Truncated Boomerang Attac

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives

Augustin Bariant

Inria, Paris, France ANSSI, Paris, France

PhD Defense

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 1/43

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000 Algebraic Attacks against AO Primitives

Conclusio 0

Symmetric cryptography: the basics

Symmetric cryptography

- Insecure communication channel.
- Eve controls the channel.
- Shared secret key.

Symmetric cryptography: the basics

Symmetric cryptography

- Insecure communication channel.
- Eve controls the channel.
- Shared secret key.

Requirement: confidentiality

Eve shouldn't be able to recover the messages.

- Encryption $E_{\kappa}: P \to C$.
- C gives no information on P.

A. Bariant (ANSSI, Inria)

PhD Defense Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives 2/43

s Truncated Boomerang At

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusi

Symmetric cryptography: the basics

Symmetric cryptography

- Insecure communication channel.
- Eve controls the channel.
- Shared secret key.

Requirement: integrity and authenticity

Eve shouldn't be able to modify the messages.

- Message Authentification Code (MAC).
- Hard to predict the tag.

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 2/43

s Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion

Primitives

Modes of operation

General idea: split long messages in *n*-bit chunks ($n \approx 128$) and process each chunk.

- Fixed-size primitives are used to process *n*-bit chunks.
- Modes provide provable confidentiality and/or authenticity.
- (Almost) only need to study the primitives.

Examples of such primitives:

Truncated Boomerang A

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

Conclusion

Cryptanalysis: finding the best attacks

Definition (cryptographic attack)

An algorithm that breaks a security claim more efficently that generic attacks.

Distinguisher (against block ciphers)

$$P_{i} \begin{pmatrix} E_{K} \\ E_{K} \end{pmatrix} C_{i} \quad \text{or} \quad P_{i} \begin{pmatrix} \$ \\ E_{K} \end{pmatrix} C_{i}$$

Goal: distinguish oracles E_K and random \$. • Generic attack: brute-force $K \ (\approx 2^k)$. CICO attacks (against public permutations)

$$\begin{array}{c} X \xrightarrow{n-\ell} & & \\ & & & \\ 0 \xrightarrow{\ell} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} n-\ell \\ & \\ & \\ \end{array} \begin{array}{c} Y \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array}{c} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$$

Goal: Find X, Y s.t. $\Pi(X \parallel 0) = (Y \parallel 0)$. • Generic attack: brute-force $X (\approx 2^{\ell})$.

 $\label{eq:primitive security rarely provable \implies cryptanalysis is needed.$

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 4/43

Design of Fast AES-based UHFs and MACs 00000000 Algebraic Attacks against AO Primitives

Iterated constructions for primitives

Popular design strategy: iterate a round function F and add subkeys/constants.

Key-alternating block ciphers

▶ Replace K_i by constants for a permutation.

Substitution-Permutation Networks (SPNs)

- S non-linear: confusion.
- L linear: diffusion.

Truncated Boomerang A

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusic

The AES and AES-based primitives

The AES block cipher: [DR, NIST'97]

- Standardized by the NIST in 2001.
- State of 4x4 bytes.
- Round function:

 $\textit{AK} \rightarrow \textit{SB} \rightarrow \textit{SR} \rightarrow \textit{MC}$

- AES-128: 10 rounds.
- Security well-understood.

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> 0	<i>y</i> 4	<i>y</i> 8	<i>Y</i> 12
<i>x</i> ₁	<i>x</i> 5	x ₉	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9	<i>Y</i> 13
<i>x</i> ₂	<i>x</i> ₆	x ₁₀	x ₁₄	<i>y</i> 2	<i>y</i> ₆	<i>Y</i> 10	<i>Y</i> 14
х ₃	<i>x</i> 7	<i>x</i> 11	x ₁₅	<i>y</i> 3	y 7	<i>Y</i> 11	<i>Y</i> 15

$$\blacktriangleright$$
 $y_i \leftarrow x_i \oplus rk_i$

►
$$y_i \leftarrow S(x_i)$$

-			• *		

ShiftRows (SR): $Row_i \leftarrow Row_i \ll i$

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂		<i>y</i> ₀	<i>y</i> 4	<i>y</i> 8	<i>У</i> 1
<i>x</i> ₁	<i>x</i> 5	<i>x</i> 9	x ₁₃		<i>y</i> ₁	<i>У</i> 5	<i>У</i> 9	<i>У</i> 1
<i>x</i> ₂	<i>x</i> 6	x ₁₀	x ₁₄	ĺ ĺ	<i>y</i> ₂	<i>y</i> 6	<i>Y</i> 10	<i>У</i> 1
<i>x</i> 3	<i>x</i> ₇	<i>x</i> ₁₁	x ₁₅		<i>y</i> ₃	У 7	<i>y</i> 11	<i>Y</i> 1

MixColumns (MC): \blacktriangleright M: 4x4 matrix (MDS) \flat Col_i \leftarrow M × Col_i

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD

The AES and AES-based primitives

The AES block cipher: [DR, NIST'97]

- Standardized by the NIST in 2001.
- State of 4x4 bytes.
- Round function:

 $AK \rightarrow SB \rightarrow SB \rightarrow MC$

- AES-128: 10 rounds.
- Security well-understood.

