Truncated Boomerang Attacks and Application to AES-based Ciphers

Augustin Bariant, Gaëtan Leurent

INRIA, Paris

Journées C2 2023

Block Ciphers

 $\forall K \in \{0,1\}^k, E_K : \{0,1\}^n \to \{0,1\}^n \text{ is a permutation.}$

The most famous one: AES.

[Daemen & Rijmen 1997]

Modes of operation

Split messages in chunks of *n* bits and combine for a secure encryption.

The AES

[Daemen & Rijmen, 1997]

AddKey

1							<u> </u>		
	<i>x</i> ₀	<i>x</i> ₄	<i>x</i> ₈	<i>x</i> ₁₂		<i>y</i> ₀	<i>y</i> ₄	<i>y</i> ₈	<i>y</i> ₁₂
	<i>x</i> ₁	<i>x</i> ₅	<i>x</i> ₉	<i>x</i> ₁₃		<i>y</i> ₁			
	<i>x</i> ₂	<i>x</i> ₆	<i>x</i> ₁₀	<i>x</i> ₁₄		<i>y</i> ₂			
	х3	<i>x</i> ₇	<i>X</i> 11	<i>x</i> ₁₅		<i>y</i> ₃			
ľ									

k: 16-byte round key

$$y_i \leftarrow x_i + rk_i$$

- Selected by the NIST. [FIPS 197]
- States of 4x4 bytes.
- Key schedule not studied here.
- AES-128: 10 rounds.
- Security studied with cryptanalysis.

SubBytes

$$\mathcal{S}:\{0,1\}^8\to\{0,1\}^8$$

$$y_i \leftarrow S(x_i)$$

ShiftRows

$$\mathsf{Row}_i \leftarrow \mathsf{Row}_i \ll i$$

MixColumns

M: 4x4 matrix (MDS)

$$Col_i \leftarrow M \times Col_i$$

- $P_{P \leftarrow \$} [E(P) + E(P \oplus \Delta_0) = \Delta_r] = p \approx \prod p_i.$
- ▶ Distinguisher if $p \gg 2^{-n}$.

Truncated differential cryptanalysis [Knudsen, FSE'94] rk^r $\in \mathcal{D}_r$ P $\mathcal{D}_0 \xrightarrow{\rho_0} \mathcal{D}_1$ $\mathcal{D}_{r-1} \xrightarrow{p_{r-1}} \mathcal{D}_r$

- $\triangleright \mathcal{D}_i$ subspaces of \mathbb{F}_2^n .
- ► Trail probability $p \approx \prod p_i$.

Truncated differential cryptanalysis

[Knudsen, FSE'94]

- $\triangleright \mathcal{D}_i$ subspaces of \mathbb{F}_2^n .
- ▶ Trail probability $p \approx \prod p_i$.

Structures (if \mathcal{D}_0 is a vectorial subspace)

- ▶ Encrypt an affine space $P \oplus \mathcal{D}_0$.
- ▶ Look for $C, C' \in E(P \oplus \mathcal{D}_0)$ s.t. $C \oplus C' \in \mathcal{D}_r$.
- $|\mathcal{D}_0|$ encryptions but $|\mathcal{D}_0|^2/2$ pairs.

Truncated differentials: TLDR

- Thanks to sets of differences:
 - ► Capture multiple differentials → increased probability.
 - ► Structures → reduce complexity.

Notation

$$\mathcal{D}_{\mathsf{in}} \overset{p}{\longleftrightarrow} \mathcal{D}_{\mathsf{out}}$$

- Forward probability p.
- Backward probability \(\bar{p}\).

A Truncated differential of the AES

[Wagner, FSE'99]

Prerequisites for the attack:

- \triangleright $E = E_1 \circ E_0$

$$P \bullet \longleftarrow \stackrel{\Delta_{\mathsf{in}}}{\longrightarrow} \bullet P'$$

- Select a random P.
- ▶ Select P' s.t. $P \oplus P' = \Delta_{in}$.

 $\Delta_{\text{in}} \xrightarrow{p} \Delta_{\text{out}}$

▶ Select
$$P'$$
 s.t. $P \oplus P' = \Delta_{in}$.

$$\blacktriangleright \Pr[X \oplus X' = \Delta_{\mathsf{out}}] = \rho.$$

 $\Delta_{\text{in}} \xrightarrow{p} \Delta_{\text{out}}$

▶ Select
$$P'$$
 s.t. $P \oplus P' = \Delta_{in}$.

$$\blacktriangleright \Pr[X \oplus X' = \Delta_{\mathsf{out}}] = \rho.$$

$$\Delta_{\mathsf{in}} \xrightarrow{p} \Delta_{\mathsf{out}}$$

▶ Select
$$P'$$
 s.t. $P \oplus P' = \Delta_{in}$.

