
Srijan: A Graphical Toolkit for WSN Application Development

Animesh Pathak and Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

Viterbi School of Engineering
University of Southern California

Los Angeles, California, USA 90089
{animesh, prasanna}@usc.edu

Abstract

Macroprogramming is an application development
technique for wireless sensor networks (WSNs) where
the developer specifies the behavior of the system, as
opposed to that of the constituent nodes. Although
several languages for macroprogramming have been
proposed recently, the area of easy-to-use graphical
tools for macroprogramming in real environments is
still largely unexplored.

In this paper, we present Srijan, a toolkit that en-
ables application development for WSNs in a graphical
manner using data-driven macroprogramming. It can
be used in various stages of application development,
viz. i) specification of application as a task graph using
a graphical interface, ii) customization of the auto-
generated source files with domain-specific imperative
code, iii) specification of the target system structure,
iv) compilation of the macroprogram into individual
customized runtimes for each constituent node of the
target system, and finally v) deployment of the auto
generated node-level code in an over-the-air manner
to the nodes in the target system.

The current implementation of Srijan targets the
recently released Sun SPOT sensor nodes, and is avail-
able for public download. Our experiments show that
using toolkit can drastically reduce the time and effort
involved in developing real-world WSN applications.

1. Introduction

Sensor network macroprogramming aims to aid the
wide adoption of networked sensing by providing the
domain expert the ability to specify their applications
at a high level of abstraction. This is in contrast to the

This work is partially supported by the National Science Foundation,
USA, under grant number CCF-0430061 and CNS-0627028.

initial days of wireless sensor networks (WSNs), when
application developers had to manually customize a
set of node-level protocols to achieve system-wide
goals, thus making the process difficult for the domain
experts, who were not well-versed in the intricacies of
distributed computing.

Since the goal of WSN macroprogramming research
is to make application development easier for the do-
main expert, we believe that it is absolutely necessary
to make easy-to-use toolkits for macroprogramming
available to them in order to both make their task
easier, as well as to gain feedback about the macro-
programming paradigms themselves. Although various
efforts exist in literature for making WSN application
development easier (see Section 5), very few general
purpose graphical toolkits are publicly available for the
application developer to choose from. We believe that
toolkits supporting alternative paradigms will greatly
aid the application developers, who will have a wide-
range of programming styles to choose from, depend-
ing on application, as well as personal stylistic choice.

In this paper, we present the design and implemen-
tation of Srijan – a graphical toolkit for WSN ap-
plication development (named after the Sanskrit word
for creation). Using it, the developer can create the
applications using the data-driven ATaG [1] macro-
programming language. Section 2 provides a brief
overview of ATaG, and introduces the building heating,
ventilation and air-conditioning (HVAC) application
we use in this paper as an illustrative example.

Contributions. The main contribution of this paper
is an easy-to-use graphical toolkit for reducing the
burden of each stage of WSN application development.
In Section 3, we provide details of the design of our
toolkit, which consists of the following components:

• Task Graph Specification GUI - using which
the developer can specify the details of the ATaG

task graph representing the application.
• Customizable Code Auto-generator - which

generates templates of imperative code that the
developer can then fill-in.

• Target System Description GUI - for loading
and editing the description of the target WSN in
a graphical manner.

• Compilation and Deployment Module - for
creating customized node-specific code, building
node-level binaries, and deploying them onto the
constituent nodes in the system.

We have also ported the DART runtime system of
ATaG to the Sun SPOT [2] sensor nodes, a recent
release from Sun that is rapidly emerging as a popular
platform for WSN application developers. We have
modified the ATaG compiler so that it produces task
templates in J2ME, as opposed to the J2SE code
generated by the earlier version. Additionally, we have
also made the sensors and actuators of the Sun SPOT
nodes available to the Srijan users via a set of easy-
to-use libraries. By making Srijan a free download,
we intend to target the above community, as well as
system programmers who wish to contribute to our
runtime system libraries.