AES-based primitives:

- Re-use the AES round function.
- Easier security analysis.
- Good performances (AES-NI).
- Ex: Deoxys-BC, Kiasu-BC, TNT-AES. Rocca ...

x ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> ₀	<i>y</i> 4	<i>y</i> 8
×1	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9
x ₂	<i>x</i> ₆	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> ₆	<i>Y</i> 10
x ₃	<i>x</i> 7	<i>x</i> 11	x ₁₅	<i>y</i> 3	y 7	<i>Y</i> 11
_						

 \triangleright $y_i \leftarrow x_i \oplus rk_i$

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> ₀	<i>y</i> 4	<i>y</i> 8	y ₁₂
<i>x</i> ₁	<i>x</i> 5	x ₉	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9	<i>Y</i> 13
<i>x</i> ₂	<i>x</i> 6	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> 6	<i>Y</i> 10	<i>Y</i> 14
х _з	<i>x</i> 7	<i>x</i> 11	x ₁₅	<i>y</i> 3	y 7	<i>y</i> 11	<i>Y</i> 15

SubBytes (SB):

►
$$y_i \leftarrow S(x_i)$$

ShiftRows (SR): $\blacktriangleright \operatorname{Row}_i \leftarrow \operatorname{Row}_i \ll i$

<i>x</i> ₀	<i>x</i> ₄	<i>x</i> 8	x ₁₂	<i>y</i> 0	<i>y</i> 4	<i>y</i> 8	J
<i>x</i> ₁	<i>x</i> 5	<i>x</i> 9	x ₁₃	<i>y</i> ₁	<i>y</i> 5	<i>y</i> 9	J
<i>x</i> ₂	<i>x</i> ₆	x ₁₀	x ₁₄	<i>y</i> ₂	<i>y</i> ₆	<i>Y</i> 10	J
х _з	<i>x</i> ₇	<i>x</i> 11	x ₁₅	<i>y</i> 3	У 7	<i>y</i> 11	J

MixColumns (MC): ► M: 4x4 matrix (MDS) \blacktriangleright Col_i \leftarrow $M \times$ Col_i

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives

Conclusion 0

Analysis of AES-based primitives: results

Cryptanalysis

- Cryptanalysis of Forkciphers:
 - Attack on full ForkAES.
 - Improved attacks on reduced ForkSkinny.
- Truncated Boomerang Attacks and Application to AES-Based Ciphers:

[B & Leurent, EUROCRYPT 2023]

[B, David & Leurent, ToSC 2020]

- Best attacks on reduced Deoxys-BC and Kiasu-BC.
- Improved Boomerang Attacks on 6-Round AES:

[B, Dunkelman, Keller, Leurent & Mollimard, EPRINT 2024]

Best boomerang key-recovery attack on reduced AES.

Design

► Fast AES-based Universal Hash Functions and MACs:

[B, Baudrin, Leurent, Pernot, Perrin & Peyrin, ToSC 2024]

Fastest MAC of the literature on recent CPUs.

Truncated Boomerang Att

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

Conclusion

Arithmetization-Oriented (AO) primitives

Traditional primitives

- Designed for bit-oriented platforms (computers, chips, ASIC, etc.).
- Operate on bit sequences.
- Low resource consumption (time, etc.).
- Several decades of cryptanalysis.

Arithmetization-Oriented primitives

- Designed for Zero-Knowledge Proofs and Multi-Party Computation protocols.
- Operate on large finite field elements.
- Low number of field multiplications.
- \blacktriangleright \leq 8 years of cryptanalysis.

Design of Fast AES-based UHFs and MACs 0000000

Conclusio

Cryptanalysis of AO primitives: results

Algebraic Attacks against Some Arithmetization-Oriented Primitives:
 [B, Bouvier, Leurent & Perrin, ToSC 2022]

- Improved attacks against reduced Poseidon, Feistel-MiMC, Rescue-Prime.
- Multivariate attack on full Ciminion.
- The Algebraic Freelunch: Efficient Gröbner Basis Attacks against Arithmetization-Oriented Primitives:

[B, Boeuf, Lemoine, Manterola Ayala, Øygarden, Perrin & Raddum, CRYPTO 24]

- Attacks threatening the security of Griffin, Arion & Anemoi.
- ► A Univariate Attack on a Full Ciminion Instance.

