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Abstract

Wireless sensor networks are increasingly employed to
develop sophisticated applications where heterogeneous
nodes are deployed, and multiple parallel activities must be
performed. Therefore, application developers require the
ability to partition the system based on the node charac-
teristics, and specify complex interactions among different
partitions.

Existing programming abstractions for sensor networks
tackled this problem by providing a notion of scoping.
However, this rarely emerges as a first-class programming
construct, hence limiting its applicability. To address this
issue, in this paper we present a flexible notion of scoping in
the context of a sensor network macroprogramming frame-
work. Our approach enables the specification of complex
interactions among system partitions, thus greatly simplify-
ing the development process. Moreover, this is not detri-
mental to performance: our approach results reasonably
close to an optimal solution computed with global system
knowledge, while exhibiting a 70% gain w.r.t. baseline so-
lutions.

1. Introduction

Early deployments of wireless sensor networks (WSNs)
focused on a single, system-wide goal, and featured fairly
simple architectures. For instance, habitat monitoring [7]
can be implemented using mostly homogeneous nodes, each
running the same application code. In these scenarios, de-
velopers are required to describe simple patterns of interac-
tions, e.g., that of sensing and reporting a physical reading.

Recent technological advances and the consequent ad-
vent of more powerful sensor nodes are, however, enabling
the use of WSNis in increasingly sophisticated settings, from
smart spaces [19] to monitoring and control in buildings [4].
These applications often involve heterogeneous nodes [3]
equipped with actuators to influence the environment, and
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Figure 1. Traffic management scenario.

their ultimate goal is usually obtained by composing multi-
ple, collaborating activities.

Reference Scenario. Consider, for instance, a highway
traffic monitoring and control application, a field where
WSNs have gained increasing attention [9]. Various tech-
niques exist to influence the vehicle movements (e.g., to
minimize pollution and fuel consumption), that use solu-
tions such as speed signaling and ramp metering. These sys-
tems are often logically divided into disjoint sectors [13],
with each sector usually being controlled depending on the
current status of the same and neighboring sectors.

A sample highway scenario is depicted in Figure 1,
where a sector is identified by a single ramp leading to the
highway, i.e., it spans the portion of highway from a ramp
to the following. The system has five main components: i)
speed sensors installed on the highway lanes to measure
and report the speeds of vehicles, ii) presence sensors in-
stalled on the highway ramps to report the presence of ve-
hicles, iii) speed limit displays installed one per highway
sector to inform of the recommended speed limit, iv) ramp
signals installed one per highway ramp to allow or disallow
cars onto the highway, and v) forwarding nodes installed
on the road side at regular intervals to enable wireless com-
munication between the various nodes.

Figure 2 illustrates, from a high-level perspective, the
various stages of data processing in the application. Data is
collected from the sensing devices and processed to derive
aggregate measures —the average speed of vehicles in a
highway sector or the average queue length on a ramp. This
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Figure 2. Data processing in traffic manage-
ment.

information is fed as input to an algorithm determining the
actions to achieve the system objectives, e.g., maximize the
flow of vehicles on the highway. These actions are then
communicated to the ramp signals and speed limit displays.
The specific algorithms employed depend on the goals and
metrics of interests.

Need for Scoping. As illustrated in Figure 2, multiple con-
current activities must be performed to achieve the overall
application goal, in our case, regulating the vehicles’ speed
and access to the highway. Each of these activities can be
decomposed into several, inter-dependent steps where the
outputs of one step are fed as input to the following one.
Since nodes have different capabilities, each such step must
be ultimately mapped to a different system partition that in-
cludes only nodes with specific characteristics. As a result,
each processing step can be regarded as mapping the in-
puts obtained from a specific subset of nodes to a differ-
ent subset of nodes. Therefore, the programmer must not
only identify the different scopes based on the application
requirements, but, more importantly, express non-trivial in-
teractions among them.

Scoping in the State of the Art. Most of the existing WSN
programming frameworks provide little or no support for
scoping. For instance, Hood [23] is a node-level program-
ming model that provides the ability to identify subsets of
nodes in a physical neighborhood using application-defined
filters. The interactions are, however, limited to 1-hop com-
munication and a many-to-one pattern. These features are
insufficient for the applications we target, where the nodes
in a scope may not be in range of each other. Abstract Re-
gions [22] is another node-level solution where a subset of
nodes share data using a tuple space-like communication
model. However, the definition of the membership of nodes
in a region is hard-wired in the region run-time layer. There-
fore, a different implementation is needed for each possible
region the developer may require. This poses a considerable

burden on the programmer.