We would like to note at the outset that the focus
of this paper is on the toolkit and the graphical user-
interface provided by it, and not on the compilation of
macroprograms. Compilation of ATaG programs, and
the optimizations involved in the process, are discussed
elsewhere (e.g., in [3]). Srijan can easily be modified
to support any enhancements in the ATaG compiler
itself.

In Section 4, we show results from our work in
developing two realistic applications – building en-
vironment management (HVAC) and highway traffic
management. Our experiments show that using Srijan,
application developers can specify and deploy their
applications in a timely fashion, while having to write
∼ 2% of total system code (or < 10% of application-
specific code). Section 6 concludes with our plans for
future work.

2. Background

To provide the reader the necessary background,
we summarize the salient features of ATaG in this
section. Readers familiar with the programming style
of ATaG can skip to Section 2.2, where we discuss an
application that we will use as an illustrative example
in this paper.

2.1. ATaG Macroprogramming Framework

The Abstract Task Graph [1] (ATaG) macroprogram-
ming framework consists of an extensible, high-level
programming model, a corresponding node-level run-
time system, and a dedicated compilation framework to
generate node-level code. An ATaG program is written
in a data-driven manner using a mixed imperative-
declarative programming model. The declarative por-
tion of an ATaG program – a task graph – consists of
the following components (see Figure 1 for details).

• Abstract Data Items: The main currency of in-
formation in an ATaG program. They represent
the information in its various stages of processing
inside a WSN.

• Abstract Tasks: These represent the processing
performed on the abstract data items in the sys-
tem. Tasks do not share state with other tasks,
and can communicate only by producing and
consuming data items. Tasks are annotated with
instantiation rules, specifying where they can be
located, as well as firing rules, specifying whether
a task is triggered periodically or due to the
production of certain data item(s).

• Abstract Channels: These connect tasks to the
data items consumed or produced by them, and
are annotated with logical scopes [4], which ex-
press the interest of a task in a data item.

The above task graph is complemented by impera-
tive code for each data item and task. The developer
uses this code to specify the processing that occurs
when a task fires. Note that due to the data-driven
programming model provided by ATaG, this impera-
tive code does not have any inter-task communication
function calls other than consuming or producing data
items (using the handleDataItemProduced()
and putData() primitives respectively).

The Data-driven ATaG Runtime (DART) [5] pro-
vides the necessary abstraction of a distributed data-
pool for ATaG programs while hiding the underlying,
platform-specific details. The functionality is divided
into a set of modules to facilitate customization to
various deployments. The ATaGManager stores the
declarative portion of the user-specified ATaG program
that is relevant to the particular node. The DataPool
is responsible for managing all instances of abstract
data items produced or consumed at the node. The
LogicalNeighborhoods module handles data delivery
by implementing a dedicated routing scheme. Finally,
the NetworkStack is in charge of communication with
other nodes in the network, and manages the physical
layer protocols.

Humidity SamplerHumidity Collector Actiondomain HVAC Controllerlocallocal domainTemperature Sampler Temperaturelocal domain[nodes-per-instance:1@temperatureSensor][periodic:10] [nodes-per-instance:1@humiditySensor][periodic:10] [nodes-per-instance:1@hvacActuator][anydata]Instantiation RuleFiring RuleAbstract Task Channel AnnotationsAbstract Data[partition-per-instance:1/room][anydata]
Figure 1. An ATaG program for building environ-
ment management.

The input to the ATaG Compiler [3] consists of the
ATaG task graph, and the imperative code for each
task and data item. In addition, the details of the
target system, including the node locations and list of
attached sensors and actuators, is also provided. The
compiler then decides the placement of the tasks of
the individual nodes. The output of this process is
deployable code for each node, consisting of the tasks
assigned to it. Additionally, the compiler generates
customized DART modules for each node, containing
the logical scopes where the data produced at the node
is to be sent.