[B, SAC'24]

0000

Preliminaries

Preliminaries

A. Bariant (ANSSI. Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 10/43 Truncated Boomerang Atta

Differential cryptanalysis

[Biham & Shamir, CRYPTO'90]

Definition (differential)

A differential $\Delta_{in} \xrightarrow[F_{\nu}]{} \Delta_{out}$ has a probability:

$$\Pr\left[\Delta_{\mathsf{in}} \xrightarrow{E_{\mathcal{K}}} \Delta_{\mathsf{out}}\right] = \Pr_{\substack{P \leftarrow \$\\\mathcal{K} \leftarrow \$}}[E_{\mathcal{K}}(P) \oplus E_{\mathcal{K}}(P \oplus \Delta_{\mathsf{in}}) = \Delta_{\mathsf{out}}].$$

Differential distinguishing attack

Setup: A differential $\Delta_{\text{in}} \xrightarrow{E_K} \Delta_{\text{out}}$ with $\Pr\left[\Delta_{\text{in}} \xrightarrow{E_K} \Delta_{\text{out}}\right] \gg 2^{-n}$. Input: an oracle $O = E_K$ or O =\$.

- ▶ Ask the oracle for O(P) and $O(P \oplus \Delta_{in})$ for many values of P.
- ▶ If the event $O(P) \oplus O(P \oplus \Delta_{in}) = \Delta_{out}$ happens frequently, $O = E_K$, else O =\$.

In practice, we find differentials $\Delta_{in} \xrightarrow[E_{k'}]{} \Delta_{out}$ using differential trails.

0000

Preliminaries

$$p_i = \Pr_{X \leftarrow \$} [F(X) \oplus F(X \oplus \Delta_i) = \Delta_{i+1}].$$

$$Pr[\Delta_0 \xrightarrow{F} \Delta_1 \xrightarrow{F} \dots \xrightarrow{F} \Delta_r] = \prod p_i.$$

$$Pr[\Delta_0 \xrightarrow{E_K} \Delta_r] \ge \prod p_i.$$

(Markov cipher & independent subkeys)

Introduction Preliminaries

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion 0

Security of the AES against differential cryptanalysis

Introduction Preliminaries

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

Security of the AES against differential cryptanalysis

Linear \implies Probability 1 differential.

introduction Preliminaries

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

Conclu 0

Security of the AES against differential cryptanalysis

- Each S-box operates independently.
 - lnactive S-box \rightarrow probability 1.
 - ▶ Active S-box \rightarrow probability at most 2⁻⁶ (AES S-box property).

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000 Algebraic Attacks against AO Primitives

Conclusic 0

Security of the AES against differential cryptanalysis

Each S-box operates independently.

- lnactive S-box \rightarrow probability 1.
- ▶ Active S-box \rightarrow probability at most 2⁻⁶ (AES S-box property).
- ▶ Trail probability at most 2^{-6k} with *k* active S-boxes.
 - ► On AES, we can prove the minimal number of active S-boxes in a trail:

Number of rounds	1	2	3	4	5	6	7	8
Min. nb. of active S-boxes	1	5	9	25	26	30	34	50
Max. diff. trail probability	2 ⁻⁶	2 ⁻³⁰	2 ⁻⁵⁴	2 ⁻¹⁵⁰	2 ⁻¹⁵⁶	2 ⁻¹⁸⁰	2 ⁻²⁰⁴	2 ⁻³⁰⁰

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion

Outline

Introduction

Preliminaries

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against Arithmetization-Oriented Primitives

Conclusion

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 14/43

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

The boomerang attack

[Wagner, FSE'99]

Introduction Pre 00000000 00 Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

- Select a random *P*.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

The boomerang attack

$$\Delta_{\text{in}} \xrightarrow{p} \Delta_{\text{out}}$$

- Select a random *P*.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

▶
$$\Pr[X \oplus X' = \Delta_{out}] = p.$$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.

▶
$$\Pr[X \oplus X' = \Delta_{out}] = p.$$

• Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.
- ▶ $\Pr[X \oplus X' = \Delta_{out}] = p.$
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

- ▶ $\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$
- If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{out}$.

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

- Select a random P.
 - Select P' s.t. $P \oplus P' = \Delta_{in}$.
 - ▶ $\Pr[X \oplus X' = \Delta_{out}] = p.$
 - Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \operatorname{Pr}[X \oplus \overline{X} = \nabla_{\operatorname{in}}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

• If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{\text{out}}$.

$$\blacktriangleright \operatorname{Pr}[\overline{P} \oplus \overline{P'} = \Delta_{\operatorname{in}}] = \rho.$$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The boomerang attack

- Select a random P.
- Select P' s.t. $P \oplus P' = \Delta_{in}$.
- ▶ $\Pr[X \oplus X' = \Delta_{out}] = p.$
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{out}.$

$$\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{in}] = q.$$

▶
$$\Pr[X' \oplus \overline{X'} = \nabla_{in}] = q.$$

• If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{\text{out}}$.

$$\blacktriangleright \operatorname{Pr}[\overline{P} \oplus \overline{P'} = \Delta_{\operatorname{in}}] = \rho.$$

Total boomerang probability: p^2q^2 .

 $p^2q^2 \gg 2^{-n} \rightarrow \text{Distinguisher}$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

- $\triangleright \mathcal{D}_i$ are sets of differences.
- Trail probability $\vec{p} \approx \prod \vec{p}_i$.

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

- \triangleright \mathcal{D}_i are sets of differences.
- Trail probability $\vec{p} \approx \prod \vec{p}_i$.

