +|.$$

3. $\rho_0 = \frac{2}{3} |0\rangle \langle 0| + \frac{1}{3} |1\rangle \langle 1|, \rho_1 = |+\rangle \langle +|$. In this case, give only the success probability and not the optimal measurement.

Exercise 4. We consider the following bit commitment between Alice and Bob, with a parameter α . In order to commit to a bit b, Alice chooses 2 random bits c_1, c_2 st. $c_1 \oplus c_2 = b$, creates

$$\begin{aligned} \left| \psi_{A_1B_1}^1(c_1) \right\rangle &= \sqrt{\alpha} \left| c_1 \right\rangle \left| c_1 \right\rangle + \sqrt{1 - \alpha} \left| \overline{c_1} \right\rangle \left| \overline{c_1} \right\rangle \\ \left| \psi_{A_2B_2}^2(c_2) \right\rangle &= \sqrt{\alpha} \left| c_2 \right\rangle \left| c_2 \right\rangle + \sqrt{1 - \alpha} \left| \overline{c_2} \right\rangle \left| \overline{c_2} \right\rangle. \end{aligned}$$

and sends registers B_1, B_2 to Bob. At the reveal phase, Alice reveals c_1, c_2 , and the registers A_1, A_2 . Bob checks that he has the state $|\psi^1_{A_1B_1}(c_1)\rangle$ in registers A_1, B_1 and the state $|\psi^2_{A_2B_2}(c_2)\rangle$ in registers A_2, B_2 .

1. Let $\rho_z = Tr_{A_1} |\psi^1_{A_1,B_1}(z)\rangle \langle \psi^1_{A_1,B_1}(z)| = Tr_{A_2} |\psi^2_{A_2,B_2}(z)\rangle \langle \psi^2_{A_2,B_2}(z)|$. Give the expression of ρ_0 and ρ_1 as a function of α .

- 2. Write a description of the following states: $\rho_0 \otimes \rho_0$, $\rho_0 \otimes \rho_1$, $\rho_1 \otimes \rho_0$, $\rho_1 \otimes \rho_1$.
- 3. Let ξ_b be the state that Bob receives from Alice after the commit phase. Show that

$$\xi_{0} = \frac{1}{2} (\alpha^{2} + (1 - \alpha)^{2}) (|00\rangle\langle00| + |11\rangle\langle11|) + (\alpha(1 - \alpha)) (|01\rangle\langle01| + |10\rangle\langle10|)$$

$$\xi_{1} = \frac{1}{2} (\alpha^{2} + (1 - \alpha)^{2}) (|01\rangle\langle01| + |10\rangle\langle10|) + (\alpha(1 - \alpha)) (|00\rangle\langle00| + |11\rangle\langle11|)$$

- 4. Assume Bob wants to guess b from ξ_b after the commit phase. What is his optimal probability P_B^* of guessing b? Give a measurement that achieves this optimal probability.
- 5. Recall that Alice's optimal cheating probability is $P_A^* = \frac{1}{2} + \frac{1}{2}F(\xi_0, \xi_1)$. Compute this cheating probability. For what value of α do we have $P_A^* = P_B^*$?
- 6. Find a strategy for Alice that allows her to reveal both b = 0 and b = 1, each with probability P_A^*