2.2. Reference Application

In [6], the authors described how ATaG’s data-
driven macroprogramming approach can be used to
express a wide range of WSN application behavior,
including a) Hierarchical Data Gathering – similar
to the initial data-gathering WSN applications, b)
Localized Interactions – where a set of nodes correlate
their sensed data to make a decision, and c) Actuation
Driven by Sensing – where the data sensed by nodes
equipped with sensors is used to trigger the actions of
other nodes equipped with actuators in a heterogeneous
system.

For illustrating the ease-of-use of developing appli-
cations in Srijan we focus on the following building
environment management application (HVAC), similar
in spirit to other applications in the literature [7]. We
consider a set of nodes spread across a building, with
each node possibly attached to a temperature sensor,
a humidity sensor and an actuator that can control
the temperature and humidity of a region. The aim
of the system is to maintain desirable temperature
and humidity levels in each room of the building, by
correlating the information from the sensor installed in
the room, and using it to drive actuation.

Figure 1 describes our application as an ATaG task
graph. To address the heterogeneous nodes in the
system, we define the placeholders temperatureSen-
sor, humiditySensor, and hvacActuator according to

Task Graph [XML/GME]
Auto-GeneratedImperative Code [Java]

Network Description
Task Graph Specification GUI[Sec. 3.1]

Customizable Code Auto-generator[Sec. 3.2]
Target System Description GUI[Sec 3.3]
Compilation and Deployment GUI[Sec 3.4]Deployment on Nodes [J2ME bytecode]

Figure 2. Overview of Application Development
using Srijan

the sensors and actuators that may be attached to
the system’s nodes. The Temperature Sampler and
Humidity Sampler tasks – instantiated on the corre-
sponding node type – sample their surroundings and
generate the Temperature and Humidity data items
periodically (see their periodic:10 firing rules).
To process the data produced by them, we placed a
Collector task in each room. To express this, we use
the partition-per-instance:1/room instan-
tiation rule. This partitioning can be used as a domain,
and binds the Collector task to the Humidity and
Temperature data items produced on the same floor.
Upon processing the data, if needed, the Collector
produces a command for the actuating tasks in the
form of an Action data item. The HVAC Controller
task is placed on all nodes of type hvacActuator
and responds to the Action data item by adjusting the
temperature/humidity controls.

3. Components of the Toolkit

Figure 2 shows the various components of our
toolkit that the application developer can use. The clear
arrows show the inputs, while the gray arrows show the
output of each component. The various components of
Srijan are as follows.

3.1. Task Graph Description GUI

The ability of specifying a WSN application in a
graphical manner as interconnected task and data items
is a major part of ease-of-use provided by ATaG. In
Srijan, we have customized the Generic Modeling En-
vironment (GME) [8] for providing this facility to the
application developer. Figure 3 shows the application

Panel for drawing the task graph
Parts browser Panel for editing attributes

Figure 3. Building Environment Management
(HVAC) application in our task description GUI

Figure 4. GME MetaModel for ATaG

introduced in Section 2.2 specified using our GUI.
The developer can drag and drop parts representing
the tasks, data items, and channels of the applica-
tion from the parts browser onto the workspace, and
draw connections between them to show their inter-
relationships. The annotations of each component can
then be set by clicking on it and editing the attributes
in the attribute editing panel. Once the details of the
task graph are specified, Srijan generates an XML file
representing it by invoking the PatternProcessor model
interpretor of GME. This XML representation of the
task graph can then be used by the other components
of our toolkit, discussed later in this section.

Our work towards providing the above facilities to

the programmer consisted of two parts. Firstly, we
developed a metamodel in GME for ATaG, (Figure 4)
describing the possible attributes of each component
of an ATaG program, as well as the relationships
between them. Secondly, we developed a pattern file
for ATaG, which is be used by the GME pattern
processor to generate a properly formatted XML file
given a particular ATaG task graph.

3.2. Customizable Code Auto-generator

As stated previously in Section 2, an ATaG program
consists of two parts - the task graph representing the
properties and inter-relationships of the abstract tasks
and data items, and imperative code expressing the
details of each task and data item. This component
takes the XML file generated by the GME pattern
processor and generates the following files:
• IDConstants.java: This contains the declarations

mapping each task and data item’s ID to a static
variable to enhance readability.

