
1

Issues in Designing a Compilation Framework for
Macroprogrammed Networked Sensor Systems

Animesh Pathak and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California, USA
Email: {animesh, prasanna}@usc.edu

Abstract— There is growing interest in the networked sensing
community in the technique of macroprogramming, where the
end-user can design a system using a high level description
without worrying about the node-level details. Since the burden
of customizing the code to the target architecture is moved to
the compiler that translates the high-level description togenerate
node-level codes, research on the issues involved in compilation of
such a program assumes importance. In this paper, we list some
issues that need to be resolved by the designers of a compilerfor
such a macroprogramming framework, including the decisions to
be made in the choice of an abstraction, the design of the runtime
system and the generating of the code for each node. We discuss
some solution techniques that we are currently exploring tosolve
the above problems.

I. I NTRODUCTION

Wireless sensor networks (WSNs) enable low cost, dense
monitoring of the physical environment through collaborative
computation and communication in a network of autonomous
sensor nodes. Slowly but steadily, sensor networks are being
deployed in the real world, and the network sizes, the amount
of data handled, and the variety of applications is increasing.
We shall soon see sensor networks being used is areas ranging
from search and rescue [1] to parking garage monitoring [2].

Most of the current research in this area concerns itself with
solving system level issues that would enable the maintenance
of the infrastructure and perform the task assigned to the
system. The main focus in developing applications on sensor
networks has beenenergy, since the constituent nodes are
battery powered and radio communication is energy-expensive.

Many approaches to programming sensor networks have
been proposed. The majority of the current research revolves
around node-level programming, where the programmer
writes the applicationbottom-up, taking into account factors
like the effect of the network topology, the radio infrastructure
available and the energy capacity of nodes, among others.
A sizable body of work exists currently for providing ser-
vices like localization, time-synchronization, medium access,
routing etc. However, the designer of a new application still
has to think at thenode-levelas opposed to thesystem
level during the design process. As sensor networks are fast
moving from the realm of research to real-world applications,
the end user is increasingly likely to neither have the ex-
pertize nor be willing to spend time learning about issues
like energy-efficient topology maintenance. It is increasingly

This work is supported in part by the National Science Foundation, USA,
under grant number CCF-0430061.

becoming necessary to develop an application development
framework (ADF) for sensor networks, using which end-users
with little or no networking background (geologists, biologists,
petroleum engineers etc.) can achieve fast developement and
deployement of wireless sensor networks.

This relatively new approach, which facilitates top-down de-
sign of sensor network applications by allowing the program-
mer to look at the big picture, is calledmacroprogramming.
The application designer is only concerned here with providing
a high level description of the system, without worrying about
the low level issues discussed above. The majority of the work
is done by acompiler, which takes the above description and
generated customized code for each node depending upon the
network topology and node capability.

We must mention that there is a fair amount of domain-
specifity in macroprogramming techniques and one technique
might not be suitable for all networked sensing applications.
Also, the use of macroprogramming might be an overkill for
simple applications like data-gathering. Our work focusses on
active and passive monitoring applications such as structural
health monitoring and target tracking.

Thecontribution of this paper is twofold. We first describe
in detail the problem of compilation of programs onto sensor
networks and the issues that the designer of such a compilation
framework will have to face. Secondly, we illustrate our
current work towards addressing these issues, namely choosing
an abstraction, providing support to it in the runtime system,
and the actual task of generating code for each node. We
discuss our approach in solving the problems of priority
management, task allocation and protocol selection that the
designer of the compiler will have to solve.

In the first part of this paper (Section II), we discuss related
work in the area of programming sensor networks and the
protocols and services available to application designers. We
state the basics of the compilation problem in Section III and
focus on the issues facing the designer of the compilation
framework in Section IV. The current status of our work
is discussed in Section V. Section VI concludes with a
description of the future directions of our work.

II. RELATED WORK

A vast array of protocols have been developed in the recent
past for application development on sensor networks. This
section lists the most representative of those.

