
Scalable Parallel Implementation of Bayesian Network to Junction Tree
Conversion for Exact Inference1

Vasanth Krishna Namasivayam, Animesh Pathak and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California, Los Angeles
{namasiva, animesh, prasanna}@usc.edu

Abstract

We present a scalable parallel implementation for con-
verting a Bayesian network to a junction tree, which can
then be used for a complete parallel implementation for
exact inference. We explore parallelism during the pro-
cess of moralization, triangulation, clique identification,
junction tree construction and potential table calculation.
For an arbitrary Bayesian network with n vertices using
p processors, the worst-case running time is shown to be
O(n2w/p+wrwn/p+n log p), where w is the clique width
and r is the number of states of the random variables. Our
algorithm is scalable over 1 ≤ p ≤ nw/ log n.

We have implemented our parallel algorithm using
OpenMP and experimented with up to 128 processors. We
consider three types of Bayesian networks: linear, balanced
and random. While the state of the art PNL library imple-
mentation does not scale, we achieve speedups of 31, 29
and 24 for the above graphs respectively on the DataStar
cluster at San Diego Supercomputing Center.

1 Introduction

Belief networks or Bayesian networks have been used in

Artificial Intelligence since the 1960s, especially in medical

diagnosis [12]. They have found application in a number

of domains, including consumer help desks, nuclear reac-

tor diagnosis, tissue pathology, pattern recognition, credit

assessment, data mining [4], image analysis, robotics, ge-

netics [13] and computer network diagnosis [12].

1The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects

Agency (DARPA) or the U.S. government.

Effort sponsored by the Defense Advanced Research Projects Agency

(DARPA) through the Department of the Interior National Business Center

under grant number NBCH104009.

There are two main approaches for computing prob-

abilities in a Bayesian network - exact inference and

approximate inference. The Lauritzen Speigelhalter al-

gorithm [9] is the most popular exact inference algorithm.

A program implementing the LS algorithm could be di-

vided into four distinct modules as mentioned in [8]. They

are Junction Tree generation, Junction Tree pre −
computation, Junction Tree propagation and Belief
Computation. This paper deals with the first module, the

Junction Tree generation. This paper explores a scalable,

parallel algorithm for Junction Tree generation. We have

addressed the rest of the exact inference algorithm in an ear-

lier paper [10].

The time taken for generating a junction tree from a

Bayesian network can be a significant fraction of the over-

all time for exact inference. On a 1000 node linear Bayesian

network with number of states varying from 2 to 16, we ob-

served that the junction tree conversion time was as high as

50% of the overall serial time for exact inference.

There has been considerable work in parallelizing exact

inference. These include algorithms in [2], [3], [7], [8],

[14] and [11]. The popular exact inference junction tree al-

gorithm for multiply connected networks by Lauritzen and

Spiegelhalter [9] was also conceived as a parallel algorithm

with one processor per clique.

The junction tree generation consists of five main stages:

moralization, triangulation, clique identification, junction
tree construction and potential table computation. We have

parallelized all the above stages, and combined the trian-

gulation and clique identification stages. The combined

time complexity of our parallel approach is O(n2w/p +
wrwn/p+n log p). The descriptions of these stages, paral-

lel algorithms for them, and detailed analysis is presented

in Section 3. Our algorithm is scalable over 1 ≤ p ≤
nw/ log n.

We have implemented the above parallel algorithm us-

ing OpenMP on the DataStar Cluster at the San Diego Su-

percomputer Center. The number of processors used in our

experiments ranged from 1 to 128. We consider three types

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

of Bayesian networks: linear, balanced and random. While

the state of the art PNL library [5] implementation does not

scale, we achieved speedups of 31, 29 and 24 respectively

for the above graphs.

The rest of the paper is organized as follows: in Section

2 we cover the basics of Bayesian inference and Junction

trees. Section 3 describes the parallel algorithm and our im-

plementation. Section 4 describes the experiments which

were conducted to explore scalability and efficiency of the

parallel algorithm. Section 5 concludes the paper and dis-

cusses possible future work.

2 Background

2.1 Bayesian Networks

A Bayesian network [12] is represented by a graph which

is composed of a set of nodes, each node representing a

variable. Each edge connects two nodes, and has a direc-

tion assigned to it. An edge between two nodes indicates

a relation between the nodes and the direction indicates the

causality. Let the variables be {X(1),X(2), . . . ,X(n)}.