In [6], the authors propose a language and algorithms to
support generic role assignment in WSNs. In a sense, they
also identify subsets of nodes by imposing certain roles to
nodes so that some specified requirements are met. Besides
this, however, there is no support to express interactions
among subsets of nodes based on the roles assigned. In En-
viroSuite [11], contexts are defined with conditional state-
ments to create a mapping between software objects and
real-world elements, e.g., a moving target. Contexts deter-
mine a scope including a set of physically connected nodes
with no intermediate hops outside the partition. Albeit suf-
ficient for applications exhibiting spatial locality, such no-
tion cannot be used to address, e.g., a set of geographically
sparse actuators, as in our reference application.

Differently from traditional node-level programming, in
macroprogramming developers reason at a high level of ab-
straction focusing on the system as a whole instead of sin-
gle nodes. A dedicated compiler takes care of translating
the high-level specification to node-level code. As exam-
ple, TinyDB [12] offers a database interface to WSNs where
users submit queries specified with a dialect of SQL. A no-
tion of query scoping is present whereby queries are not
delivered to nodes that cannot provide useful data. How-
ever, this does not emerge at the programming level, as the
span of a query is ultimately dictated by the current sensor
readings, and not by application-specified requirements.

The work in [17] targets shared, multi-user sensor net-
works, and exports a strongly-typed, functional language to
express processing. Sensors are named via URI relative to
the host they are connected to. Still, programmers are not
provided with dedicated constructs to specify interactions
among logically-defined system partitions, e.g., to direct a
given output from a highway sector to the adjacent ones.

Kairos [8] proposes a macroprogramming model in-
spired by parallel architectures. Developers express the ap-
plication behavior by writing or reading variables at nodes,
iterating on the 1-hop neighbors, and addressing arbitrary
nodes. Regiment [16] is a functional macroprogramming
language based on the notion of region stream: a spatially
distributed, time-varying collection of node states. These
are taken as input to functions used to express the applica-
tion processing. In both cases, no generic construct is pro-
vided to express non-trivial interactions among subsets of
nodes.

In conclusion, most of the existing approaches target
node-level programming where developers still handle low-
level aspects, focus on specific classes of applications [11],
or do not provide scoping as a first-class programming con-
struct [12]. These characteristics drastically limit their ex-
pressive power, and therefore their applicability.

Contributions of this paper. To address the above issues,
in this paper we make the following contributions:



e Programming Constructs for Scoping in Macropro-
gramming. In Section 3 we illustrate how the addition
of a few constructs to an existing macroprogramming
model enables the specification of complex interac-
tions among application-defined scopes. The addition
of scoping to macroprogramming provides application
developers with a logical layer on top of the underlying
physical system, abstracting away the physical loca-
tion of data. This greatly simplifies the programming
activity, thus speeding up the development process. To
illustrate our ideas, we enable scope-based interactions
in ATaG [1], a macroprogramming framework. For the
sake of completeness, the salient features of ATaG are
summarized in Section 2. Nonetheless, our techniques
can, in principle, be incorporated also in alternative
macroprogramming approaches.

e Compiler and Run-time Support for Scoping. We
demonstrate the feasibility of our approach by devel-
oping a complete development framework in support
of the resulting programming model. In this respect,
Section 4 illustrates the compilation process used to
map the new macroprogramming constructs to the API
provided by a dedicated, node-level run-time. Next,
Section 5 discusses code metrics gathered on the im-
plementation of our reference application, as well as
simulation results obtained by running the actual code
resulting from the compilation process. Our results
show that the ease of programming brought by our ap-
proach does not come at the cost of degraded system
performance. These present significant improvements
w.r.t baseline solutions, and scalability properties sim-
ilar to optimal solutions computed with global system
knowledge.

This paper builds upon our previous work in sensor net-
work macroprogramming [1], briefly summarized in Sec-
tion 2. Nevertheless, the integration of scoping into the
ATaG language is achieved through novel programming
constructs, which yield an expressive power much higher
than our previous work. Furthermore, we demonstrate the
practical feasibility of our approach by developing a dedi-
cated compiler and run-time support, and by quantitatively
assessing the system performance through software metrics
and simulation results.