• [DataName].java: For each data item, Srijan
creates a file with the needed Java headers, and
methods for serialization and deserialization of
the data item. The file also contains dummy code
for the contents of the data item itself, with
guidelines on how to edit it.

• [TaskName].java: For each abstract task, Sri-
jan creates a file which describes the task
as a Java class. For periodic tasks, the code
for ensuring that the task fires with the de-
sired frequency is pre-built into the auto-
generated code. The user only needs to edit the
handleExpiryOfTimer() method. For tasks
that are fired due to the presence of data item(s),
the auto-generated code contains sample code for
methods for handling the data item produced.
In both cases, this component generates sample
code for calls to the putData() method of the
runtime system, using which the developers can
make the tasks interact with the DataPool.

• PreBuiltAtagManager.java This file contains the
code for determining the logical scope corre-
sponding to each data item, so that the runtime
can deliver it accordingly as it is produced. Note
that this file does not need any editing from the
application developer.

The code generated at this stage by Srijan is com-
patible with the widely used NetBeansTMJava IDE,
and can be easily accessed in it for editing and
syntax check. Figure 5 shows the file auto-generated
by Srijan for the Collector task of the HVAC ap-
plication. Note that the developer only has to insert

/** Collector.java */
...
public class Collector implements Runnable {

...
public void run() {

/*Checking for each DataItem, to see which one was produced*/
DataItem t_dataItem;
if((t_dataItem = m_dataPool.getData(IDConstants.T_COLLECTOR,

IDConstants.D_TEMPERATURE)) != null){
Temperature recvdTemperature =

(Temperature) t_dataItem.core();
this.handleTemperatureProduced(recvdTemperature);

}else if((t_dataItem =
...

}
}

private void handleTemperatureProduced(Temperature r_Temperature) {
/* Sample code - please write your own */
/* You can also use the putData Code Samples below */

int var1 = r_Temperature.getvar1();
m_myState.debugPrint("[Collector]Got a Var1 " + var1);

}
private void handleHumidityProduced(Humidity r_Humidity) {

...
}

/* Sample code for producing dataItem Action
Action m_Action = new Action();
m_Action.setvar1(this.m_myState.getMyId());
m_dataPool.putData(new DataItem(IDConstants.D_ACTION,
IDConstants.T_COLLECTOR, m_Action));

*/
}

Figure 5. Auto-generated code for the Collector task

code in the handleHumidityProduced() and
handleTemperatureProduced() methods. Sri-
jan also provides code samples to copy-paste for gen-
erating the Action data item produced by the Collector.

3.3. Target System Description GUI

Although WSN applications are developed for a
specific purpose (e.g. HVAC management), users of
ATaG can use the same ATaG programs for a variety
of target deployments (buildings). The ATaG compiler
takes the target system description as input while
allocating tasks, and performs optimizations to enhance
desired metrics like system lifetime. This component
of Srijan enables the application developer to specify
the structure of the target system in a graphical manner.

The information about the nodes in the target system
can either be uploaded into Srijan en-masse as a text
file, or by using the GUI to add individual nodes
and editing their attributes such as position, network
address, and sensor and actuators attached.

The top part of Figure 6 shows the components
of our toolkit used for specifying the target system
structure. The GUI consists of two main components,
a display screen at the left side of the main window and
a tabbed control panel which contains three sub-panels
- Editor, Viewer, and Compiler.

The editor and viewer panel aim to provide facilities
to give the application developer an intuitive view of
a system while configuring it. The properties of the
nodes can be both seen and edited using the tool.
In addition, the various visualizations (network links,
radio ranges, sensing range) allow the developer to
see the connectivity and coverage of the target system.
These visualizations can also be used to show a subset
of the information, such as radio links in a specific
partition/group or between nodes with a specific type
of sensor etc.