The probability that variable X(i) has a value ki, is given

as P (X(i) = ki) where ki ∈ {k1, k2, k3, . . . , kr}.

Node A is a parent of node B if there is an edge from

A to B. If a node has a known value, it is said to be an

evidence node. Let parents(A) be the parents of the node

A. Then the joint distribution for X(1) through X(n) is

represented as the product of the probability distributions

P (X(i)|parents(X(i))) for i = 1 to n. In mathematical

notation the joint probability, also known as the conditional
probability table (CPT), is expressed as

P (A) = Π(P (X(i)|parents(X(i))))

2.2 Bayesian Inference

In a Bayesian network, when we get new information

about variables in the network, we update the conditional

probability tables to reflect this new information. This up-

dating is known as evidence propagation [9]. Once all

the beliefs are updated, the conditional probability tables

contain the most recent beliefs in any variable and can be

queried like a simple database to evaluate probabilities. The

bigger problem we are exploring is the problem of exact in-
ference on a Bayesian network. Exact inference involves

determining the probabilities of the query variables, given

the exact state of the evidence variables.

2.3 Junction Trees

For the sake of completeness we borrow the following

definitions and notations from [1]. An undirected graph is

said to be chordal or triangulated iff every cycle of length

four or greater contains a chord between any two non ad-

jacent nodes in the cycle. A clique in an undirected graph

G(V,E) is a set of vertices V such that the subgraph in-

duced by V is a complete graph. A junction tree of a chordal

graph G is a tree J such that each maximal clique C of G
is a node in J , and all the cliques represented by the nodes

of the junction tree J satisfy the running intersection prop-
erty [7]. i.e for each node v of G, the nodes representing

the cliques in J containing v form a connected subtree of J .

Each edge (u, v) in J is labeled with the intersection of the

cliques represented by u and v; these labels are called sepa-

rator sets or sepsets. The clique width of a junction tree J is

defined as the maximum number of random variables in the

clique represented by any node in J . A maximal clique is a

clique which is not a proper subgraph of any other clique.

Most exact inference algorithms like the popular LS al-

gorithm [9] do not work on the Bayesian network directly,

instead they work on the junction tree generated from it.

The main reason for this conversion is that evidence prop-

agation based on Bayes rule can not be applied directly to

non-singly connected networks i.e Bayesian networks with

loops, as it would yield erroneous results. Loops are undi-

rected cycles in the underlying network.

Given the joint probability distribution of an arbitrary

Bayesian network, we can perform exact inference on the

network. The authors in [9] show that the joint probability

distribution computation can be rearranged to correspond to

the topology of the junction tree derived from the Bayesian

network. Hence a junction tree can be used in place of a

Bayesian network for inference. It should be noted that

since each nodes in the junction tree represents a set of

nodes in the original Bayesian network, the information

contained in the edges of the original DAG is lost. However,

that information is re-inserted in the nodes of the junction

tree by the steps of potential table creation and propagation.

After the above transformation, the resulting junction

tree can be used for computing inference. The algorithm

employed for a junction tree is similar to the one employed

for the Bayesian network, save for the actual contents (and

sizes) of the messages passed between the nodes during

the computation. More details of the above process can be

found in [10].

3 Parallel Algorithm

In [9], the authors approached the problem of non-singly

connected networks from a mathematical perspective. This

section discusses our parallel version of their sequential al-

gorithm for Junction Tree Generation, followed by a de-

tailed analysis. Throughout this paper, we represent graphs

using the adjacency list representation. Our parallel algo-

rithms proceeds in the following four stages.

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

3.1 Moralization

A moral graph of a DAG G is an undirected graph where

all the parents of each node in G are connected to each other.

Our parallel algorithm involved in obtaining a moralized

graph from a DAG is shown in Figure 1.