2

Modern sensor networks constitute of nodes ranging from
coin-sized MiCA motes [3] and matchbox sized SunSPOT [4]
nodes to much larger Stargates [5]. Depending on the com-
putation and storage capability of the node, the OS support
could range from TinyOS [6] or Contiki [7] at the lower end
to Linux and WindowsCE at the higher end. The programmer
can also utilize virtual machines like the SUN Squawk virtual
machine [8] and VM* [9].

Medium access is made possible by one of several MAC
protocols specially designed for energy efficiency [10]. Using
these lower layer services, protocols for localization [11] and
time synchronization [12] have been designed. Solutions for
routing on sensor networks include GPSR [13].

The protocols above provide the basic state information
and abstractions fornode-centric programming. At this
level of abstraction, the application developer has to translate
the global application behavior in terms of local actions on
each node, and individually program the sensor nodes using
languages such as nesC [14], C/C++, or Java, depending on the
node capability, operating system, and compiler support. The
programmer can read the values from local sensing interfaces,
maintain application level state in the local memory, send
messages to other nodes addressed by node ID or location,
and process incoming messages from other nodes.

Owing to the difficulties in fast and easy programming
of large systems using only node-level techniques, the area
of macroprogrammingis being explored. Regiment [15] is
a functional programming language based on Haskell, with
support for region-based functions like filtering, aggregation
and function-mapping. Kairos [16] is an imperative, control
driven macroprogramming language where the application
designer can write a single program in a language like Python
with some extra keywords to express parallelism. ATaG [17] is
a data-driven macroprogramming model that views the sensor
network application as set of tasks running on the nodes,
interacting via the production and consumption of data items.
There are also efforts to make the sensor network’s data
available to the user in an interface such as SQL [18] or
Excel [19].

With the developement of these languages, work onsystem
level supportfor macroprogramming has also started. The
TML intermediate language developed by Newton et. al. [20]
provides an abstraction of the underlying system (e.g. TinyOS)
in the form of a distributed token machine which they are
using for compiling macroprograms written in Regiment. The
Data Driven ATaG Runtime (DART) proposed by us [21] is a
component based runtime system to support programs written
in ATaG.

Finally, we would like to note that to the best of our knowl-
edge, there is no publicly available compiler that supports
macroprogramming.

III. T HE COMPILATION PROBLEM

As is evident in the previous section, the current body of
research is only beginning to understand the important of
programming these large, possibly heterogeneous systems as
a whole. Although compilation has been well known in both
traditional computer science and VLSI design communities,

its meaning is not clear in the context of sensor networks.
We believe that it is relevant to clearly define the problem of
compiling programs onto sensor networks in a broad sense for
further work in this domain. The definition is as follows:

Starting with a clear idea of the networked sensing ap-
plication, use a high-level specification of the macroprogram
and topology of the network on which the application has
to be deployed, and generate a node-specific code for each
constituent node in the system such that the resultant system
performs the task as specified in the macroprogram.

Note that bytopology above, we mean details about the
placement, mobility, power capacity and computation, sensing
and communication abilities of the constituent sensor nodes
in the system. It is important thata)The programmer is not
bothered with these details andb) The compilation framework
not only keeps in mind the constraints imposed by the specific
target topology but also extracts as much performance as
possible by appropriately allocating tasks keeping in mindthe
specifics of the given system.

In practice, it is not enough to simply generate a system that
works. There are other desirable properties of such a process,
the first one beingease of use. The compilation process should
also befast, allowing easy re-compilation and re-deployment
of code in case of addition of new nodes to the system or a
change of system goals. Since our target platform consists of
nodes that are not very reliable,fault toleranceis a necessary
attribute. Another set of desirable properties, namelyenergy
efficiencyandenergy balance, arise due to the fact that these
systems are mostly run on batteries and the system lifetime is
severely affected by the choice of communication techniques.

We would like to clarify that this definition of compilation
is drastically different from the one we are used to in course
of compiling a C program. For example, the resultant code is
responsible for not only the computation but also the commu-
nication performed at each node. The other difference is the
fact that the process involves the appropriate configuration of
the runtime system. The abstraction used should also capture
the domain-specific attributes of sensor networks.

The problem can be viewed as one ofplacing tasks on
a graph, variants of which have been extensively studied
in the operations research, distributed computing and the
VLSI design communities. While we believe that a large
amount of wisdom can be applied to compiling applications on
sensor networks from existing work in the above areas, care
must be taken to keep in mind the differences between the
systems targeted by existing research in these fields and sensor
networks. We discuss some of those issues in the following
section.