3.4. Compilation and Deployment Module

The lower half of Figure 6 depicts the module
of our toolkit that provides the application developer
the ability to tune the compilation parameters and
deploy the generated code to the nodes in the target
system. After the developer has specified the path to
the root directory of the target code, he can compile
the ATaG program to individual node-level files. Since
the current ATaG compiler supports only the random
option for optimization, Srijan allows the setting of
the randomization seed. However, the toolkit can easily
be extended to support more optimizations as they are
developed.

For deploying the code on the Sun SPOTs, our
toolkit uses a Sun SPOT base station node for upload-

Figure 6. Network description, compilation and
deployment using Srijan

ing it to the nodes via OTA(over the air) commands.
This phase uses the information about the MAC ad-
dresses of the individual Sun SPOTs specified in the
earlier stage.

4. Evaluation

To evaluate the performance of Srijan, we devel-
oped a set of applications on it, including the HVAC
application, which we have used as our illustrative
examples throughout this paper, and the highway traffic
management application used in [4]. For each of the
applications, we performed the complete end-to-end
development – starting from specifying the ATaG task
graph to deployment of code on the nodes – using
Srijan. We used a Pentium-4 2.8 GHz laptop with

1GB of RAM running Windows XP for our evaluation.
The deployment was done onto the Sun SPOT [2]
nodes, with a 180 MHz 32 bit ARM920T processor,
512K RAM and 4M Flash memory. The nodes run
the Squawk Java virtual machine directly out of flash
memory, and can run programs written using J2ME
libraries. The Sun SPOT base station was used to
deploy the code over-the-air (OTA) to the SPOTs. We
used the Java hProf profiler for measuring execution
time.

During our experiments, we collected a variety of
statistics. The first metric was the time taken by
the toolkit to a) create the auto-generated imperative
code code templates, b) allocate tasks to the nodes
and generate per-node customized Java files, and c)
generate the Java bytecode for each node and deploy
it over the air. In addition to the above times, we also
collected statistics regarding the amount of total code
that was written by the application developer versus
the code auto-generated by Srijan. Although the line-
of-code metric is more a measure of the power of
the ATaG compiler, we report the numbers because
a) these numbers are of our J2ME-targeted implemen-
tation of the ATaG compilation framework, and b) this
emphasizes the power of the ATaG macroprogramming
paradigm which is made accessible to the application
developer in a graphical manner by our toolkit.

In addition to the above objective metrics, we also
measured the time it took for an application developer
using Srijan to specify the ATaG task graph as well
as the time taken in customizing the imperative code
generated by it. We acknowledge that these timings are
variable from person to person, and intend to obtain
more such data following the public release of our
software to get a better idea of the burden to the
programmer when using our toolkit.

The data from our experiments is summarized in
Table 7. Note that the time taken by Srijan to generate
the files are within acceptable limits, and are limited
only by the hardware it is being run on, and in the
case of deployment, also on the Java compiler used by
the Sun SPOT SDK. More importantly, the developer
had to write only a very small fraction of Java source
files. The total code deployed on each node consists of
three components – a) Base Template Code - contain-
ing the DART libraries, b) Application-specific Auto-
generated Code - generated by Srijan, and c) User-
generated Code - written by the application developer
to specify the details of the task and data. Figure 8
shows that the user-generated code is only around 2%
of the total code. Even if we neglect the library code,
Srijan generated > 90% of the application-specific
code in each case. The importance of the time taken by

HVAC Traffic
Imperative Code Gen. Time (ms) 1766 3422
Node-Specific Code Gen. Time (ms) 31967 77089
Per-node Deployment Time (s) 21 23
Source Files Edited by Developer 11 18
Total Number of Source Files 57 64
Lines of App. -specific Auto-gen. Code 569 1019
Lines of App. -specific Code Written 60 81
by Developer
Total Lines of Code 3433 3904
Task Graph Specification Time (min) 10 25
Imperative Code Editing Time (min) 17 60

Figure 7. Costs involved in various stages of application development using Srijan