Select
$$(\overline{C}, \overline{C'})$$
 s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out}}$.

$$\nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$$

$$\Delta_{\mathsf{in}} \xrightarrow{p} \Delta_{\mathsf{out}}$$

 $\nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$

▶ Select
$$P'$$
 s.t. $P \oplus P' = \Delta_{in}$.

Select
$$(\overline{C}, \overline{C'})$$
 s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out}}$.

$$\blacktriangleright \ \Pr[X \oplus \overline{X} = \nabla_{\mathsf{in}}] = q.$$

$$\blacktriangleright \Pr[X' \oplus \overline{X'} = \nabla_{\mathsf{in}}] = q.$$

$$\Delta_{\mathsf{in}} \xrightarrow{p} \Delta_{\mathsf{out}}$$

$$\nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$$

- Select a random P.
- ▶ Select P' s.t. $P \oplus P' = \Delta_{in}$.
- $\blacktriangleright \Pr[X \oplus X' = \Delta_{\mathsf{out}}] = \rho.$
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out}}$.
- $\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{\mathsf{in}}] = q.$
- $\blacktriangleright \Pr[X' \oplus \overline{X'} = \nabla_{\mathsf{in}}] = q.$
- ▶ If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{out}$.

$$\Delta_{\mathsf{in}} \xrightarrow{p} \Delta_{\mathsf{out}}$$

$$\nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$$

- Select a random P.
- ▶ Select P' s.t. $P \oplus P' = \Delta_{in}$.
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out}}$.
- $\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{\mathsf{in}}] = q.$
- $\blacktriangleright \Pr[X' \oplus \overline{X'} = \nabla_{\mathsf{in}}] = q.$
- ▶ If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{out}$.

 $\Delta_{\mathsf{in}} \xrightarrow{p} \Delta_{\mathsf{out}}$

$$\nabla_{\text{in}} \xrightarrow{q} \nabla_{\text{out}}$$

- Select a random P.
- ▶ Select P' s.t. $P \oplus P' = \Delta_{in}$.
- Select $(\overline{C}, \overline{C'})$ s.t. $C \oplus \overline{C} = C' \oplus \overline{C'} = \nabla_{\text{out}}$.
- $\blacktriangleright \Pr[X \oplus \overline{X} = \nabla_{\mathsf{in}}] = q.$
- $\blacktriangleright \Pr[X' \oplus \overline{X'} = \nabla_{\mathsf{in}}] = q.$
- ▶ If this holds, then $\overline{X} \oplus \overline{X'} = \Delta_{out}$.
- $\blacktriangleright \Pr[\overline{P} \oplus \overline{P'} = \Delta_{\mathsf{in}}] = \rho.$

Total boomerang probability: p^2q^2 .

$$p^2q^2\gg 2^{-n} o ext{Distinguisher}$$

Our results

1 Analysis of boomerangs with truncated differentials.

[Wagner, FSE'99]

- 2 Application: improved boomerang attack on 6-round AES.
- 3 Best attacks on several AES-based tweakable block ciphers:
 - ► TNT-AES.
 - Kiasu-BC.
 - Deoxys-BC.

[Bao, Guo, Guo & Song, EC'20] [Jean, Nikolić & Peyrin, AC'14] [Jean, Nikolić & Peyrin, AC'14]

[This work]

▶ Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.

$$\mathcal{D}_{\text{in}}^0 \stackrel{\rho}{\underset{E_0}{\longleftarrow}} \mathcal{D}_{\text{out}}^0$$

$$\mathcal{D}_{\text{in}}^0 \stackrel{p}{\underset{E_0}{\longleftrightarrow}} \mathcal{D}_{\text{out}}^0$$

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.

$$\mathcal{D}_{\text{in}}^0 \stackrel{p}{\underset{E_0}{\longleftrightarrow}} \mathcal{D}_{\text{out}}^0$$

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.
- ► For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- For $\overline{C'} \in C' \oplus \mathcal{D}_{\text{out}}^1$, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{\text{in}}^1] = \overline{q}$.

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.
- ▶ For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- ▶ For $\overline{C'} \in C' \oplus \mathcal{D}_{out}^1$, $\Pr[X' \oplus \overline{X'} \in \mathcal{D}_{in}^1] = \overline{q}$.