Structures (*if* \mathcal{D}_0 *is a vectorial subspace*)

- Encrypt an affine space $P \oplus \mathcal{D}_0$.
- ► Look for $C, C' \in E(P \oplus D_0)$ s.t. $C \oplus C' \in D_r$.
- ► $|D_0|$ encryptions but $|D_0|^2/2$ pairs.

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Truncated differential trail on 3-round AES

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Truncated differential trail on 3-round AES

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

lgebraic Attacks against AO Primitives

The truncated boomerang attack

[B & Leurent, EUROCRYPT'22]

- Setup for the attack:
 - $E = E_1 \circ E_0$ • $\mathcal{D}_{in}^0 \xleftarrow{p}{E_0} \mathcal{D}_{out}^0$
 - $\blacktriangleright \ \mathcal{D}_{in}^{1} \xleftarrow{q}{E_{1}} \mathcal{D}_{out}^{1}$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

The Truncated Boomerang Framework

- Select a random P₀:
 - Encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- 2 For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$:
 - Decrypt a structure $C \oplus D_{out}^1$.
- 3 Look for \overline{P} , $\overline{P'} \in E^{-1}(E(P_0 \oplus \mathcal{D}_{in}^0) \oplus \mathcal{D}_{out}^1)$ s.t. $\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0$.
- 4 If needed, repeat with a different P_0 .
- Boomerang switch probability: $r \ge |\mathcal{D}_{in}^1|^{-1}$
- Total probability: $p_b = \vec{p} \cdot \vec{q}^2 \cdot \mathbf{r} \cdot \vec{p}$.
- Random probability: $p_{\$} = |\mathcal{D}_{in}^0| \cdot 2^{-n}$.
- Total structure size: $|\mathcal{D}_{in}^0||\mathcal{D}_{out}^1|$.

troduction Prelin

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

troduction Prelin

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 00000000

Algebraic Attacks against AO Primitives

Example: 6-round AES distinguisher

3-round AES truncated trail for E_0 and E_1

Distinguisher

Throw $Q = 2^{160}$ quartets to an oracle *O* using structures of size $|\mathcal{D}_{in}^0| |\mathcal{D}_{out}^1| = 2^{64}$:

q quartets satisfy $\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0$:

$$T = D pprox rac{Q}{|\mathcal{D}_{in}^0||\mathcal{D}_{out}^1|} = 2^{96}.$$

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

Generic formulas

Distinguisher formula

- Signal-to-noise $\sigma = \frac{\rho_b}{\rho_s}$.
- $Q = \max(1, 1/\sigma) / p_b$ quartets.

$$\textit{T} = \textit{D} = rac{2\textit{Q}}{|\mathcal{D}_{\mathsf{in}}^0| \cdot |\mathcal{D}_{\mathsf{out}}^1|}$$

Key-recovery formula

Our approach: same trail, each quartet suggests ℓ candidates for κ bits of key.

- Updated signal-to-noise ratio: $\tilde{\sigma} = \frac{p_b}{p_s} \frac{2^{\kappa}}{\ell}$.
- $Q = \max(1, 1/\tilde{\sigma})/p_b$ quartets.

$$\boldsymbol{D} = \frac{2\boldsymbol{Q}}{|\mathcal{D}_{\text{in}}^0| \cdot |\mathcal{D}_{\text{out}}^1|}$$

Introduction Processing

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs 0000000

Algebraic Attacks against AO Primitives

[B & Leurent, EUROCRYPT'22]

Conclusion O

Applications

Straightforward truncated boomerang attacks:

- ► Kiasu-BC: improved 8-round key-recovery attack.
- Deoxys-BC: improved key-recovery attacks in different instances.
 - Minimize the complexity formulas in a MILP model.
- ► TNT-AES: marginal distinguisher.
- ► 6-round AES: new distinguishing, key-recovery (with or without secret S-box) attacks.

Follow-up work: [B, Dunkelman, Keller, Leurent & Mollimard, EPRINT 2024]

- 6-round AES: improved boomerang key-recovery attacks.
 - Best key-recovery boomerang attack on AES in the literature.
 - Combination with the retracing boomerang attack.

Truncated Boomerang Attac

Design of Fast AES-based UHFs and MACs •••••••

Outline

Introduction

Preliminaries

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against Arithmetization-Oriented Primitives

Conclusion

Truncated Boomerang Att

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Ex: ECWDM.

Conclusion

Design of Message Authentification Codes (MACs)

- Built from Universal Hash Functions (UHF)s.
- A UHF is a family of functions:

 $H_{\mathcal{K}}: \mathcal{A} \to \mathcal{B}$ for $\mathcal{K} \in \mathcal{K}$.