2. The ATaG Programming Model

For the sake of completeness, we briefly summarize
the salient features of ATaG. For additional details, the
reader is referred to [1]. The Abstract Task Graph [1]
(ATaG) is a macroprogramming framework providing a
mixed declarative-imperative approach. The notions of ab-
stract task and abstract data item are at the core of ATaG’s
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Figure 3. A sample ATaG program.

programming model. A task is a logical entity encapsulat-
ing the processing of one or more data items, which rep-
resent the information. The flow of information between
tasks is defined in terms of their input/output relations. To
achieve this, abstract channels are used to connect each data
item to the tasks that produce or consume it.

Figure 3 illustrates a sample ATaG program specifying a
cluster-based, data gathering application. Sensors within a
cluster take periodic temperature readings, which are then
collected by the corresponding cluster-head. The former
behavior is encoded in the Sampler task, while the latter
is represented by Cluster-Head. The Temperature data item
is connected to both tasks using a channel originating from
Sampler, and a channel directed to Cluster-Head.

Tasks are annotated with firing and instantiation rules.
The former specify when the processing in a task must
be triggered. In our example, the Sampler task is trig-
gered every 10 seconds according to the periodic rule.
The Cluster-Head fires whenever at least one data item
is available on any of its incoming channels, in accor-
dance with its any—data firing rule. The instantiation
rules govern the placement of tasks on real nodes. The
nodes-per—instance: 1 construct requires the task to
be instantiated once on every node. On the other hand, the
area-per-instance construct used for Cluster-Head
entails partitioning the geographical space according to the
given parameter, and deploying one instance of the task per
partition.

Abstract channels are annotated to express the interest of
a task in a data item. In our example, the Sampler task gen-
erates data items of type Temperature kept local to the
node where they have been generated. The Cluster-Head
uses the domain annotation to gather data from the tem-
perature sensors in its cluster, which binds to the system
partitioning obtained by area—-per—-instance and con-
nects the tasks running in the same partition.

The code within a task is the only imperative part in an
ATaG program. To express data exchange between tasks in
the imperative code, programmers are provided with the ab-



straction of a shared data pool, where each task can output
data, or be notified when some data of interest is available.
Dedicated APIs are provided for this.

3. Scoping in a Macroprogramming Language

In this section, we bring scoping in macroprogramming
by augmenting the ATaG programming model. We first il-
lustrate how subsets of nodes are specified, and then discuss
the novel programming constructs we introduced using an
ATaG-based implementation of our reference application as
example.

3.1. Determining Scopes

Subset of nodes can be determined in several ways. In
this work, we take a simplistic yet general approach, and
identify the nodes in a given subset as those satisfying a
membership function f(i), where s is a scope and i is
a node. The boolean output of f returns whether 7 be-
longs to scope s or not. In turn, the actual definition of
fs 1s obtained as the composition of atomic boolean pred-
icates on the nodes characteristics (called node attributes
hereafter). As an example, fs(i) == isInSector(l,i) A
hasSpeedSensor (i) identifies the subset of nodes equipped
with a speed sensor and deployed in the first highway sector.

The boolean predicates are automatically generated by
an additional tool we developed that essentially inspects the
attributes attached to nodes, and presents a list of predicates
to the programmers that only need to compose them in the
desired way. With this approach, it is quite natural to de-
termine the desired scopes. In turn, node attributes can be
straightforwardly generated in a variety of means, e.g., from
third-party meta-data describing the characteristics of a spe-
cific hardware platform [20].

3.2. Scoping in ATaG

To enable interactions between scopes, we need to mod-
ify primarily two aspects in the ATaG programming model:
task placement and data exchange between tasks. The for-
mer express the scopes where processing will take place,
whereas the latter describe the interactions among scopes.

Task Placement. From the application perspective, higher
expressivity in task allocation is motivated by the need of
mapping a specific processing to nodes equipped with the
needed sensing/acting devices, or those present in specific
regions. For instance, a task designed to operate the ramp
signal must be instantiated on a node having that particu-
lar device attached. However, we need only one task to
compute the average speed for each highway sector, so we
need to identify the different sectors uniquely. This has been

achieved with revised instantiation rules, that give applica-
tion programmers the ability to map tasks to application-
defined subsets of nodes, e.g., all the nodes deployed in the
same highway sector.

