Exercise sheet 3

Notations. Every logarithm is in base 2.

Exercise 1. Consider 2 discrete probability function $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_m)$. So we have $p_i \ge 0, \sum_i p_i = 1$, and $q_i \ge 0, \sum_i q_i = 1$. Consider the direct product distribution $r = (r_{1,1}, \ldots, r_{n,m})$ where $r_{i,j} = p_i q_j$. Show that

$$H(r) = H(p) + H(q).$$

Solution: We write

$$H(r) = \sum_{i,j} -r_{i,j} \log_2(r_{i,j})$$

= $\sum_{i,j} -r_{i,j} (\log_2(p_i) + \log_2(q_j))$
= $-\sum_{i,j} r_{ij} \log_2(p_i) - \sum_{i,j} r_{ij} \log_2(q_j)$
= $-\sum_i p_i (\sum_j q_j) \log_2(p_i) - \sum_j q_j (\sum_i p_i) \log_2(q_j)$
= $-\sum_i p_i \log_2(p_i) - \sum_j q_j \log_2(q_j) = H(p) + H(q)$

Exercise 2. For each state $|\psi_{AB}\rangle$, give the reduced density matrices $\rho_A = tr_B(|\psi_{AB}\rangle\langle\psi_{AB}|)$ and $\rho_B = tr_A(|\psi_{AB}\rangle\langle\psi_{AB}|)$. You can write your answers in Dirac's "ket, bra" notation or in matrix form. Compute also $H(\rho_A)$ in each case. You can use $\log_2(3) \approx 1.585$.

1.
$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}} (|0-\rangle + |1+\rangle)$$
.
2. $|\psi_{AB}\rangle = \frac{1}{2} (|00\rangle - |01\rangle - |10\rangle + |11\rangle)$.

3.
$$|\psi_{AB}\rangle = \sqrt{\frac{3}{8}} |00\rangle + \sqrt{\frac{3}{8}} |01\rangle - \sqrt{\frac{1}{8}} |10\rangle + \sqrt{\frac{1}{8}} |11\rangle.$$

Solution:

1.
$$\rho_A = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|). \ \rho_B = \frac{1}{2} (|-\rangle \langle -|+|+\rangle \langle +|) = \frac{1}{2} (|0\rangle \langle 0|+|1\rangle \langle 1|). \ S(\rho_A) = 1.$$

2.
$$|\psi_{AB}\rangle = |-\rangle |-\rangle$$
 so $\rho_A = \rho_B = |-\rangle \langle -|$. $S(\rho_A) = 0$.

3. We can rewrite
$$|\psi_{AB}\rangle = \sqrt{\frac{3}{4}} (|0\rangle |+\rangle) - \sqrt{\frac{1}{4}} (|1\rangle |-\rangle)$$
. So $\rho_A = \frac{3}{4} |0\rangle \langle 0| + \frac{1}{4} |1\rangle \langle 1|$
and $\rho_B = \frac{3}{4} |-\rangle \langle -| + \frac{1}{4} |+\rangle \langle +|$.

$$S(\rho_A) = \frac{3}{4}\log_2(4/3) + \frac{1}{4}\log_2(4) = \frac{3}{4}\left(2 - \log_2(3)\right) + \frac{1}{4}2 = 2 - \frac{3\log_2(3)}{4} \approx 0.811.$$

Exercise 3. Consider 2 quantum mixed states ρ and σ which are orthogonal. This means we can write ρ and σ in their spectral decomposition

$$\rho = \sum_{i} p_{i} |e_{i}\rangle \langle e_{i}|$$
$$\sigma = \sum_{j} q_{j} |f_{j}\rangle \langle f_{j}|$$

where each $p_i, q_j > 0$ and $\sum_i p_i = \sum_j q_j = 1$, and the orthogonality constraint gives $\forall i, j \ \langle e_i | f_j \rangle = 0$ (or equivalently $|e_i \rangle \perp |f_j \rangle$). Let also $I_{\rho} = \sum_i |e_i \rangle \langle e_i|$ and $I_{\sigma} = \sum_j |f_j \rangle \langle f_j|$

- 1. Show that $\rho \cdot \log(\sigma) = \rho \cdot I_{\sigma} = \mathbf{0}$ where **0** is the all 0 matrix.
- 2. Let $\xi = r\rho + (1-r)\sigma$ with $r \in [0,1]$. Show that $\log(\xi) = \log(r\rho) + \log((1-r)\sigma)$.
- 3. Let $r \ge 0$. Show that $\log(r\rho) = \log(\rho) + \log(r)I_{\rho}$.
- 4. Let $\xi = r\rho + (1 r)\sigma$ with $r \in [0, 1]$. Show that

$$H(\xi) = H_2(r) + rH(\rho) + (1-r)H(\sigma)$$

where
$$H_2(r) = -r \log(r) - (1-r) \log(1-r)$$
.