Algorithm Moralize(G)

Input: G(V,E): G is a DAG

Output: Gmor: the moralized version of G
1: G′ = (V ′, E′) // V ′ = V , E′ = φ
2: begin parallel across all processors

//at processor k (k = 0 to p − 1) process n/p nodes

3:for i = k · (n/p) to (k + 1) · (n/p) − 1
4: ∀(vi, w) ∈ E, insert (v′

i, w
′) in E′

5: ∀(u, vi) ∈ E, insert (v′
i, u

′) in E′

6: end for i
7: end parallel

// G′ is an undirected version of G now

8: begin parallel across all processors

//at processor k (k = 0 to p − 1) process n/p nodes

9: for i = k · (n/p) to (k + 1) · (n/p) − 1
10: Parenti = u : (u, vi) ∈ E //parents of vi

11: ∀u,w ∈ Parenti, insert (u′, w′) in E′

12: end for i
13: end parallel

14: return G′

Figure 1. Parallel algorithm for moralization

3.2 Triangulation and Identifying Maxi-
mal Cliques

An undirected graph is triangulated iff every cycle of

length four or greater contains a chord between any two non

adjacent nodes in the cycle. Our parallel algorithm for the

fill-in computation to obtain a triangulated graph is shown

in Figure 2. Since the task of finding an optimal triangula-

tion with minimum clique width is NP hard [9], we use a

greedy heuristic for the same. A unique feature of our al-

gorithm is that we are able to identify the cliques from the

triangulated graph as it is being constructed as seen in Steps

16 to 21 in the algorithm.

3.3 Constructing the Junction Tree

After identifying the cliques, we proceed to connect

them to obtain the junction tree. The parallel algorithm for

this stage is shown in Figure 3. The output of this algorithm

is an adjacency list which represents the connections be-

tween supernodes represented by the cliques. The running

Algorithm TriCliq(G)

Input: G(V,E): G is a moralized undirected graph

Output: C: a set of cliques formed from G
1: G′(V ′, E′) = G // Make a temp copy

2: C = φ
3: while (V ′ �= φ) do

4: begin parallel across all processors

// each processor computes f(v) for n/p nodes

// and they together compute the min

//f(v′) = number of neighbors(v′)
5: find v′ : f(v′) ≤ f(u′),∀u′ ∈ V ′

6: end parallel

7: N(v′) = {u′ : (u′, v′) ∈ E′}// Neighbors of v′

8: Cv′ = N(v′) ∪ {v′}
// v′ and it’s neighbors form a cluster

9: begin parallel across all processors

10: ∀u′, w′ ∈ Cv′ do

// each processor is assigned the same number of

// elements of Cv′

11: insert (u′, w′) in E′

12: insert (u,w) in E
13: end do

14: end parallel

15: delete v′ from V ′

16: begin parallel across all processors

//at processor k (k = 0 to p − 1) process |C|/p nodes

17: flagk = false // local flag

18: for j = k · (|C|/p) to (k + 1) · (|C|/p) − 1
//Ci is the ith element of C

19: if Cv′ ⊂ Ci, flagk = true

20: end for

21: end parallel

//gather all flagi in parallel in log p time

22: global flag = gather(AND, flag)

23: if global flag == true

insert Cv in C
24: end while

25: return C

Figure 2. Parallel algorithm for triangulation
and identifying maximal cliques

intersection property discussed in Section 2.3 ensures that

clique Ci exists in step 4. The random variables associated

with each clique along with the corresponding potential ta-

bles are listed in an array.

3.4 Potential Table Calculation

As mentioned in Section 2.3, potentials tables need to be

generated for each node and each edge in the junction tree

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

Algorithm: Construct(C)

Input: Set of Clusters C = {C1, C2, . . . , Ct} (|C| = t)
Output: Junction Tree J(C,CE)
1: begin parallel across all processors

//at processor k (k = 0 to p − 1)

//process t/p nodes

2: for j = k · (t/p) to (k + 1) · (t/p) − 1
3: CUj = Cj ∩ {C1 ∪ C2 ∪ . . . ∪ Cj−1}
4: find Ci (i < j) such that CUj ⊆ Ci

//Ci is the parent of Cj

5: add (Ci, Cj) to CE
6: compute Ci ∩ Cj , the separator set of (Ci, Cj)
7: end for j

8: end parallel

Figure 3. Parallel algorithm for constructing
junction tree

J . Since each node in J represents a Clique of w nodes in

the original Bayesian network, the potential table creation

involves finding the joint probabilities of all those variables.

Since each variable can take one of r values, there are rw of

the combined random experiment represented by each node

in J . Similar argument holds for the edges in J , which

each represent a set of nodes in the original Bayesian net-

work. Our algorithm for the calculation of potential tables

in shown in Figure 4.

3.5 Analysis

For the purpose of analysis consider a Bayesian network

with n nodes, each with the maximum degree k. Therefore,

each clique that induces a node in the junction tree J is at

most of size w(= k + 1). We assume a p processor CREW

PRAM [6] as our computation model.