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.
- ▶ For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- ▶ For $\overline{C'} \in C' \oplus \mathcal{D}^1_{out}$, $Pr[X' \oplus \overline{X'} \in \mathcal{D}^1_{in}] = \overline{q}$.
- ▶ $\Pr[\overline{X} \oplus \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$.
- $\blacktriangleright \Pr[\overline{P} \oplus \overline{P'} \in \mathcal{D}_{\mathsf{in}}^0] = \overline{p}.$

- Pick a P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$.
- ► For $P, P' \in P_0 \oplus \mathcal{D}_{in}^0$, $\Pr[X \oplus X' \in \mathcal{D}_{out}^0] = \vec{p}$.
- For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.
- ▶ For $\overline{C} \in C \oplus \mathcal{D}_{out}^1$, $\Pr[X \oplus \overline{X} \in \mathcal{D}_{in}^1] = \overline{q}$
- ▶ For $\overline{C'} \in C' \oplus \mathcal{D}^1_{out}$, $Pr[X' \oplus \overline{X'} \in \mathcal{D}^1_{in}] = \overline{q}$.
- ▶ $\Pr[\overline{X} \oplus \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$.
- $\qquad \qquad \mathsf{Pr}[\overline{P}\oplus \overline{P'}\in \mathcal{D}_{\mathsf{in}}^0]=\bar{p}.$
- ► Total probability: $p_b = \vec{p} \cdot \vec{q}^2 \cdot \vec{r} \cdot \vec{p}$.

[This work]

Summary

- I Select a random P_0 and encrypt a structure $P_0 \oplus \mathcal{D}_{in}^0$
- 2 For each $C \in E(P_0 \oplus \mathcal{D}_{in}^0)$, decrypt a structure $C \oplus \mathcal{D}_{out}^1$.
- 3 Look for \overline{P} , $\overline{P'} \in E^{-1}(E(P_0 \oplus \mathcal{D}_{in}^0) \oplus \mathcal{D}_{out}^1)$ s.t. $\overline{P} \oplus \overline{P'} \in \mathcal{D}_{in}^0$.
- If needed, repeat with a new P_0 .
- ► Total probability: $p_b = \vec{p} \cdot \vec{q}^2 \cdot \vec{r} \cdot \vec{p}$.
- ▶ Random probability: $p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n}$.
- ► Total structure size: $|\mathcal{D}_{in}^0||\mathcal{D}_{out}^1|$.

Distinguisher: Distinguishing property

- ▶ Boomerang probability $p_b = \vec{p} \cdot \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$.
- ▶ Random probability $p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n}$.

Distinguishing property

Probability that a quartet returns:

- ► Cipher E $\rightarrow p_{\$} + p_{b}$.
- ▶ Random function $\rightarrow p_{\$}$.

Distinguisher: Analysis

- ► Signal to noise $\sigma = p_b/p_{\$}$.
- ► *S* structures of size $|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|$.
- ▶ $Q = S \times |\mathcal{D}_{in}^0|^2 \cdot |\mathcal{D}_{out}^1|^2 / 2$ quartets.

Distinguisher: Analysis

- ► Signal to noise $\sigma = p_b/p_{\$}$.
- ► *S* structures of size $|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|$.
- $ightharpoonup Q = S \times |\mathcal{D}_{in}^0|^2 \cdot |\mathcal{D}_{out}^1|^2/2$ quartets.

If
$$\sigma \gg 1$$

- A few good quartets are sufficient.
- ▶ $Q = \mathcal{O}(1/p_b)$ quartets needed.

If
$$\sigma \ll 1$$

- ► More wrong quartets than good.
- $ightharpoonup Q = \mathcal{O}(1/\sigma p_b)$ quartets needed.

Time and data complexity:

$$T = D = \frac{2Q}{|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|}$$

$$ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$$

$$ightharpoonup |\mathcal{D}_{out}^0| = |\mathcal{D}_{in}^0| = |\mathcal{D}_{out}^1| = |\mathcal{D}_{in}^1| = 2^{32}$$

$$ightharpoonup \vec{q} = \vec{p} = \vec{p} = 2^{-24}$$

$$r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$$

$$ightharpoonup |\mathcal{D}_{out}^0| = |\mathcal{D}_{in}^0| = |\mathcal{D}_{out}^1| = |\mathcal{D}_{in}^1| = 2^{32}$$

$$ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$$

$$ightharpoonup |\mathcal{D}_{\text{out}}^{0}| = |\mathcal{D}_{\text{in}}^{0}| = |\mathcal{D}_{\text{out}}^{1}| = |\mathcal{D}_{\text{in}}^{1}| = 2^{32}$$

$$r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$$

$$ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$$

$$r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$$

$$\triangleright p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r = 2^{-128}$$

$$|\mathcal{D}_{\text{out}}^0| = |\mathcal{D}_{\text{in}}^0| = |\mathcal{D}_{\text{out}}^1| = |\mathcal{D}_{\text{in}}^1| = 2^{32}$$

$$\triangleright p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n} = 2^{-96}$$