Data Exchange. Albeit necessary, the above additions
do not yet enable the description of interactions between
scopes. For instance, in our scenario the speed limit is de-
cided based on the information sensed in three neighboring
highway sectors. To achieve this, we should not only iden-
tify the speed sensors deployed in three consecutive sectors,
but also deliver their data to a scope including the nodes
where a task computing the speed limit has been instanti-
ated. To achieve this level of expressivity, we define new
channel interests in ATaG, so that application programmers
can specify the task interests by referring to logical proper-
ties of data, regardless of their physical location.

3.3. ATaG Constructs for Scoping

The syntax and use of the scoping constructs are shown
in Figure 4, where we illustrate an ATaG implementation of
our reference application. All the application information is
represented as ATaG data items. The actual algorithm de-
termining the actuation part is encapsulated in two tasks:
SpeedLimitCalculator and RampSignalCalculator, whose
inputs are the data produced by tasks deriving the average
measures. Once the actuation is determined, it is given as
input to the tasks operating displays and ramp signals. As
described next, only three additional constructs are needed
to describe the interactions required in our reference appli-
cation. Still, their combination enables the specification of
complex communication patterns otherwise hard (or impos-
sible) to describe.

Instantiating Multiple Tasks in a Scope. The Speed-
Sampler task is in charge of gathering the raw data
from a speed sensor on a ramp leading to the high-
way. Therefore, it must run on a node equipped with
the corresponding sensing device. To express this require-
ment, the nodes—-per-instance:1l@speedSensor
construct is used, where @speedSensor is a place-
holder for a membership function fspeedSensor(i) =
hasSpeedSensor(i). In our current prototype, this is spec-
ified using a simple XML file, shown in Figure 5'. Sim-
ilar constructs are used for RampSampler, SpeedLimitDis-
player, and RampSignalDisplayer.

Instantiating a Single Task in a Scope. The AvgSpeed-
Calculator task takes as input the raw data coming from
the speed sensors in a sector, and derives the average speed
of vehicles in the same sector. Therefore, we need such a

't is not our intention to force the programmer to write XML directly,
we instead envision these specification to be auto-generated by an inte-
grated development environment.
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Figure 4. The ATaG program for the traffic management application.

<task name="SpeedSampler">
<instantiationrule>
<nodes-per-instance
number="1"
scopePredicate="hasSpeedSensor"/>
</instantiationrule>
</task>

Figure 5. XML declaration for @speedSensor
in Figure 4.

task to be instantiated once per sector. To express this, the
partition-per- instance:1/HighwaySector
construct is used. Again, HighwaySector is a place-
holder for a membership function that identifies all the
nodes in a specific sector. The compiler generates all
possible values of the corresponding node attribute —
that describes the sector where a node is placed in the
highway— and requires the task to be instantiated on one
node in each sector only.

Inter-Task Communication. To bind tasks running
in the same HighwaySector, the domain anno-
tation can still be used. However, this time it
binds to the system partitioning obtained through the
partition-per-instance instantiation rule. Differ-
ently from area-per-instance, this rule determines
the different partitions at a logical level, by considering the
node attributes instead of the geographical location.

More  generally, the  construct logical-
hops:1 (HighwaySector) connecting, e.g., the
AvgSpeedCalculator to both the SpeedLimitCalculator and
the RampSignalCalculator is used to push a data item to

HighwaySector C

HighwaySector B i
i logical hops from A: 2

logical hops from A: 1

HighwaySector A
logical hops from A: 0

Figure 6. Logical hops over the
HighwaySector attribute.

a different highway sector. It represents a number of hops
counted not on the physical network links, but in terms
of how many system partitions (derived from the attribute
given in parenthesis) can be crossed. Figure 6 illustrates
the concept graphically. Given the partitioning induced by
the HighwaySector attribute, requiring one logical hop
on that attribute means, for an AvgSpeedCalculator task, to
push a data item to the same, immediately preceding and
following highway sectors. Notice how the semantics of
specifying zero hops is to not cross any partition, i.e., to
push to the same partition where the data item originated.
In this sense, the domain construct actually constitutes
a particular case of the more general logical-hops
construct.