IV. I SSUES INCOMPILATION

In this section, we discuss in detail the issues raised in the
previous section related to the compilation problem.

A. Abstraction of the System

One of the first challenges in designing a macroprogram-
ming system for sensor networks is the choice of the program-
ming language to describe one’s application. An integral part
in the choice of the language is played by the abstraction of the

3

system provided by the compilation framework. For example,
the choice of the language for programming a distributed
shared memory system will be difference from that for a
distributed database. We have discussed some approaches
taken by researchers in the community in Section II.

Since sensor networks are essentially composed of a set of
wirelessly connected compute nodes, the first impulse is to
draw wisdom from the large body of work in the parallel and
distributed computing area to solve the problems in this area.
However, one must remember the differences between sensor
networks and the system traditionally meant to run distributed
applications.

The first set of differences lie in thephysical attributes
of the nodes themselves. The constituent nodes in a sensor
networks are extremely constrainted. The typical RAM size of
a small sensor node (TelosB) is 10KB and the Flash memory
is 48KB. The nodes work on batteries and communication
is much more costly than computation in terms of energy,
a fact almost completely ignored in traditional distributed
computing. Since the systems are expected to have lifetimes
of months, if not years, energy considerations play a large
role in sensor network design. To add to the complexity, there
are sensor networks in place that use more than one type of
node, some of which mightnot be constrained at all in terms
of energy and processing power. The compilation framework
should be able to address this heterogenity as well.

The second set of differences lie in waydata is generated
and handled in sensor networks. The typical sensor network
application should bespatially aware. By spatial awareness
we mean that the task should be able to utilize the fact that
the data from sensor nodes that are in its close proximity
is strongly correlated. Also, processing of data should be
performed as close to source as possible in a sensor network to
save on energy. Another special property of these applications
is reactive processing. Since the system processes data that is
produced in the network itself, there might be long periods of
hibernation for most of the system while nothing “interesting”
has been sensed followed by a period of intense activity
when, say an intruder walks into the periphery of the system.
We strongly believe that any abstraction of sensor networks
should necessarily be able to export these two attributes to
the programmer. For example, the programmer should be able
to mention process-chains such as “when the temperature of
a region of at least 10 sq. meters rises above 150 degrees F,
raise an alarm”.

Another desirable feature to be abstracted out is the fact that
the end-user is not interested in the data at a particularnode
but in a particularregion. A clear limitation of the previous
approach comes to the fore when we take into account nodes
that can focus only on a certain part of the total area they can
sense. For example, asking for a camera on a certain node to
point in a particular direction might cause a problem if two
tasks give it conflicting instructions. This issue is sortedin a
simple manner when the focus is only on the image of the
area, where another camera-equipped node can provide the
desired data for the second task.

Further, an important question to be answered while decid-
ing on the level of abstraction for sensor systems is “how much

work will be off-loaded to the runtime and the compilation
framework?”. For example, the programming abstraction can
model the sensor network as a shared memory where every
node has access to all the data in the network. A spatially-
aware PRAM model can then be used to program the sensor
system. This places an undue amount of pressure on the
runtime system which will then have to maintain consistency
between the data items in various nodes. On the other hand,
an abstraction may expose too many low level details to
be of any help to the non-expert end user. An example of
this would be making the programmer worry about reliability
issues in the network and write programs that will correctly
work even if nodes fail. This is akin to making a C programmer
responsible for page faults in a system. We believe that such
responsibilities should be handed over to the compilation
framework and the runtime environment.

Finally, a good abstraction will beplatform-independent-
with the programmer not worrying about the nodes used -
but at the same time it should exposeknobsusing which the
application designer can tune the performance of the overall
system if he/she so chooses.

To cater to the need for a clean abstraction for sensor
networks, we have developed a programming language that
uses the abstraction of a networked sensor system based
on task-graphs [17]. We believe that such a representation
is extremely relevant for a networked sensing system and
provides the apt amount of abstraction to the end-user so as
to neither over- nor under-burden the other components of the
macroprogamming framework. Details on our work in this area
are discussed in Section V-A.