- $ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$
- $r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$
- $\triangleright p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r = 2^{-128}$

$$ightharpoonup |\mathcal{D}_{out}^0| = |\mathcal{D}_{in}^0| = |\mathcal{D}_{out}^1| = |\mathcal{D}_{in}^1| = 2^{32}$$

$$\triangleright p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n} = 2^{-96}$$

$$\sigma = \frac{p_b}{p_c} = 2^{-32} \ll 1$$

3-round AES truncated trail for E_0 and E_1

- $ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$
- $ightharpoonup r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$
- \triangleright $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r = 2^{-128}$

$$ightharpoonup |\mathcal{D}_{\text{out}}^0| = |\mathcal{D}_{\text{in}}^0| = |\mathcal{D}_{\text{out}}^1| = |\mathcal{D}_{\text{in}}^1| = 2^{32}$$

$$\triangleright p_s = |\mathcal{D}_{in}^0| \cdot 2^{-n} = 2^{-96}$$

$$\sigma = \frac{p_b}{p_s} = 2^{-32} \ll 1$$

► Choose $Q = 2^{160}$ quartets.

3-round AES truncated trail for E_0 and E_1

- $ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$
- $r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$
- \triangleright $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r = 2^{-128}$

$$ightharpoonup |\mathcal{D}_{out}^0| = |\mathcal{D}_{in}^0| = |\mathcal{D}_{out}^1| = |\mathcal{D}_{in}^1| = 2^{32}$$

$$\triangleright p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n} = 2^{-96}$$

$$\sigma = \frac{p_b}{p_s} = 2^{-32} \ll 1$$

► Choose $Q = 2^{160}$ quartets.

- $ightharpoonup Q \cdot
 ho_b = 2^{32}$ good returning quartets.
- $ightharpoonup Q \cdot
 ho_{\$} = 2^{64}$ wrong returning quartets.

3-round AES truncated trail for E_0 and E_1

- $ightharpoonup \vec{q} = \vec{p} = \vec{p} = \vec{p} = 2^{-24}$
- $r = |\mathcal{D}_{in}^1|^{-1} = 2^{-32}$
- \triangleright $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r = 2^{-128}$

$$ightharpoonup |\mathcal{D}_{out}^{0}| = |\mathcal{D}_{in}^{0}| = |\mathcal{D}_{out}^{1}| = |\mathcal{D}_{in}^{1}| = 2^{32}$$

$$\triangleright p_{\$} = |\mathcal{D}_{in}^{0}| \cdot 2^{-n} = 2^{-96}$$

$$\sigma = \frac{p_b}{p_s} = 2^{-32} \ll 1$$

► Choose $Q = 2^{160}$ quartets.

- ► $Q \cdot p_b = 2^{32}$ good returning quartets.
- $ightharpoonup Q \cdot
 ho_{\$} = 2^{64}$ wrong returning quartets.

Possible to detect signal from noise.

Distinguisher

Throw $Q = 2^{160}$ quartets using structures of size $|\mathcal{D}_{in}^0| |\mathcal{D}_{out}^1| = 2^{64}$:

- ▶ If $\approx 2^{64}$ quartets return \rightarrow random function.
- ▶ If $> 2^{64} + 2^{31}$ quartets return \rightarrow 6R AES.

$$T=Dpprox rac{Q}{|\mathcal{D}_{\text{in}}^0||\mathcal{D}_{\text{out}}^1|}=2^{96}.$$

Including Key recovery

- Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.

Including Key recovery

- Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.
- Deduce key information from a returning quartet.
 - **Example:** $(P, P') \rightarrow (X, X')$ follows $E_0 \rightarrow$ only possible for certain keys.
 - ▶ Generalization: $(P, P', \overline{P}, \overline{P'})$ suggests ℓ candidates of κ key bits $(\ell \ll 2^{\kappa})$.