Definition (ε-AU UHFs)

 $H_{\mathcal{K}}: \mathcal{A} \to \mathcal{B}$ for $\mathcal{K} \in \mathcal{K}$ is *\varepsilon*-almost-universal if:

 $\forall m \neq m' \in A, |\{K \in \mathcal{K} : H_K(m) = H_K(m')\}| \leq \varepsilon |\mathcal{K}|.$

Design of Fast AES-based UHFs and MACs

[Nikolić, CAESAR'14]

[JN:FSE'16. SLNKI:FSE'22]

Design of AES-based constructions

AES New Instructions (AES-NI)

- Instruction set proposed by Intel in 2008.
- 1 AESENC instruction = 1 AES round:

 $SB \rightarrow SR \rightarrow MC \rightarrow AK.$

- Speed comparable to a 128-bit XOR/ADD instruction on modern processors.
- Exploited in new designs for exceptional performance.

Definition (Rate of an AES-based UHF/MAC)

The rate is the number of AES-NI instructions per 128-bit message block.

- ▶ Rate 4: PelicanMAC, PC-MAC, AEGIS-128L. [DR:EPRINT'05. MT:FSE'06. WC:SAC'13]
- Rate 3: Tiaoxin-346 (AD only).
- Rate 2: Jean-Nikolić, Rocca (AD only).

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 26/43

Design of Fast AES-based UHFs and MACs

Scheduling of AES-NI instructions

On modern processors:

- Throughput: 2 AES per cycle.
- Latency: 3-4 cycles.

Theoretical bound

Rate-*r* constructions require $\geq \frac{r}{2}$ cycles per 128 bits of message.

Observation: existing rate-2 UHFs are slower than this bound (bad parallelization).

Our approach

Design a parallelization-oriented rate-2 AES-based UHF, and convert it to a MAC.

Goal: reach the bound of 1 cycle/128-bit (= 0.0625 cycles/byte).

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Our framework of UHF candidates

- Inspired by SPNs and tweakable block ciphers.
- ► *L* and *T*: binary matrices.
- Lots of varying parameters.

Procedure for finding fast ε-AU candidates

Procedure: generate many random candidates of the framework. For each of them:

- Check the security with MILP.
- Check the performance.
- Keep candidates that are secure and performant.

Security check

Heuristic: A candidate is ε -AU if no high probability differential $\Delta_M \rightarrow 0$ exists.

- Find the best differential trail leading to a collision with MILP.
- Secure if the number of active S-boxes is \geq 22 (trail probability $\leq 2^{-22 \times 6} = 2^{-132}$).

Performance check

- Automatically generate a C implementation and compile.
- Benchmark the candidate on the fly.

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusio 0

Round function of LeMac's UHF

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 30/43

Design of Fast AES-based UHFs and MACs 0000000

Performance comparison

			Speed (cycles per byte)						
		Theoretical	Int	Intel Ice Lake			AMD Zen3		
Cipher	Rate	bound	1kB	16kB	256kB	1kB	16kB	256kB	
GCM (AD only)	-	-	0.699	0.311	0.286	0.794	0.470	0.451	
AEGIS128L (AD only)	4	0.125	0.416	0.208	0.195	0.358	0.183	0.173	
Tiaoxin-346 v2 (AD only)	3	0.094	0.328	0.131	0.121	0.311	0.121	0.109	
Rocca (AD only)	2	0.063	0.528	0.171	0.149	0.393	0.139	0.124	
Jean-Nikolić	2	0.063	0.307	0.126	0.113	0.312	0.111	0.098	
LeMac	2	0.063	0.289	0.082	0.068	0.309	0.085	0.072	

Croad (avalage ner byta)

LeMac: fastest existing MAC on modern processors.

Truncated Boomerang Attac

Design of Fast AES-based UHFs and MACs 00000000 Algebraic Attacks against AO Primitives

Conclusion

Outline

Introduction

Preliminaries

Truncated Boomerang Attacks

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against Arithmetization-Oriented Primitives

Conclusion

A. Bariant (ANSSI, Inria)

Analysis of AES-based and Arithmetization-Oriented Symmetric Cryptography Primitives PhD Defense 32/43

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000 Algebraic Attacks against AO Primitives

Conclusion 0

Arithmetization-Oriented primitives

Reminders

- AO primitives operate on \mathbb{F}_q .
- \mathbb{F}_q is too large to be exhausted by an attacker.
- AO primitives use a low number of field multiplications.

They must be designed to resist algebraic attacks.

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Conclusion 0

Algebraic attacks

The polynomial solving attack is composed of two steps:

Modeling

Represent the primitive with a polynomial system \mathcal{P} .

- A solution to \mathcal{P} leads to the key or to a CICO solution.
- Highly primitive-dependant.
- Not trivial to find the best modeling.

$\mathcal{P} = \begin{cases} P_1(X_1, \dots, X_n) = 0\\ \vdots\\ P_n(X_1, \dots, X_n) = 0 \end{cases}$

Solving

Find $(X_1, \ldots, X_n) \in \mathbb{F}_q^n$ which solves \mathcal{P} .

- Use state-of-the-art algorithms from computer algebra.
- Generic complexity formulas.
- Recover the key or a CICO solution.

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000 Conclusio 0

Solving polynomial systems: the univariate case

One univariate equation of degree d in \mathbb{F}_q :

$$\mathcal{P} = \Big\{ \mathcal{P}(\mathbf{X}) = \mathbf{0}.$$

Solving complexity quasi-linear in d: $\mathcal{O}(d \log(q) \log(d) \log(\log(d)))$ operations.