B. Runtime System Design

The cost of having a powerful programming paradigm is
paid for by a non-trivial runtime system that provides the layer
of abstraction to the programming model. This is similar to
having an operating system to manage issues like memory
management as opposed to handling it in the user program.

The design of a runtime system for sensor networks again
differs from previous research as the designer has to now
take care of the inherent attributes of sensor networks. The
issue that is of utmost importance here is that ofenergy
efficiency. Another issue in designing such a runtime system
is the possibleheterogeneityof the network. For example, a
large sensor system may includes nodes which are commu-
nicating wirelessly using protocols like S-MAC, larger nodes
using 802.11, and still larger, internet-connected nodes using
ethernet. The runtime system design should not need to change
much from node to node due to this heterogeneity. The runtime
system should also take into account the twin properties of
spatial awareness and reactive processing that we discussed
earlier.

In addition to possessing these properties, we believe that
a good runtime system should bemodular. This approach
has tremendous benefits with regards to both code generation
and system improvement. With modular runtimes, the code-
generating component of the compiler will generate mostly
the same code for each node and will need to work on
only a fraction of the code, thus making the code generation

4

process much faster. Owing to a component based approach,
researchers will also be able to focus on aspects of the runtime
such as task management separately from other components.
Such a design also allows the use of essentially the same
runtime system software for functional simulation and the
actual deployment, by replacing only a subset of the modules
and leaving others intact.

Finally, since we are adding a layer of abstraction to the
system, there will be some loss of performance in using a
runtime system as compared to using code that is written with
network specifics such as the number, type and location of
nodes in mind. The runtime system designer thus has to make
sure to extract as much performance as possible, since he is
already losing out due to the non application-specific nature
of the runtime system.

Our initial work in this area has resulted in a template based
runtime system [21]. DART, our runtime system, is extremely
modular and consists of components which providesplug and
play support for network protocols. We discuss it in detail in
Section V-B.

C. Code Generation

Since the macroprograms are written without taking into
account of the actual topology and the node operating system,
code generation is an essential part of system design and
implementation.It should be understood that the compilation
of macroprograms for networked sensing applications is very
different from the kind of compilation performed by a standard
compiler like gcc. We call this stepcode generation, since the
result of this process is not binaries, but node-level programs
that need to be compiled into binaries by traditional compilers
like gcc and javac. Note that we do not cover the issues
in customizing the resulting code into node-specific binaries
in our work. Also, although the issues discussed in this
section are based on the abstract task graph model, they
are also relevant in a broader perspective. A much more in-
depth analysis of these issues is presented in Section V-C,
since a full understanding of them needs the knowledge of
our programming language and runtime system, which are
discussed in the next section.

Seen from a high level, the task of compiling an ATaG
program is mainly a problem oftask-allocation on a graph,
given a set of constraints on energy etc.. Such problems have
been solved extensively in operations-research literature as
versions of thefacility location problem, where a certain
number of facilities (police stations) need to be placed in
a terrain (city) so as to achieve certain optimization goals
(minimizing the maximum latency). The difference in a sensor
network context is that energy is a big issue. Further, some
mission critical applications (e.g., forest fire alarm system)
may value latency more than energy in certain situations. The
question to be answered by the compiler then is - how to place
the given tasks on these nodes to achieve all these goals of
coverage, latency and energy efficiency? As discussed in the
following section, the firing rules of tasks further complicates
the problem. Another task to be performed during compilation
is that ofprotocol selection, where the best protocol for each
node is selected. For example, the compiler needs to choose

which routing protocol will be used to provide the end-to-end
send and receive functionality, and which protocol will be used
to maintain any virtual topologies (tree, 2-D mesh) needed by
the applications. We show in Section V-C how this reduces to
a simple maximization problem and is easily solved. Another
problem that will be faced during the design of the compiler
is a way ofassigning priorities to the many tasks running on
the node, since many of them will be triggered when a data
item is available.

The next section provides insight into our current work
towards developing solutions for them.