Code Distribution in HVAC Application

81%

17%
2%

Base Template Code

Application Specific

Auto-Generated Code

User Generated Code

Code Distribution in Traffic Application

72%

26%
2%

Base Template Code

Application Specific

Auto-Generated Code

User Generated Code

Figure 8. Distribution of coding effort

the application developer in specifying the task graph
and customizing the auto-generated code is highlighted
by the fact that under normal circumstances, Srijan will
be used by domain experts, e.g. civil engineers, who
would have taken much more time customizing the
runtime protocols and figuring out the task placements
if it was not available as part of Srijan. We believe that
our experiments demonstrate that our toolkit makes
application development for WSNs more convenient
for the domain expert, and we look forward to feedback
from developers who download and use our toolkit.

5. Related Work

Despite many years of research in the area, appli-
cation development for WSNs is still largely done by
writing text-based code for individual nodes, be it nesC
on the Mica motes or C on the BTNodes. One of the
earliest toolkits proposed to reduce the programming
effort was the Sensor Network Application Construc-
tion Kit (SNACK) [9], which provides a component
composition environment that allows developers to
define explicit configurable parameters for application-

level components. The SNACK user develops applica-
tions at the node-level using a text-based description
of wiring between components, several of which are
libraries provided by the authors. These programs are
analyzed by the compiler to generate maximally-shared
nesC expansions, which then have to be deployed
just like normal nesC applications. The Flask lan-
guage [10] facilitates node-level programming using
data-flow graphs and provide facilities for composing
atomic subgraphs across the network using a flow
communication model. The application is specified in
a variant of OCaml, and the behavior of individual
processing elements is specifies in nesC. The Flask
compiler then generates node-level nesC code from
the datagraph. This approach of mixed imperative-
declarative programming is very similar to ATaG, but
Flask currently allows application description only at
the node-level. On a different direction of research,
the Deployment Support Network WSN development
toolkit [11] aims to aid the programmer by collecting
data about the deployed sensor network in an over-the-
air fashion. In addition to the above, some graphical
toolkits have also been proposed for WSN application
development. The authors of Viptos [12] allow devel-
opers to model and simulate TinyOS applications in a
graphical manner. A similar functionality is provided
by GRATIS [13] where developers can use GME for
easy modeling of TinyOS applications. However, in
both these tools, the developer still has to reason at
the node level, while Srijan is geared for enabling de-
velopers to think at a much higher level of abstraction.

At a system-level of abstraction, one stream of re-
search has focused on treating the WSN as a database,
and making it easy for developers to write and de-
ploy data-querying applications on sensor networks.
The Task [14] toolkit makes designing and deploying
TinyDB query-based application easy, where users can
query the sensor data using SQL-like queries, and

also provides a visualizer for monitoring the network
health and sensor readings. Semantic streams [15]
presents each user with a 3D rendering of the sen-
sors in the testbed as well as all predicates that are
queryable. [16] builds on it by providing a spreadsheet
approach to programming and managing data-querying
applications in WSNs. In semantic middleware [17],
applications are represented in a graphical interface as
composable data sources and inference units which can
be connected to retrieve required data by composition
engines. jWebDust [18] provides a multi-tier applica-
tion environment, where different sensor networks can
be visualized as one to query the sensed data in a
user-friendly manner. While these toolkits help WSN
developers by allowing them to reason at a high-level,
the developer can specify the application as a query-
based system only.

Another domain-specific system-level project is En-
viroSuite [19], which is targeted at tracking applica-
tions. In EnviroSuite, an application contains a list of
objects, specified in a textual manner, which are ab-
stractions of environment elements. Their toolkit pro-
vides keywords and method libraries to define objects
and hide the fact that the execution of object methods
may need distributed computing across network from
programmers. The target code is in nesC, and is de-
ployed in the usual fashion. In the field of environment
monitoring, [20] presents a user friendly toolkit, where
application developers can specify their application in
an Eclipse-based GUI, as well as properties of the
target network. The compiler-generated code must then
be deployed manually to the target nodes in the system.
In contrast, Srijan is a more general-purpose tool,
which can be used to design and deploy a variety of
data-driven WSN applications.