Moralization: Steps 2 – 7 take O(nk/p) time to construct

an undirected version of G. Steps 8 – 13 take a further

O((k + k2)n/p) time to moralize it. Note that the k2 factor

comes from step 11, since a node can have at most k parents.

Overall, this stage takes O(nk/p + nk2/p) time.

Triangulation and Identifying Cliques: Steps 4 – 6 take

O(nk/p + log p) time to find v′. Since we sort the clus-

ter elements at the time of cluster creation, comparisons of

clusters in step 19 takes O(w) time only. Step 22 takes log p
time to collect the flags. The total time complexity of this

stage is O(n2k/p + n log p).

Constructing the Junction Tree: For this step, we com-

pute the edges of the junction tree in parallel. For com-

puting each edge, we need to perform a set of set intersec-

tions and unions. Using sorted linked lists to represent sets,

and using an n-bit vector to compute set intersection, step

Algorithm: Potential(J(C,CE))
Input: Junction Tree J(C,CE)
Output: Set of Potential Tables Ti, one for each cluster

and one for each edge

1: begin parallel across all processors

//at processor k (k = 0 to p − 1)

//process n/p cliques

2: for i = k · (n/p) to (k + 1) · (n/p) − 1
3: Compute the potential table of Ci ∈ C

//above step fills in entries in a rw table

4: end for

5: end parallel

6: begin parallel across all processors

//at processor k (k = 0 to p − 1)

//process n-1/p edges

7: for i = k · ((n − 1)/p) to (k + 1) · ((n − 1)/p) − 1
8: Compute the potential table of Ei ∈ CE

//above step fills in entries in a rw−1 table

9: end for

10: end parallel

11: return (C,CE)

Figure 4. Parallel algorithm for potential table
creation

3 can be performed in O(nw) time. The computation in

step 6 takes O(w) time. The total time taken in this stage is

O(n2w/p).

Computing Potential Tables: Since the size of each clique

is w, the maximum size of the edges can be w − 1. Further,

since there are n nodes and n−1 edges in J , it is evident that

the first loop dominates the computation. Each execution of

step 3 involves multiplying w probabilities for each of the

rw entries in the potential table for each Ci. Hence the total

time taken by each processor in Steps 1 – 5 is O(wrw ·n/p).

To summarize, the combined complexity of all four

stages of our parallel version of the algorithm is O(nk2/p+
n2w/p+wrwn/p+n log p). Noting that w, k < n, this can

be further simplified to O(n2w/p + wrwn/p + n log p).As

can be seen, the synchronization/communication cost is a

very small part of the total time complexity.

Scalability Analysis: To analyze the scalability of the

parallel algorithm, we consider the following two cases –

Case 1: In graphs where n > rw, the complexity

of the parallel algorithm is O(n2w/p + n log p). For

1 < p < nw/ log n, n2w/p is O(n log n), and n log p is

also O(n log n) (actually O(n log n − n log log n)). Hence

the algorithm is scalable for up to nw/ log n processors in

this case, with complexity of O(n2w/p).
Case 2: In graphs where rw > n, the complexity of

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

the parallel algorithm is O(wrwn/p + n log p). For

1 < p < wrw/ log n, wrwn/p is O(n log(wrw)),
and n log p is also O(n log(wrw)) (actually

O(n log(wrw) − n log log n)). Hence the algorithm

is scalable for up to wrw/ log n processors in this case,

with complexity of O(wrwn/p).

The above analysis proves that the algorithm clearly

scales for values of p between 1 and nw/ log n.

Sequential Complexity: For comparison, we compute the

time taken if all the stages of this algorithm were performed

sequentially. The complexity analysis of the original se-

quential algorithm is similar to that of the parallel ver-

sion, but for the parallel loops and the scatter/gather op-

erations. In that case, Moralization takes O(nk + nk2)
time and computing the potential tables takes O(wrwn)
time. Similarly, the junction tree creation step would take

O(n2w) time if done sequentially. Since the triangulation

with clique selection stage use communication across pro-

cessors, the analysis differs slightly. For example, Steps

16 – 23 in Figure 2 now take O(nw) time, thus taking the

sequential time complexity of this to O(n2k + nw). The

combined sequential complexity of the four stages is thus

O(nk2 + n2w + wrwn). Noting that k,w < n, this can be

further reduced to O(n2w + wrwn).