V. CURRENT STATUS OF OUR WORK

This section discusses the current status of our work in
addressing the major challenges in the design of a macro-
programming framework for a networked sensor system. We
give a brief summary of our work on the Abstract Task
Graph (ATaG) [17], a programming language for specifying
the behavior of sensor networks and DART [21], the Data-
Driven ATaG Runtime that provides system level support to
systems compiled from ATaG programs. Owing to shortage
of space, we only provide short summaries of these before
discussing our most current ideas, which are in the area of
code-generationfor ATaG programs. The reader is referred to
the works referenced above for a more in-depth understanding
of ATaG and DART.

A. The Macroprogramming Language

The Abstract Task Graph (ATaG) provides amixed
declarative-imperative way of specifying networked sensing
applications. The programmer needs to specify abstract tasks
that produce or consume abstract data items. Both the tasks
and channels connecting them to the data items are annotated
to exercise more control over the program. By mixed declar-
ative and imperative programming, we mean the an ATaG
program in created in two steps. First the designer specifies
the abstract task graph (the declarative part), and the ATaG
IDE generates glue code for the final app. The designer then
specifies the actual code for each task in a high level language
like Java or C, this being the imperative part. These tasks
will be fired as and when needed by the description of the
task graph. ATaG isarchitecture independent, and the code-
generation process takes care of node specific issues. ATaG is
also designed to becomposable- meaning that existing ATaG
programs can easily be combined to create more complex
programs.

As an example, consider an ATaG program fortemperature
monitoring . Temperature readings from the entire network are
to be collected every 30 minutes at a designatedroot node. The
temperature gradient between every pair of neighboring nodes
is to be monitored every minute, and an alarm notification is to
be raised immediately if the gradient exceeds 5 degree Celsius.
Figure 1 is a complete ATaG program for this application,
which shows the types of tasks (ovals), types of data items
(square rectangles) and their I/O dependencies or channels
(arrows). The annotations (shaded rectangles) indicate the
triggering conditions of tasks, and also where they are to be
instantiated. The channels are annotated with theinterest of
each task to a data item.

5

Global-
Sender

Temperature

local
all-nodes

[nodes-per-instance:1]
[periodic:30]

[one-on-node-ID:0]
[any-data]

Global-
Collector

Monitor

Gradient

[nodes-per-instance:1]

[periodic:1 any-data]

1-hop local local

AlarmEvent

all-nodes

[one-on-node-ID:0]
[any-data]

Alarm-
Actuator

local

Fig. 1. An ATaG program for temperature monitoring

B. The Runtime Support

Figure 2 is a high level overview of the modular struc-
ture of the Data-driven ATaG Runtime(DART). The overall
functionality is partitioned into a set of modules; where each
module offers a well-defined interface to other modules in
the system, and has complete ownership of the data and the
protocols required to provide that functionality.

UserTask1 UserTaskn

Sensors Actuators

...

Application level

System level

Maintain neighborhood

information, virtual

topologies, logical

namespace, etc.

NetworkArchitecture

Store task/channel

annotations and task

code, spawn tasks

ATaGManager

getData() and

putData(),

concurrent access,

reference counts

DataPool

Translate annotations,

dispatch data to other

nodes

Dispatcher

Routing, medium

access, physical layer

protocols

NetworkStack

Transceiver

Fig. 2. The structure of the DART runtime system

The ATaGManagerstores the information from the user-
specified ATaG program that is relevant to the particular
node. This includes task annotations such as firing rule and
I/O dependencies, and the annotations of input and output
channels associated with the data items that are produced
or consumed by tasks on the node.Datapool is responsible
for managing all instances of abstract data items that are
produced or consumed at the node.NetworkArchitectureis
responsible for maintaining all information about the realand
virtual topology of the network.NetworkStackis in charge of
communication with other nodes in the network, and manages
the routing, medium access, and physical layer protocols.
Dispatcher is responsible for disseminating data items that
are produced on the node to other nodes in the network as
specified in the ATaG program. In addition, aStartupmodule

t

GS

2 3

5

4

1

ABSTRACT TASK GRAPH

NETWORK GRAPH

Compile

GC

g

M AA

ae
1

3

2 4

5

GS

GS

GS GS

GS

GC

AA M

MM

M

M

tg

g

gg

g

ae

t

ae

t

ae

t

ae
t

ae

root

Fig. 3. Compiling an ATaG program for a particular network topology

is responsible for initializing node-level services such as the
transceiver functionality, the protocols for topology discovery,
etc., and then starting the initial set of application-level tasks.
The remainder of the execution is driven by the results of the
getData() andputData() calls made by the tasks, and
the data items arriving over the network interface for addition
to the data pool.