Remarks

- Cheaper than factorisation ($\mathcal{O}(d^{1.815})$).
- Cheaper than multivariate solving.

Truncated Boomerang Att

Design of Fast AES-based UHFs and MACs 00000000

Ciminion (limited data variant)

- Nonce-based stream cipher.
 - N different every query.
 - For each N, generate a series of S_i
- Secret subkeys $K_i \in \mathbb{F}_q$.
- Security based on truncated outputs.
- p_E and p_C permutations of \mathbb{F}_q^3 .
 - p_E and p_F^{-1} of degrees $\approx q^{\frac{1}{12}}$.
 - p_C and p_C^{-1} of degrees $\approx q^{\frac{2}{3}}$.

Security claim of the designers

Attack complexity > q (with < \sqrt{q} data queries).

Modeling

1 The attacker queries 2 blocks S_1 and S_2 under the nonce N.

Solving

Modeling

1 The attacker queries 2 blocks S_1 and S_2 under the nonce N.

Solving

Truncated Boomerang Attac

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Modeling

1 The attacker queries 2 blocks S_1 and S_2 under the nonce *N*.

2 The attacker computes $Q(X) = p_C^{-1} \circ p_E^{-1}(S_1, S_2, X)$ of degree $\approx q^{\frac{1}{12}}q^{\frac{2}{3}} = q^{\frac{3}{4}}$.

• Evaluate
$$p_C^{-1} \circ p_E^{-1}$$
 on $\mathbb{F}_q[X]^3$ instead of \mathbb{F}_q^3 .

Solving

- **1** The attacker computes the roots of Q(X) N in $\tilde{O}(q^{\frac{3}{4}})$.
- 2 The attacker recovers of the value for X and inverts $p_E \circ p_C$ to recover K_1 , K_2 .

ntroduction Pro 00000000 00 Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs

Algebraic Attacks against AO Primitives

Conclusion 0

Solving polynomial systems: the multivariate case

 $\begin{cases} P_1(X_1,\ldots,X_n) = 0 \\ \vdots \\ P_n(X_1,\ldots,X_n) = 0 \end{cases}$

Definition (Ideal spanned by the polynomial system)

The ideal $\langle P_1, \dots, P_n \rangle$ is composed of all polynomials P such that: $\exists Q_1, \dots, Q_n \in \mathbb{F}_q[X_1, \dots, X_n], \qquad P(X_1, \dots, X_n) = \sum_{i=1}^n P_i Q_i.$

General idea for solving

Find a univariate polynomial $P(X_1) \in \langle P_1, \dots, P_n \rangle$:

- ▶ In particular, $P(X_1) = 0$ if $P_i(X_1, ..., X_n) = 0$ for all *i*.
- Compute the roots of $P(X_1)$ in \mathbb{F}_q using univariate solving and recover values for X_1 .

ntroduction I

Truncated Boomerang At

Design of Fast AES-based UHFs and MACs

Conclusion 0

Solving multivariate systems with Gröbner bases

$$\begin{cases} P_1(X_1,\ldots,X_n) = 0\\ \vdots\\ P_n(X_1,\ldots,X_n) = 0 \end{cases}$$

•
$$\deg(P_i) = d_i$$
.

• $\omega \leq 3$ is the matrix multiplication exponent.

Step 1: F5

Compute a *grevlex* Gröbner basis with F5, in: $\mathcal{O}\left(\binom{1+\sum_{i=1}^{n} d_{i}}{n}^{\omega}\right)$ [Faugère, ISSAC'02]

Loose complexity bound.

Step 2: Change of order

Convert it into a *lex* Gröbner basis, in: $\mathcal{O} \mid n \mid \prod$

$$\left(n\left(\prod_{i=1}^{n}d_{i}\right)^{3}\right)$$

[FGLM, JSC'93]

- Better complexity bounds under additional hypotheses.
- ► The *lex* Gröbner basis contains a univariate polynomial of the ideal.

Conclusion O

Solving polynomial systems: applications

Algebraic attacks on arithmetization-oriented ciphers:

[BBLP, ToSC'22]

- Motivation: set of challenges launched by the Ethereum Fundation.
- Contributions: improved modeling and implementation of all attacks.

Univariate attacks

- Poseidon, Feistel-MiMC: CICO attacks a reduced versions.
 - 2 rounds bypassed in the modeling of Poseidon.

Multivariate attacks

- Rescue-Prime: improved CICO attack on a reduced version.
 - 2 steps bypassed in the modeling.
- Ciminion: improved key-recovery attack.
 - \blacktriangleright New multivariate modeling of the cipher \implies full-round attack in some settings.

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000

 \rightarrow

 \rightarrow

 \rightarrow

Algebraic Attacks against AO Primitives

Conclusion 0

The FreeLunch attack

Modeling step

Generate a multivariate system.