Dynamic Scopes. In this example we define only static
scopes, i.e., we use predicates over attributes that do not
vary with time. However, the resulting programming model
does not prevent, in principle, the definition of scopes in-
volving time-varying properties of the nodes. For instance,
one may specify a predicate isSensingCar(i), that holds



when a presence sensor is detecting a car nearby. However,
it is not clear what would be the semantics of involving
such a predicate in, e.g., a task instantiation rule. Should
the task be moved to another node when the condition no
longer holds? If not, should the task be suspended and keep
the previous state when the condition holds again, or should
it just reboot? We believe supporting dynamic scopes may
make the programming model unnecessarily complicated,
and the final application behavior hard to predict. For this
reason, we are currently investigating the application sce-
narios that may need such a feature, and the semantics re-
quired in each case.

4. Compiler and Run-time Support

Our prototype system leverages off the Java2ME [10]
language and APIs to describe the imperative part of
an ATaG program, and targets the SunSpot sensor plat-
form [21] as underlying hardware platform. Nonetheless,
any imperative language can be used instead of Java, as
long as it employs a threaded execution model, e.g., the C
language on top of the Contiki OS [5].

To generate the node-level code from the ATaG specifi-
cations, we implemented a dedicated compiler, whose char-
acteristics and performance are illustrated in [18]. The com-
piler takes as input the ATaG program and information on
the attributes attached to the nodes in the final deployment.
Compilation starts by deciding the specific node where each
task will be running. This is accomplished by looking at the
instantiation rules specified in ATaG, and matching them
against the node attributes.

When more than one choice for instanti-
ating a task is available, as in the case of
partition-per-instance, the compiler should
place the tasks to minimize some metrics of interests (e.g.,
network traffic). This problem is orthogonal w.r.t. the
support of scoping constructs, since it can be considered
as an instance of a graph embedding problem. We are cur-
rently working on this aspect as an independent direction
of research [18]. Here, instead, we intend to assess the
performance of our run-time support to scopes in isolation,
without the influence of smart compilation techniques.
Therefore, we take a simplistic approach, and assign tasks
to nodes randomly when these are not tied to the nodes’
capabilities.

After tasks are bound to nodes, the compiler determines
the program data paths. These are logical addresses iden-
tifying the location of tasks that should actually receive
a data item once output by another task. Consider, for
instance, the data exchange between AvgSpeedCalculator
and either SpeedLimitCalculator or RampSignalCalculator
in Figure 4. In this case, the data path for an AvgSpeed
data item includes all the nodes satisfying two specific

constraints: i) they are assigned SpeedLimitCalculator or
RampSignalCalculator, and ii) they are deployed either in
the same sector where AvgSpeedCalculator is running, or
in one of the adjacent sectors. Notably, this can still be
captured as a scope according to the specification we in-
troduced in Section 3.1. Indeed, consider for instance an
AvgSpeedCalculator task deployed in sector 5. The subset
of nodes where the data item should be delivered can be
described as:

(isInSector(4,i)V
isInSector (5, j)V
isInSector(6,j))A
(isSpeedLimitCalculator (i)V
isRampSignalCalculator(i))

fAngpeed(i) H=

where the former conjunct refers to an attribute describing
where a node has been placed, whereas the latter conjunct
predicates over the assignment of tasks to nodes.

Based on the above observation, the compiler looks at
the scopes defined in the application, and generates further
scope definitions to identify the data paths. Specifically,
for each data item, the compiler creates the corresponding
data paths by combining the channel annotations between
the producer and consumer tasks with the scopes mentioned
on the task instantiation rules. These are used either to de-
termine the target system partition (as done for the highway
sector in the example), or to identify the receiver node based
on the task it is running.

At the run-time layer, we re-used the routing mecha-
nisms of Logical Neighborhoods [15] to deliver data to the
nodes satisfying a given scope specification. With Logi-
cal Neighborhoods, the physical neighborhood of a node is
replaced by a logical notion of proximity determined by ap-
plicative information. Communication is implemented us-
ing a form of attribute-based routing where the logical prop-
erties of the nodes drive message propagation [14]. In this
work, we use the node attributes involved in the definition of
at least one data path as logical properties of the nodes, and
the data paths themselves as neighborhood definitions”. To
interact with the nodes in a (logical) neighborhood, the pro-
grammer is provided with a simple message-passing API,
used to broadcast (in a logical sense) a message to all nodes
member of a neighborhood. The ATaG node-level run-time
leverages off this feature to distribute the data items output
by tasks.