C. Code Generation and Optimizations

The input of the code generation process consists ofa) The
abstract task graph representation of the application andb)
The network topology. In our proposed work, we shall use the
Generic Modelling Environment[22] to create the task graph
that will be compiled onto the target network.

For each node, theoutput of the compiler will consist of the
code fora) The modules of the DART runtime system andb)
The tasks to be instantiated on that particular node. We intend
to use JavaTM as our output language. The state of the art of
the Java based sensor systems is discussed in Section II.

The actualnode-specific code generationstarts with a
syntax check, followed by schedulabilityfor tasks. Once the
task allocationand theprotocol selectionis done, the DataPool
on each node is configured and the code is ready to be
compiled using the Java compiler and be loaded on individual
nodes. Note that there is no deadlock detection during the
compilation process. Figure 3 illustrates the compilationof
the ATaG program of Figure 1 onto a network of 5 nodes,
where node 5 is designated as the root.

We now discuss in detail our work on the issues faced during
this stage of the compilation process.

Protocol Selection:When programs are composed into more
complex programs, there might be a situation where a pro-
tocol best suited for one may be completely antagonistic to
the other’s goal. Formally speaking, the general version of
this problem is: Givenm applicationsa1, a2, . . . , am and
n protocolsp1, p2, . . . , pn and a “reward”r(a, p) for each
application-protocol pair, find the protocolp that maximizes∑

i=m

i=1
r(ai, p). The problem is a maximum finding problem

and can be solved inθ(mn) time. The important problem is
assigning appropriate values to the “reward” function.

Further, considering the large memory capacity of our target
platform, we may actually be agreeable to having the codes
for multiple protocols in each node. The question then changes
to one of switching to a certain protocol at certain times. For
example, how does one make it so that when a fire breaks out,

6

all nodes help in routing that information to the base node, but
work normally otherwise?

Scheduling and Priority Management:
One of the goals of ATaG is to make sure that a task that

is fired runs to completion before another task dependent on
a data item produced by it fired. We model the task graph
as a tree rooted at the periodic task and assign priorities ina
breadth-first manner. This approach works for relatively simple
ATaG programs which have only one timer-triggered task, and
where all tasks are connected. This approach will not work
when ATaG programs arecomposed, by concatenating the
code of two ATaG programs. We are working on techniques
to model this situation in order to assign priorities for tasks of
composed ATaG programs. Another possible issue with such
schemes is due to the fact that the number of priorities in
JVM is fixed (10 in J2SE, for example). We are working on
developing adynamic priority assignment schemethat reuses
the “freed-up” higher priorities.

Task Allocation: Since the ATaG program does not place
any hard constraints on the placements of individual tasks,
it may seem to the novice compiler designer that tasks can
be placed arbitrarily. While this is true and will not affect
the correctness of the ATaG program, it has the potential
of severely hampering the performance of the system. The
reason lies in the spatial nature of all computing done on
sensor networks. In the following section, we discuss some
open issues in theoptimizationspossible during the task
placement stage of the compilation process. Although our
current work does not focus onfault tolerance, we are aware
of work on networked sensing algorithms which incorporate
fault tolerance [23]. We will utilize the techniques in our future
work on compilation.

We believe that one of the important optimization goals
while placing tasks isenergy-balance, i.e. making sure that
all the nodes spend nearly the same energy during the applica-
tions execution. This constraint leads to a hitherto-unexplored
version of the classicalfacility location problem, where the
traditional metrics have been latency and coverage. We have
some early results on allocating simple tasks on binary trees
and work is underway for exploring more complex graphs.