Programs in the general-purpose Regiment [21]
macroprogramming language are written in a func-
tional programming style, and are compiled by the
compiler into an intermediate representation called the
token machine language (TML). nesC implementation
of the same is currently underway. Srijan, on the other
hand, provides an easy-to-use graphical interface for
data-driven macroprogramming and compiles to node-
level Java code. Perhaps the closest tool to our work
is VisualRDK [22], which enables the developers of
pervasive applications to easily develop applications
for heterogeneous systems using a graphical toolkit,
where individual tasks can communicate using simple
triggers. Srijan provides a similar, easy-to-use graph-
ical interface specifically geared towards developing
complex applications for sensor networks using data-
driven macroprogramming.

6. Concluding Remarks

In this paper, we introduced Srijan – a graphical
toolkit for end-to-end development of WSN appli-
cations using the ATaG data-driven macroprogram-
ming language. The toolkit is aimed to facilitate
domain-experts in all stages of application develop-
ment, namely task graph specification, imperative code
customization, specification of target system structure,
compilation of the macroprogram to customized node-
level code, and deployment of machine level code
to the constituent WSN nodes. We believe that by
providing a graphical interface to all the above steps,
Srijan will help bringing WSNs to a broader com-
munity of users. Our experiments show that using
Srijan, developers can quickly develop realistic WSN
applications while writing a very small fraction of the
actual application code.

Although Srijan helps make WSN application de-
sign easy, it is up to the designers of the ATaG compiler
and DART runtime system to make up for the loss of
performance (e.g., high energy costs, shorter lifetimes)
that inevitably accompany a rise in the level of abstrac-
tion. The current implementation of the ATaG compiler
is more a macro-expanding task allocator than a true
compiler, since it does not perform any optimizations
while determining task placements and customizing the
runtime system. Two such optimizations that can be
looked at are placing tasks to reduce to communication
costs and increase the system lifetime; and performing
logical-expression sharing when combining the scopes
in the channel-annotations of the ATaG task graph.

Since Srijan’s aim is to provide easy-of-use to the
WSN application developer, future work on it will
focus mostly on the interface provided to the appli-
cation developer, as well as the libraries available on
the WSN-platform specific code. The current version
of our toolkit is written mostly in Java, and produces
code to be deployed on the Sun SPOT nodes. We have
publicly released the toolkit [23], as well as its source
code, so that while application developers can start
using it for their goals, system developers can freely
port it to another platform, such as ConTiki on the
motes, Linux on GumStix and the StarGate, C on the
BTNode etc. Our other future work on Srijan is in
several concurrent directions. We are working towards
integrating the SWANS/Jist simulator [24] with the
toolkit, so application developers can debug and profile
their code before deployment. In the network descrip-
tion GUI, we are planning to incorporate support for 3-
D deployments, as well as letting the application devel-
oper specify situations where certain nodes, although
physically proximate, can not communicate (perhaps

due to the presence of a concrete wall between them).
Most importantly, we will look forward to feedback
from the users of Srijan, since making their work easy
is what the system aims to achieve.

References

[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner,
“The Abstract Task Graph: A methodology for
architecture-independent programming of networked
sensor systems,” in Workshop on End-to-end Sense-
and-respond Systems (EESR), 2005.

[2] SunTMSmall Programmable Object Technology (Sun
SPOT), www.sunspotworld.com.

[3] A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and
V. K. Prasanna, “A compilation framework for macro-
programming networked sensors,” in Proc. of the the
3rd Int. Conf. on Distributed Computing on Sensor
Systems (DCOSS), 2007.

[4] L. Mottola, A. Pathak, A. Bakshi, V. K. Prasanna,
and G. P. Picco, “Enabling Scoping in Sensor Net-
work Macroprogramming,” in Fourth IEEE Interna-
tional Conference on Mobile Ad-hoc and Sensor Sys-
tems (MASS) (accepted), 2007.