Including Key recovery

- Usual approach: add rounds before/after distinguisher.
- Our approach: same number of rounds, use key as extra distinguisher.
- Deduce key information from a returning quartet.
 - **Example:** $(P, P') \rightarrow (X, X')$ follows $E_0 \rightarrow$ only possible for certain keys.
 - ▶ Generalization: $(P, P', \overline{P}, \overline{P'})$ suggests ℓ candidates of κ key bits $(\ell \ll 2^{\kappa})$.

If $\sigma \gg 1$

- Collect a few right quartets.
- For each quartet, recover ℓ candidates for κ key bits.
- Select the candidate suggested each time.

If $\sigma \ll 1$

- Initialize 2^{κ} key counters.
- Collect many quartets.
- For each quartet:
 - ► Increment ℓ key counters.
- Right key counter higher than random.

First round

- Diagonal of k_0 (32 bits):

 - $\begin{array}{c} \blacktriangleright & (\underline{P},\underline{P'}) \rightarrow 2^8 \text{ candidates.} \\ \blacktriangleright & (\overline{P},\overline{P'}) \rightarrow 2^8 \text{ candidates.} \end{array}$
 - ► 2⁻¹⁶ candidates for both

Last round

- \triangleright Anti-diagonal of k_6 (32 bits):
 - $ightharpoonup (C, \overline{C}) \rightarrow 2^8$ candidates.
 - $(C', \overline{C'}) \rightarrow 2^8$ candidates
 - ▶ 2⁻¹⁶ candidates for both.

First round

- \triangleright Diagonal of k_0 (32 bits):
 - ▶ $(P, P') \rightarrow 2^8$ candidates.
 - $\triangleright (\overline{P}, \overline{P'}) \rightarrow 2^8$ candidates.
 - \triangleright 2⁻¹⁶ candidates for both.

- Anti-diagonal of k₆ (32 bits):
 - ▶ $(C, \overline{C}) \rightarrow 2^8$ candidates.
 - $(C', \overline{C'}) \rightarrow 2^8$ candidates
 - ▶ 2⁻¹⁶ candidates for both.

▶ Total: $\ell = 2^{-32}$ candidates for $\kappa = 64$ bits of key.

First round

- \triangleright Diagonal of k_0 (32 bits):
 - \triangleright $(P, P') \rightarrow 2^8$ candidates.
 - $\triangleright (\overline{P}, \overline{P'}) \rightarrow 2^8$ candidates.
 - ▶ 2⁻¹⁶ candidates for both.

Last round

- Anti-diagonal of k₆ (32 bits):
 - ▶ $(C, \overline{C}) \rightarrow 2^8$ candidates.
 - $(C', \overline{C'}) \rightarrow 2^8$ candidates
 - ▶ 2⁻¹⁶ candidates for both.
- ▶ Total: $\ell = 2^{-32}$ candidates for $\kappa = 64$ bits of key.
- ▶ Random counter increased with probability $\frac{\ell}{2^{\kappa}} = 2^{-96}$.
- ▶ High probability of success with 4 right quartets ($D = T = 2^{67}$).

6-round AES results

	Туре	Data		Time	Ref
Distinguishers	Yoyo Exchange attack Exchange attack Truncated differential	2 ^{122.8} 2 ^{88.2} 2 ⁸⁴ 2 ^{89.4}	ACC CP ACC CP	2 ^{121.8} 2 ^{88.2} 2 ⁸³ 2 ^{96.5}	[AC:RonBarHel17] [AC:BarRon19] [EPRINT:Bardeh19] [ToSC:BaoGuoLis20]
	Truncated boomerang	2 ⁸⁷	ACC	2 ⁸⁷	This work
Key-recovery	Square Partial-sum Boomerang Mixture Retracing boomerang Boomeyong	2 ³² 2 ³² 2 ⁷¹ 2 ²⁶ 2 ⁵⁵ 2 ^{79.7}	CP CP ACC CP ACC ACC	2 ⁷¹ 2 ⁴⁸ 2 ⁷¹ 2 ⁸⁰ 2 ⁸⁰ 2 ⁸⁰ 2 ⁷⁸	[FSE:DaeKnuRij97] [FSE:FKLSSWW00] [biryukov2004boomerang] [JC:BDKRS20] [EC:DKRS20] [ToSC:RahSahPau21]
	Truncated boomerang	2 ⁵⁹	ACC	2 ⁶¹	This work

Conclusion

- Analysis of truncated bommerang attacks.
- Improving boomerangs on 6-round AES.
- 3 Applications
 - Best attack on KIASU-BC.
 - Best attacks on Deoxys-BC using MILP.
 - Distinguisher on full TNT-AES.

Thank you for your attention