Note that our run-time layer does not require the data
paths to be evaluated at compile-time. Conversely, ev-
ery time a data item is output by a task, our run-time re-
evaluates the corresponding scope definitions. Interestingly,
this readily provides support for dynamic scopes and mi-
grating tasks. Indeed, to support these features, our ap-

2The mapping from data paths to neighborhood definitions is straight-
forward, and omitted here for brevity.



proach does not require modifications to the scope defi-
nitions output by the compiler. For instance, if the node
running SpeedLimitCalculator changes at run-time, ev-
ery scope including isSpeedLimitCalculator(i) will sim-
ply evaluate to a different subset of nodes the next time
a data item is output by AvgSpeedCalculator. As already
mentioned, however, the aforementioned functionality have
deep implications on the language semantics. For instance,
what happens if no node is available to accept a task will-
ing to migrate? We are actively studying how to address
these issues in the programming model, leveraging off the
support our run-time layer already provides.

5. Evaluation

One of the issues in devising high-level programming
models for WSNss is to provide an acceptable run-time per-
formance. Indeed, the inability to reach the lowest possible
levels in the protocol stack may prevent developers from
fine-tuning the final node-level code. In this section, we
argue that our approach provides a reasonable trade-off be-
tween these two extremes, by first examining the develop-
ment effort in our reference application, and then reporting
on performance results gathered in simulations.

Evaluating the Programming Effort. Quantifying a de-
veloper’s effort is a challenge per se, because of the lack
of widely accepted methodologies and metrics. This is
brought to an extreme in sensor network macroprogram-
ming, where most of the existing metrics cannot even be ap-
plied given the early stages of the field. However, interest-
ing insights can be gained by looking at the fraction of code
developers write w.r.t. the entirety of code deployed on the
real nodes. This captures the extent to which the application
semantics is achieved by either leveraging off the mecha-
nisms in the node-level run-time, or automatically generat-
ing code. In this respect, it represents the actual added value
of the programming model: the smaller is this fraction, the
better the abstractions provided are assisting the program-
mer, thus speeding up the development process.

With our solution, a total of 51 Java classes need to be
compiled to deploy our reference application on the single
nodes. However, only 15 of them are the direct result of de-
velopers’ effort. Furthermore, considering the actual num-
ber of lines of non-commented code, only about 12% of
them are hand-written by developers, whereas the rest is ei-
ther part of the run-time support, or automatically generated
by our dedicated compiler. We believe these results are due
to the flexibility of the scoping abstraction we enabled in
the programming model. Complex interactions can indeed
be specified in a fully declarative manner, with the compiler
taking care of automatically generating the corresponding
imperative code and the inputs for the node-level run-time.

[ Parameter Name [ Value |
Propagation Model Two-ray Ground
Radio Model Additive Noise
MAC Layer CSMA
Transmission Rate 250 Kbps
Communication Range 40 meters
Message Size 47 bytes
Simulation Time 2000 secs

Number of Repetitions 30

Figure 7. Simulation parameters.

Considering the code implementing each task, it is pos-
sible to identify a recurring pattern with only two classes
needed. One represents the task itself, and contains the
processing to interact with the data pool. This same class
usually holds a reference to a second class containing the
actual processing, e.g., to average the incoming data as in
AvgQueueLengthCalculator. Note that all the state vari-
ables defined in these classes relate only to the application
semantics, and never refer to distribution aspects. This is
achieved as a result of the way communication patterns are
specified in our approach: the data recipients are always
determined implicitly by the definition of scopes and the
interactions among them. Therefore, the programmer does
not need to care about this in the actual application code.

Simulation Settings. To verify that the above advantages
do not entail a degraded run-time performance, we quantita-
tively characterize the behavior of our reference application
in a simulated scenario. We use the SWANS/Jist simula-
tor [2], as it is able to run unmodified Java code on top of a
simulated network. This way, we measure the performance
of the same code that can be deployed on the real nodes.