Another level of complexity is added in sensor networks by
the fact that the tasks exhibitcomplex dependencieson each
other. Some tasks are dependent on more than one task, and
can be triggered based on the data generated by one or more
tasks, so the representation is not as easy as that of a data-
flow diagram. In fact, the triggering rules make it impossible
to assign an optimal task placement offline. We are currently
exploring ways to capture this behavior of tasks so as to design
algorithms for their energy-efficieny placement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we defined the compilation problem in the
context of programming large networked sensor systems and
discussed the issues involved in the same. We already have
a proof-of-concept system using the Java virtual machine
running on a single machine. We are actively working on
getting the first full version of the compiler out. At the
conference we expect to present the results from a fully

functional compiler which can generate code from simple
ATaG programs (using a subset of the full list of primitives)
to be deployed on a JVM environment. The compiler will be
available for download under the GNU Public Licence.

REFERENCES

[1] S. M. J.H. Huang, S. Amjad, “Cenwits: A sensor-based loosely coupled
search and rescue system using witnesses,” inProceedings of ACM
SenSys 2005, San Diego, CA, 2005.

[2] J. Liu and F. Zhao, “Towards service-oriented networkedembedded
computing,” Microsoft Research, Tech. Rep., 2005.

[3] M. Horton, D. Culler, K. Pister, J. Hill, R. Szewczyk, andA. Woo,
“MICA: The commercialization of microsensor motes,”Sensors Maga-
zine, http://www.sensormag.com/, April 2002.

[4] SunTM Small Programmable Object Technology (Sun SPOT),
http://research.sun.com/projects/dashboard.php?id=145.

[5] Crossbox StarGate, http://www.xbow.com/Products/XScale.html.
[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System architecture directions for networked sensors,” in 9th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in1st IEEE
Workshop on Embedded Networked Sensors, 2004.

[8] D. Simon and C. Cifuentes, “The squawk virtual machine: JavaTM

on the bare metal,” inOOPSLA ’05: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM Press, 2005,
pp. 150–151.

[9] J. Koshy and R. Pandey, “VM*: Synthesizing scalable runtime environ-
ments for sensor networks,” inProceedings of ACM SenSys 2005, San
Diego, CA, 2005.

[10] P. Naik and K. M. Sivalingam, “A survey of mac protocols for sensor
networks,”Wireless sensor networks, pp. 93–107, 2004.

[11] A. Savvides, C.-C. Han, and M. B. Srivastava, “Dynamic fine-grain
localization in ad-hoc networks of sensors,” inProc. 7th Annual
ACM/IEEE International Conference on Mobile Computing andNet-
working, 2001.

[12] J. Elson and D. Estrin, “Time synchronization in wireless sensor net-
works,” in International Parallel and Distributed Processing Symposium
(IPDPS), Workshop on Parallel and Distributed Computing Issues in
Wireless and Mobile Computing, April 2001.

[13] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” inProc. ACM/IEEE MobiCom, August 2000.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” inProceedings of Programming Language Design and Im-
plementation (PLDI), 2003.

[15] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in1st Intl. Workshop on Data Management
for Sensor Networks (DMSN), 2004.

[16] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming wire-
less sensor networks using kairos,” inIntl. Conf. Distributed Computing
in Sensor Systems (DCOSS), June 2005.

[17] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract
task graph: A methodology for architecture-independent programming
of networked sensor systems,” inWorkshop on End-to-end Sense-and-
respond Systems (EESR), June 2005.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
An acquisitional query processing system for sensor networks,” ACM
Transactions on Database Systems (TODS), 2005.

[19] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: aframework
for declarative queries and automatic data interpretation,” Microsoft
Research, Tech. Rep. MSR-TR-2005-45, April 2005.

[20] R. Newton, Arvind, and M. Welsh, “Building up to macroprogramming:
An intermediate language for sensor networks,” inProceedings of the
Fourth International Conference on Information Processing in Sensor
Networks (IPSN’05), April 2005.

[21] A. Bakshi, A. Pathak, and V. K. Prasanna, “System-levelsupport for
macroprogramming of networked sensing applications,” inIntl. Conf.
on Pervasive Systems and Computing (PSC), 2005.

[22] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/projects/gme.

[23] M. Singh, “Models and algorithms for distributed computation in
wireless sensor systems,” Ph.D. dissertation, Universityof Southern
California, 2005.