Solution:

1. We write

$$\rho \cdot \log(\sigma) = \sum_{i} p_{i} |e_{i}\rangle \langle e_{i}| \cdot \sum_{j} \log(q_{j}) |f_{j}\rangle \langle f_{j}| = \sum_{i,j} p_{i} \log(q_{j}) |e_{i}\rangle \langle e_{i}|f_{j}\rangle \langle f_{j}| = \mathbf{0}.$$

since each $\langle e_i | f_j \rangle = 0$. The proof $\rho \cdot I_{\sigma} = \mathbf{0}$ follows the same line.

2. When we write $\xi = \sum_{i} r p_i |e_i\rangle \langle e_i| + \sum_{j} (1-r)q_j |e_j\rangle \langle e_j|$ this is actually the spectral decomposition of ξ . Indeed the $|e_i\rangle$ are pairwise orthogonal because ρ is in spectral decomposition, the $|f_j\rangle$ are pairwise orthogonal because σ is in spectral decomposition and we also have each $|e_i\rangle \perp |f_j\rangle$ because of the orthogonality constraint. So we have

$$\log(\xi) = \sum_{i} \log(rp_i) |e_i\rangle \langle e_i| + \sum_{j} \log((1-r)q_j) |e_j\rangle \langle e_j| = \log(r\rho) + \log((1-r)\sigma)$$

3. We write

$$\log(r\rho) = \sum_{i} \log(rp_i) |e_i\rangle \langle e_i| = \sum_{i} (\log(r) + \log(p_i)) |e_i\rangle \langle e_i| = \log(r)I_\rho + \log(\rho).$$

4. We have

$$H(\xi) = -Tr(\xi \log(\xi)) = Tr(\xi \log(r\rho + (1 - r)\sigma)) = Tr(\xi \log(r\rho) + \xi \log((1 - r)\sigma))$$

= $-Tr(\xi(\log(r)I_{\rho} + \log(\rho)) + \xi(\log(1 - r)I_{\sigma} + \log(\sigma)))$

Then, we write

$$\xi \left(\log(r)I_{\rho} + \log(\rho) \right) = \left(r\rho + (1-r)\sigma \right) \left(\log(r)I_{\rho} + \log(\rho) \right)$$
$$= r \log(r)\rho + r\rho \log(\rho)$$

where we use the previous questions as well as $\rho I_{\rho} = \rho$. Similarly, we obtain

$$\xi(\log(1-r)I_{\sigma} + \log(\sigma)) = \left((1-r)\log(1-r)\right)\sigma + (1-r)\sigma\log(\sigma).$$

Putting everything together, we obtain

$$H(\xi) = -Tr (r \log(r)\rho + r\rho \log(\rho) + ((1-r)\log(1-r))\sigma + (1-r)\sigma \log(\sigma))$$

= $-r \log(r) + rH(\rho) - (1-r)\log(1-r) + (1-r)\log(\sigma)$
= $H_2(r) + rH(\rho) + (1-r)\log(\sigma)$

where we used $Tr(\rho) = Tr(\sigma) = 1$.

Exercise 4. Let $\sigma_{AB} = r|0\rangle\langle 0|_A \otimes \rho_B^0 + (1-r)|1\rangle\langle 1|_A \otimes \rho_B^1$ be a quantum mixed state on 2 registers. Using the previous question, show that

$$I(A:B)_{\sigma} = H(r\rho_B^0 + (1-r)\rho_B^1) - \left(rH(\rho_B^0) + (1-r)H(\rho_B^1)\right)$$

Find matrices ρ_B^0, ρ_B^1 st. $I(A:B)_{\sigma} = 0$. Find others st. $I(A:B)_{\sigma} = H_2(r)$.

Solution: Let $\sigma_A = Tr_B(\sigma_{AB})$ and $\sigma_B = Tr_A(\sigma_{AB})$. We write

$$I(A:B)_{\sigma} = H(\sigma_A) + H(\sigma_B) - H(\sigma)$$

We have $\sigma_1 = r|0\rangle\langle 0| + (1-r)|1\rangle\langle 1|$ so $H(\sigma_1) = H_2(r)$. Then, $\sigma_2 = r\rho^0 + (1-r)\rho^1$. Finally, we have $\sigma = r|0\rangle\langle 0|\rho^0 + (1-r)|1\rangle\langle 1|\rho^1$. We have $|0\rangle\langle 0|\rho^0 \perp |1\rangle\langle 1|\rho^1$ (for any ρ^0, ρ^1 since they are orthogonal already from the first register). From the previous exercise, we therefore have

$$H(\sigma) = H_2(r) + rH(|0\rangle\langle 0|\rho^0) + (1-r)H(|1\rangle\langle 1|\rho^1) = H_2(r) + rH(\rho^0) + (1-r)H(\rho^1).$$

Putting everything together, we have indeed

$$I(A:B)_{\sigma} = H_2(r) + H(r\rho^0 + (1-r)\rho^1) - \left(H_2(r) + rH(\rho^0) + (1-r)H(\rho^1)\right)$$

which gives the desired result. Take $\rho^0 = \rho^1 = |0\rangle\langle 0|$ to have $I(A:B)_{\sigma} = 0$. Take $\rho^i = |i\rangle\langle i|$ to have $I(A:B) = H_2(r)$.