The relevant simulation parameters are reported in Fig-
ure 7. We consider the scenario in Figure 1 as target net-
work, with a highway sector 20 meters wide and 200 meters
in length. We place the forwarding nodes 25 meters apart,
and randomly distribute the speed sensors on the four lanes
so that each of them is range of at least another speed sen-
sor or a forwarding node. Similarly, the presence sensors
are randomly distributed on the ramp so that each of them
is in range of at least one speed sensor or another presence
sensor. The node controlling the ramp signals and the speed
limit displays are placed between different sectors, on op-
posite sides of the road. Overall, 18 nodes are deployed in
each highway sector.

Note that the message rate is implicitly determined by
the application itself, in particular by the firing rules for
tasks. For instance, a node running an instance of Ramp-
Sampler generates one message every 10 seconds, as its
firing rule is periodic:10. The AvgQueueLengthCalcu-
lator fires for any data item received, and correspondingly
outputs a new data item. Therefore, if four RampSamplers
are in its domain, AvgQueueLengthCalculator will gener-
ate a message every 2.5 seconds, on the average.

The simulation runs differ in the random seed, the loca-



tion of nodes, and the assignment of tasks to nodes when the
choice is not unique. As performance metrics, we consider
i) the number of missing actuations on the environment, re-
sulting from one or more message losses on the path from
the sensing tasks to the actuation tasks, ii) the network over-
head, represented as the overall number of messages sent at
the physical layer, and iii) the average number of physical
hops traveled by a message carrying a data item before ei-
ther being discarded or delivered.

As the goal of the application developer is that of de-
ciding actions based on data sensed, the first quantity in-
tuitively measures the quality of service provided by the
implemented system. Differently, as communication dom-
inates the energy expenditures in WSNs, the second mea-
sure assesses the actual feasibility of our approach on real
devices. The third measure gives insights into the trends
related to communication cost, describing where communi-
cation takes place. As independent variable, we choose to
vary the number of highway sectors, as this indirectly dic-
tates the system scale.

For comparison, we compute the aforementioned met-
rics for an optimal solution minimizing the network over-
head, based on global knowledge of the target network. We
first identify the optimal task placement given the expected
network traffic, and then the minimum cost routing tree con-
necting a sender to all the intended recipients. The perfor-
mance obtained with a pure flooding scheme are also re-
ported as an upper bound for further comparison.

Simulation Results. Given the message generation rates
discussed earlier, our solution can provide at least 96% of
the actuations that would be occurring in case there were
no message losses. This illustrates how the messages car-
rying the application data are effectively delivered to the
intended recipients. Remarkably, this metric is not affected
by a varying number of highway sectors (and is hence not
shown graphically). Such a behavior demonstrates how our
scoping constructs allow the application semantics to perco-
late down to the network layers. Indeed, the application re-
quires its processing to span at most three adjacent highway
sectors, and is therefore independent of the overall number
of highway sectors.

The chart in Figure 8(a) further confirms the above rea-
soning: as expected, the number of hops traveled by a mes-
sage using flooding rapidly increases with the number of
highway sectors. On the contrary, our solution keeps an al-
most constant performance in a range of settings, effectively
ending up close to the theoretical minimum. Note how it
is hard to achieve the same form of implicit cross-layer
optimization in the absence of scoping: if the program-
ming model does not allow interactions among application-
defined scopes to be defined, it is hard to make the routing
layers aware of them.

Figure 8(b) depicts the trends in network overhead
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Figure 8. Reference application performance.

against a varying number of highway sectors. With our so-
lution, this metric is much closer to the optimal solution
than to flooding. More importantly, the trend as the num-
ber of highway sectors increases mimics that of the optimal
solution, while flooding reveals a much steeper increase.
We believe this performance is reasonable, also considering
tasks are placed randomly when the decision is not unique.
All the metrics are indeed likely to see a dramatic improve-
ment if the compiler placed the tasks smartly using a cost
model of the underlying routing scheme. This is in our im-
mediate research agenda.

6. Conclusion and Future Work

In this paper we introduce programming constructs to
enable scope-based interactions in sensor network macro-
programming. Our approach allows programmers to ex-
press complex communication patterns with a few program-
ming constructs. The feasibility of our approach is demon-
strated by a dedicated compiler we developed, and by simu-
lation studies assessing the performance of the final imple-
mentations.

Our immediate research goals include the definition of
a precise semantics associated to dynamic scopes, and a
full support to migrating tasks. As an independent direc-
tion of work, we are also exploring techniques to optimize



the placement of tasks on the nodes during the compilation
process by looking at the expected flow of information.
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