3.6 Exact Inference

Our previous work [10] illustrates a parallel algorithm

to compute exact inference given a junction tree with po-

tentials calculated for each node. The global propagation of

the potentials of each node is part of the algorithm discussed

in [10]. This paper deals with the parallelization of the Junc-

tion Tree Generation Step. The output of this step can then

be utilized by the algorithm developed in [10] to compute

exact inference for the Bayesian network we started with.

4 Experimental Results

4.1 Computing Facilities

We used three machines for our experiments. The Shared

Memory Processor at USC is a SunFire 15K system. It

has 64 UltraSPARC III 1.2 GHz processors and a 150 MHz

Sun Fireplane redundant 18X18 data, address, and response

crossbar interconnect. The operating system is SUN OS 5.9

with MPICH for communication. For larger experimental

runs we accessed the computing resources at the San Diego

Supercomputer Center. One of the machines is a DataStar

cluster with 1024 IBM P655 nodes running at 1.5 GHz with

2 GB of memory per processor. The theoretical peak perfor-

mance of this machine is 15 TeraFLOPS. Furthermore each

node is connected to a GPFS (parallel file system) through a

fiber channel. The second large machine we ran the exper-

iments on is the Teragrid machine - SGI Altix. It has 1024

1.6 GHz Itanium 2 processors with 1024 Gbytes of shared

memory. It runs SGI ProPack 3.4 with OpenMP.

4.2 Experiments

We used three types of input Bayesian networks: linear,

balanced, and arbitrary. All graphs were of 1024 nodes, and

we ran the experiments with variables having 2, 4, and 16

states. The node in(out) degrees for the three networks were

1(1), 1(2), and 5(5) respectively.

At the time of writing, our implementation used sim-

plified techniques for rapid program development. The

OpenMP directive used were omp parallel and omp
parallel for. We used an adjacency matrix to describe

the belief network. The resulting junction tree data structure

stores the following parameters –

• The indices of the nodes in each clique

• The clique connectivity matrix

• The number of nodes in each clique

• The ranges of the nodes in each clique

• The entries in the potential tables

• The nodes in the separator sets

• The separator set potential tables

Distribution of execution time
Results from our experiments with PNL on a single

machine are shown in Figure 5. We note that the potential

table creation step constitutes a major part of the sequential

execution time, as expected with the dominating rw factor.

However, the other steps taken together can constitute for

up to 50% time in some cases. This highlights the need to

extract parallellism from the first three stages also.

Baseline comparisons
The Probabilistic Network Library (PNL) [5] created by

Intel is a full function, free, open source, graphical models

library released under a BSD style license. It is part of

the collection of Intel’s Open Source Libraries intended to

promote and foster the use of computational intelligence

and optimization techniques in society. The commonly

used version is written in C++ and is sequential. PNL also

has a parallel version which uses OpenMP. We conducted

experiments to explore the scalability of the exact inference

algorithm using the PNL library. The results are shown in

Figure 6. Clearly, the parallel version of the PNL library

does not scale well. We believe that this is due to the fact

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

that simple parallellization of serial code using openMP

does not fully exploit the parallellism in the problem.

Scalability
Parallel Junction Tree Generation: We implemented the

junction tree generation algorithm in OpenMP. The exe-

cution times for the linear, balanced and arbitrary junction

trees of 1024 nodes are shown in Figures 7 and 8. We obtain

speedups of 31, 29 and 24 for linear, balanced and random

Bayesian Networks on 128 processors. Our experiments

show that our implements scale very well with increase in

the number of processors.

Exact Inference: We have a complete parallel solution for

exact inference from a Bayesian network. The solution is

scalable and performs inference in logarithmic time. The

techniques used are described in [10], Figure 9 shows the

overall execution time for exact inference on linear, bal-

anced and random Bayesian networks.

Proportion of time taken in various stages

0% 20% 40% 60% 80% 100%

(4,4)

(4,16)

(10,4)

(10,16)

(w
,r

)

% Time Taken in Sequential Execution

Moralization
Triangulation and Max. Clique Selection
Junction Tree Creation
Potential Table Generation

Figure 5. Distribution of execution time in se-
quential execution

5 Conclusion

We have presented an implementation of a parallel al-

gorithm for junction tree creation. It accepts an arbitrary

Bayesian network as input and outputs a junction tree after

going through the steps of moralization, triangulation and

maximum cardinality search. Our parallel algorithm has a

parallel time complexity of O(n2w/p+wrwn/p+n log p).
Our algorithm is scalable over 1 ≤ p ≤ nw/ log n. We

show by our experiments that the Intel PNL library does not

scale while our implementation scales very well. We note

that although the easily parallelized potential table gener-

ation step dominates the execution time due to being ex-

ponential in the clique width w, the first three stages are

Linear Bayesian Network

1

10

100

1 10 100 1000

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Balanced Bayesian Network

1

10

100

1 10 100 1000

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Random Bayesian Network

1

10

100

1 10 100 1000

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Figure 6. Execution times of PNL on DataStar

also important in certain networks. Our future work will in-

volve the extraction of more parallelism from the first three

stages, as well as parallel techniques to reduce the width of

the cliques generated.