[5] A. Bakshi, A. Pathak, and V. K. Prasanna, “System-
level support for macroprogramming of networked
sensing applications,” in Int. Conf. on Pervasive Sys-
tems and Computing (PSC), 2005.

[6] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and
G. P. Picco, “Expressing sensor network interaction pat-
terns using data-driven macroprogramming,” in Proc. of
the 3rd Int. Wkshp. on Sensor Networks and Systems for
Pervasive Computing (PerSens - colocated with IEEE
PERCOM), 2007.

[7] M. Dermibas, “Wireless sensor networks for monitor-
ing of large public buildings,” University at Buffalo,
Tech. Rep., 2005.

[8] The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/projects/gme.

[9] B. Greenstein, E. Kohler, and D. Estrin, “A sensor
network application construction kit (SNACK),” in 2nd
ACM Conference on Embedded Networked Sensor Sys-
tems, 2004.

[10] G. Mainland, M. Welsh, and G. Morrisett, “Flask: A
language for data-driven sensor network programs,” in
Technical Report TR-13-06, Harvard University Tech-
nical Report, 2006.

[11] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele,
K. Martin, and P. Blum, “Deployment support network
- a toolkit for the development of WSNs,” in European
Workshop on Wireless Sensor Networks (EWSN), 2007.

[12] E. Cheong, E. A. Lee, and Y. Zhao, “Joint modeling
and design of wireless networks and sensor node soft-
ware,” Electrical Engineering and Computer Sciences
University of California at Berkeley, Tech. Rep., 2006.

[13] “GRATIS: Graphical develop-
ment environment for tinyos,”
http://www.isis.vanderbilt.edu/projects/nest/gratis/index.html.

[14] “Tiny application sensor kit,” http://berkeley.
intel-research.net/task/.

[15] K. Whitehouse, F. Zhao, , and J. Liu, “Semantic
streams: A framework for composable semantic inter-
pretation of sensor data,” in European Workshop on
Wireless Sensor Networks (EWSN), 2006.

[16] A. Woo, S. Seth, T. Olson, J. Liu, and F. Zhao, “A
spreadsheet approach to programming and managing
sensor networks,” in IPSN ’06: Proceedings of the fifth
international conference on Information processing in
sensor networks, New York, NY, USA, 2006.

[17] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan,
A. Riabov, and F. Ye, “A semantics-based middleware
for utilizing heterogeneous sensor networks,” in Proc.
of the 3rd Int. Conf. on Distributed Computing in
Sensor Systems (DCOSS), 2007.

[18] I. Chatzigiannakis, G. Mylonas, and S. E. Nikoletseas,
“jWebDust : A java-based generic application environ-
ment for wireless sensor networks,” in DCOSS, 2005,
pp. 376–386.

[19] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic,
“Envirosuite: An environmentally immersive program-
ming framework for sensor networks,” Trans. on Em-
bedded Computing Sys., vol. 5, no. 3, 2006.

[20] J.-P. Arp and B. G. Nickerson, “A user friendly toolkit
for building robust environmental sensor networks,” in
CNSR ’07: Proceedings of the Fifth Annual Conference
on Communication Networks and Services Research,
2007, pp. 76–84.

[21] R. Newton, G. Morrisett, and M. Welsh, “The regiment
macroprogramming system,” in Proc. of the Int. Conf.
on Information Processing in Sensor Network, 2007.

[22] T. Weis, M. Knoll, A. Ulbrich, G. Mhl, and A. Brndle,
“Rapid prototyping for pervasive applications,” IEEE
Pervasive Computing, vol. 6, no. 2, pp. 76–84, 2007.

[23] “Srijan - graphical WSN application development
toolkit,” http://srijan.googlepages.com/.

[24] R. Barr, Z. J. Haas, and R. van Renesse, “Jist: an ef-
ficient approach to simulation using virtual machines,”
Softw. Pract. Exper., vol. 35, no. 6, 2005.