Solving step 1: F5

$$\mathcal{O}\left(\binom{1+\sum_{i=1}^{n}d_{i}}{n}^{\omega}\right)$$

Solving step 2: Change of order

$$\tilde{\mathcal{O}}\left(d_{1}\left(\prod_{i=2}^{n}d_{i}\right)^{\omega}\right)$$

Requires additional hypotheses.
 [BNS, ISSAC'22]

[BBLMØPR, CRYPTO'24]

FreeLunch step 1: modeling

Model the primitive with a well-chosen weighted monomial order:

- The system is directly a Gröbner basis.
- Negligible complexity (vs step 2).

FreeLunch step 2: finding a univariate equation

- **1** Compute a multiplication matrix in $\mathcal{O}(?)$.
- 2 Compute its characteristic polynomial in

$$\tilde{\mathcal{O}}\left(\textit{d}_{1}\left(\prod_{i=2}^{n}\textit{d}_{i}\right)^{\omega}\right)$$

3 Compute its roots.

Truncated Boomerang Att

Design of Fast AES-based UHFs and MACs

Conclusio 0

The FreeLunch attack: results

FreeLunch step 2: complexity analysis

- **1** Multiplication matrix computation:
 - Complexity estimated experimentally.
 - Theoretical but loose upper bound:

 $\mathcal{O}\left(n\left(\prod_{i=1}^{n} d_{i}\right)^{3}\right)$ [FGLM, JSC'93]

2 Characteristic polynomial computation:

$$\tilde{\mathcal{O}}\left(d_1\left(\prod_{i=2}^n d_i\right)^w\right)$$

Tight bound.

[BBLMØPR, CRYPTO'24]

Truncated Boomerang Att

Design of Fast AES-based UHFs and MACs

Conclusion 0

42/43

The FreeLunch attack: results

FreeLunch step 2: complexity analysis

- **1** Multiplication matrix computation:
 - Complexity estimated experimentally.
 - Theoretical but loose upper bound:

$$\mathcal{O}\left(n\left(\prod_{i=1}^{n}d_{i}\right)^{3}\right)$$
 [FGLM, JSC'93]

2 Characteristic polynomial computation:

$$\tilde{\mathcal{O}}\left(\boldsymbol{d}_{1}\left(\prod_{i=2}^{n}\boldsymbol{d}_{i}\right)^{\omega}\right)$$

Tight bound.

[BBLMØPR, CRYPTO'24]

Target	α/ e		Number of branches									
Taryer		2	3	4	5	6	8	\geq 12				
Griffin	3	-	120	112	-	-	76	64				
	5	-	141	110	-	-	81	74				
Arion	3	-	128	134	114	119	98	-				
AIIUII	5	-	132	113	118	122	101	-				
α -Arion	3	-	104	84	88	92	98	-				
	5	-	83	87	91	94	101	-				
Anemoi	3	118	-	-	-	-	-	-				

Theoretical complexity of $2 (\log_2)$.

Work in progress: Can we find a better theoretical bound for 1?

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000

Conclusion

Conclusion: results of this thesis

- Design (AES-based primitives):
 - Conception of the fastest AES-based MAC on modern processors (LeMac).
- Cryptanalysis (AES-based primitives):
 - ► The truncated boomerang framework: best attacks against Kiasu-BC and Deoxys-BC.
 - Best boomerang key-recovery attacks against 6-round AES.
 - Truncated differential attacks against full ForkAES.
- Cryptanalysis (arithmetization-oriented primitives):
 - ► The FreeLunch attack: a new algebraic attack framework.
 - Multivariate attacks against full Ciminion, Griffin, and Arion.
 - Univariate attack against full Ciminion.

Truncated Boomerang Atta

Design of Fast AES-based UHFs and MACs 0000000

Conclusion

Conclusion: results of this thesis

- Design (AES-based primitives):
 - Conception of the fastest AES-based MAC on modern processors (LeMac).
- Cryptanalysis (AES-based primitives):
 - ► The truncated boomerang framework: best attacks against Kiasu-BC and Deoxys-BC.
 - Best boomerang key-recovery attacks against 6-round AES.
 - Truncated differential attacks against full ForkAES.
- Cryptanalysis (arithmetization-oriented primitives):
 - ► The FreeLunch attack: a new algebraic attack framework.
 - Multivariate attacks against full Ciminion, Griffin, and Arion.
 - Univariate attack against full Ciminion.

Thank you for your attention.