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

References

[1] A. Becker and D. Geiger. A sufficiently fast algorithm for

finding close to optimal junction trees. In Conference on
Uncertainty in Artificial Intelligence (UAI-96), USA, 1996.

[2] B. D’Ambrosio. Parallelizing probabilistic inference: Some

early explorations. In Conference on Uncertainty in Artifi-
cial Intelligence (UAI-92), pages 59–66, USA, 1992.

[3] F. J. Diez and J. Mira. Distributed inference in bayesian

networks. In Cybernetics and Systems 25(1), pages 39–61,

January 1994.
[4] D. Heckerman. Bayesian networks for data mining. In Data

Mining and Knowledge Discovery, 1997.
[5] Intel. Probabilistic Network Library,

http://www.intel.com/technology/computing/pnl/index.htm.
[6] J. JáJá. An Introduction to Parallel Algorithms. Addison-

Wesley, 1992.
[7] A. V. Kozlov. Parallel implementations of probabilistic in-

ference. In Computer 29(12), pages 33–40, Dec 96.
[8] A. V. Kozlov and J. P. Singh. A parallel lauritzen-

spiegelhalter algorithm for probabilistic inference. In SC 94,

pages 33–40, 1994.
[9] S. L. Lauritzen and D. J. Spiegelhalter. Local computations

with probabilities on graphical structures and their applica-

tion to expert systems. In J. of the Royal Statistical Society,

pages 157–224, 1988.
[10] V. K. Namasivayam and V. K. Prasanna. Scalable paral-

lel implementation of exact inference in bayesian networks.

In Twelfth International Conference on Parallel and Dis-
tributed Systems (ICPADS), July 2006.

[11] D. M. Pennock. Logarithmic time parallel bayesian infer-

ence. In Conference on Uncertainty in Artificial Intelligence
(UAI-98), pages 431–438, USA, July 1998.

[12] S. Russell and P. Norvig. Artificial Intelligence: A modern
approach. Prentice Hall, 1995.

[13] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller.

Rich probabilistic models for gene expression. In ISMB,

pages 243–252, 2001.
[14] R. D. Shachter, S. K. Andersen, and P. Szolovits. Global

conditioning for probabilistic inference in belief networks.

In Conference on Uncertainty in Artificial Intelligence (UAI-
94), pages 514–522, 1994.

Linear Bayesian Network

1

10

100

1 10 100 1000
Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Balanced Bayesian Network

1

10

100

1 10 100 1000
Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Random Bayesian Network

1

10

100

1 10 100 1000

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Figure 7. Execution times using OpenMP on
DataStar

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

Linear Bayesian Network

1

10

100

1 10 100

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Balanced Bayesian Network

1

10

100

1 10 100

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Random Bayesian Network

1

10

100

1 10 100

Number of processors

Ti
m

e
in

 s
ec

on
ds

Number of States=16

Number of States = 4

Number of States = 2

Figure 8. Execution times using OpenMP on
Altix SGI

Li
ne

ar
 T

re
e

1

10

100

1000

10000

1 10 100 1000

Number of processors

E
xe

cu
tio

n
tim

e
in

se

co
nd

s

Number of States = 16
Number of States = 4
Number of States = 2

B
al

an
ce

d
Tr

ee

1

10

100

1000

10000

1 10 100 1000

Number of processors

E
xe

cu
tio

n
tim

e
in

se

co
nd

s

Number of States = 16
Number of States = 4
Number of States = 2

R
an

do
m

 T
re

e

1

10

100

1000

10000

1 10 100 1000

Number of processors

E
xe

cu
tio

n
tim

e
in

se

co
nd

s

Number of States = 16

Number of States = 4

Number of States = 2

Figure 9. Overall execution times for exact in-
ference using OpenMP on DataStar

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