6-round AES results

	Туре	Data		Time	Ref
Distinguishers	Yoyo	2 ^{122.8}	ACC	2 ^{121.8}	[RBH, AC'17]
	Exchange attack	2 ⁸⁴	ACC	2 ⁸³	[Bardeh, EPRINT'19]
	Truncated differential	2 ^{89.4}	CP	2 ^{96.5}	[BGL, ToSC'20]
	Truncated boomerang	2 ⁸⁷	ACC	2 ⁸⁷	[B & Leurent, EC'22]
Key-recovery	Partial-sum Boomerang Mixture Retracing boomerang Truncated boomerang Boomerang Boomerang Boomerang	2 ³² 2 ⁷¹ 2 ²⁶ 2 ⁵⁵ 2 ⁵⁹ 2 ⁵¹ 2 ⁵¹ 2 ⁵⁷	CP ACC CP ACC ACC ACC ACC ACC	2 ⁴⁸ 2 ⁷¹ 2 ⁸⁰ 2 ⁶¹ 2 ⁶⁸ 2 ⁶⁶ 2 ⁶¹	[FKLSSWW, FSE'00] [Biryukov, AES'04] [BDKRS, JoC'20] [DKRS, EC'20] [B & Leurent, EC'22] [BDKLM, EPRINT'24] [BDKLM, EPRINT'24] [BDKLM, EPRINT'24]
Secret S-Box KR	Square	2 ⁶⁴	CP	2 ⁹⁰	[TKKL, FSE'15]
	Truncated boomerang	2 ⁹⁴	ACC	2 ⁹⁴	[B & Leurent, EC'22]

LeMac's UHF performance for different message sizes

Performance of LeMac's UHF for different sizes of message on Tiger Lake.

On Tiger-Lake: L1 cache: 48 kB, L2 cache: 1.25 MB.

Solving univariate systems: details

One equation P(X) = 0 of degree *d* in \mathbb{F}_q .

Observations

- We look for $r \in \mathbb{F}_q$ s.t. P(r) = 0.
- ▶ $r \in \mathbb{F}_q$ implies that *r* is solution of $X^q X = 0$ (i.e. $r^q = r$).
- ► Therefore, *r* is a root of $R(X) = gcd(X^q X, P(X))$.
- ► Idea: efficiently compute $R(X) = gcd(X^q X, P(X))$.
 - Compute $Q(X) = X^q \mod P(X)$ using fast exponentiation (log(q) steps).
 - Each step costs $O(d \log(d) \log(\log(d)))$ with fast polynomial multiplication.
 - Compute gcd(Q(X) X, P(X)) in $O(d \log(d)^2 \log(\log(d)))$ operations.
- \triangleright R(X) is of small degree, and can be factored efficiently.

Total complexity: $\mathcal{O}(d \log(q) \log(d) \log(\log(d)))$.

WIP: multiplication matrix computation for FreeLunch systems (result 1)

FreeLunch system (Gröbner Basis)
$$\mathcal{P} = \begin{cases} X_1^{d_1} = P_1(X_1, X_2, \dots, X_r), \\ X_2^{d_2} = P_2(X_1, X_2, \dots, X_r), \\ \vdots \\ X_r^{d_r} = P_r(X_1, X_2, \dots, X_r), \end{cases}$$

 \blacktriangleright Denote $d = \prod_{i=1}^n d_i$.

Theoretical bound : $\mathcal{O}(nd^3) \rightsquigarrow \text{WIP results: } \mathcal{O}(nd^3/d_1)$

WIP: multiplication matrix computation for FreeLunch systems (principle) Goal: compute the reduction of Surface₁ = { $X_1^{d_1}m \mid m = X_2^{\alpha_2} \dots X_r^{\alpha_r}$, $0 \le \alpha_i \le d_i - 1$ }. Idea: reduce all monomials of S = Surface₁ $\cup \dots \cup$ Surface_r in ascending order.

- Store the monomial reductions in a reduction table.
- Use the reduction table to speed up following reductions.
- ▶ |S| reductions, each costing d^2 lookups.

Naïvely, this leads to a bound $\mathcal{O}(|S|d^2) \approx \mathcal{O}(nd^3)$.

Our improvement: we remark that X_1 divides most of the monomials in $\overline{S} = S \setminus \text{Surface}_1$.

- Exactly a fraction $1 \frac{1}{d_1}$ of \overline{S} .
- ▶ When X_1 divides a monomial $m \in \overline{S}$, reducing m costs d^2/d_1 lookups.
 - Instead of d² lookups.
 - Using sparsity in the multiplication matrix by X_1 .
- We also remark that $|\text{Surface}_1| = \frac{d^2}{d_1}$.

Total complexity: $\mathcal{O}(|\overline{S}|/d_1 \times d^2 + |\overline{S}| \times d^2/d_1 + |\text{Surface}_1|d^2) \approx \mathcal{O}(nd^3/d_1)$

WIP: multiplication matrix computation for Griffin $X_1^{d_1} = P_1(X_1, X_2, \dots, X_r),$ $X_2^{d_2} = P_2(X_1),$ $X_3^{d_3} = P_3(X_1, X_2),$ \vdots $X_r^{d_r} = P_r(X_1, X_2, \dots, X_{r-1}),$

- ln the case of Griffin, $wt(P_i) < wt(X_i)$ for i = 2, ..., r.
- With this property, reductions are easy to compute:

Matrix multiplication computation complexity: $\tilde{\mathcal{O}}(d^2/d_1)$ instead of $\tilde{\mathcal{O}}(d^3/d_1)$

Remarks

- Quasi-linear in the size of the dense part of the multiplication matrix.
- Much faster than the characteristic polynomial computation.
- WIP: does it work on Arion and Anemoi?