The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented **PRIMITIVES**

Augustin Bariant^{1,2}, Aurélien Boeuf², Axel Lemoine^{2,4}, Irati Manterola Ayala³, Morten Øygarden³, Léo Perrin², and Håvard Raddum³

> ¹ANSSI, Paris, France ²INRIA, Paris, France ³Simula UiB, Bergen, Norway ⁴DGA, France

> > COSMIQ Seminar, Paris

Anemoi Crypto23

Griffin Crypto23

ArionHash arXiv

Anemoi Crypto23

ArionHash

arXiv

Full-round break of some instances

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

Three main improvements on previous cryptanalysis:

- 1. Free Gröbner basis for some monomial orders.
- 2. Better approach to solving the system than generic FGLM variants.
- 3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM SOLVING THE SYSTEM SOLVING THE SYSTEM

[Introduction to Gröbner Bases](#page-7-0)

[Arithmetization-Oriented Primitives](#page-39-0)

[Freelunch Systems for Free Gröbner Bases](#page-58-0)

[Solving the System given a Gröbner Basis](#page-69-0)

WHAT DO WE WANT?

Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \ldots, x_N]$. We want to solve:

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
 p_2(x_1, \ldots, x_N) = 0 \\
 \vdots \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}
$$

WHAT DO WE WANT?

$$
\begin{cases}\nm_{1,1}x_1 + \cdots + m_{1,N}x_N + a_1 = 0 \\
m_{2,1}x_1 + \cdots + m_{2,N}x_N + a_2 = 0 \\
\vdots \\
m_{k,1}x_1 + \cdots + m_{k,N}x_N + a_k = 0\n\end{cases}
$$

Polynomials of **degree 1**: Linear system ⇒ **Linear algebra**.

WHAT DO WE WANT?

$$
\begin{cases}\np_1(x_1) = 0 \\
p_2(x_1) = 0 \\
\vdots \\
p_k(x_1) = 0\n\end{cases}
$$

One variable: Univariate root finding ⇒ **Euclidian division** (for Berlekamp-Rabin algorithm).

WHAT DO WE WANT?

$$
\begin{cases}\np_1(x_1, \ldots, x_N) = 0 \\
p_2(x_1, \ldots, x_N) = 0 \\
\vdots \\
p_k(x_1, \ldots, x_N) = 0\n\end{cases}
$$

Several variables, high degree: **Linear algebra** + **Euclidian division** (F4/F5, FGLM, Fast-FGLM...).

THE PROBLEM WITH MULTIVARIATE

• Euclidian division on **integers**:

$$
a= bq+r, \ \ 0\leq r
$$

Division of 13 by 3:

 $13 = 4 \times 3 + 1$.

THE PROBLEM WITH MULTIVARIATE

• Euclidian division on **integers**:

$$
a= bq+r, \ \ 0\leq r
$$

Division of 13 by 3:

$$
13=4\times3+1.\\
$$

• Euclidian division on **univariate polynomials** (F[X]):

$$
A=BQ+R, \ \deg(R)<\deg(B).
$$

Division of $X^3 + X + 1$ by X:

$$
X^3 + X + 1 = (X^2 + 1)X + 1.
$$

THE PROBLEM WITH MULTIVARIATE

• Euclidian division on **multivariate polynomials**:

 $A = BQ + R$... condition on R?

THE PROBLEM WITH MULTIVARIATE

• Euclidian division on **multivariate polynomials**:

 $A = BQ + R$... condition on R?

Division of x by $x + y$ in $\mathbb{F}[x, y]$:

$$
x = 0 \cdot (x+y) + x
$$

or

$$
x = 1 \cdot (x+y) - y
$$
?

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEM

0000000

nnnnnnn

THE PROBLEM WITH MULTIVARIATE

• Euclidian division on **multivariate polynomials**:

 $A = BO + R$... condition on R?

Division of x by $x + y$ in $\mathbb{F}[x, y]$:

$$
x = 0 \cdot (x+y) + x \quad \Leftarrow \quad x < y
$$
\nor

\n
$$
x = 1 \cdot (x+y) - y \quad \Leftarrow \quad y < x
$$

Need to define a **monomial ordering**.

 \implies Division steps determined by **leading monomials (LM)**.

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\text{lex}} y <_{\text{lex}} z, x^{1000} ? y
$$

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\text{lex}} y <_{\text{lex}} z , x^{1000} <_{\text{lex}} y , x^{6} yz ; y^{2}
$$

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

 $x <_{\text{lex}} y <_{\text{lex}} z, y \text{ ? } x^2$

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$
x <_{\text{lex}} y <_{\text{lex}} z, \quad y <_{\text{glex}} x^2, \quad z^2 \quad ? \quad xyz
$$

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$
x <_{\text{lex}} y <_{\text{lex}} z , \quad y <_{\text{glex}} x^2 , \quad z^2 <_{\text{glex}} xyz , \quad xy <_{\text{glex}} xz <_{\text{glex}} yz .
$$

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS OF A SYSTEMS SOLVING THE SYSTEMS OF A SYST

00000000

MONOMIAL ORDERINGS

 \ln $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ y <_{\sf glex} x^2 \; , \ \ z^2 <_{\sf glex} xyz \; , \ \ xy <_{\sf glex} xz <_{\sf glex} yz \; .
$$

• **Weighted Graded LEX:** Compare the **weighted sum** of degrees, then lex if equality. Examples for $x \leq_{\text{lex}} y \leq_{\text{lex}} z$ and $\text{wt}(x) = 6$, $\text{wt}(y) = 1$, $\text{wt}(z) = 2$:

$$
x
$$
 ? yz^2

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS OF A SYSTEMS SOLVING THE SYSTEMS OF A SYST

00000000

MONOMIAL ORDERINGS

 \ln $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ y <_{\sf glex} x^2 \; , \ \ z^2 <_{\sf glex} xyz \; , \ \ xy <_{\sf glex} xz <_{\sf glex} yz \; .
$$

• **Weighted Graded LEX:** Compare the **weighted sum** of degrees, then lex if equality. Examples for $x \leq_{\text{lex}} y \leq_{\text{lex}} z$ and $\text{wt}(x) = 6$, $\text{wt}(y) = 1$, $\text{wt}(z) = 2$:

$$
x >_{\text{wglex}} yz^2 \text{ because } \text{wt}(x) = 6 \text{ and } \text{wt}(yz) = \text{wt}(y) + 2\text{wt}(z) = 5.
$$

$$
x^2 \quad ? \quad z^6
$$

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEMS OF A SYSTEMS SOLVING THE SYSTEMS OF A SYST

00000000

MONOMIAL ORDERINGS

 \ln $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ x^{1000} <_{\sf lex} y \; , \ \ x^6yz <_{\sf lex} y^2z \; .
$$

• **Graded LEX:** Compare **total degree** first, then switch to lex if equality.

$$
x <_{\sf lex} y <_{\sf lex} z \; , \ \ y <_{\sf glex} x^2 \; , \ \ z^2 <_{\sf glex} xyz \; , \ \ xy <_{\sf glex} xz <_{\sf glex} yz \; .
$$

• **Weighted Graded LEX:** Compare the **weighted sum** of degrees, then lex if equality. Examples for $x \leq_{\text{lex}} y \leq_{\text{lex}} z$ and $\text{wt}(x) = 6$, $\text{wt}(y) = 1$, $\text{wt}(z) = 2$:

$$
\begin{aligned}\n&\times \quad >_{\text{wglex}} yz^2 \text{ because } \text{wt}(x) = 6 \text{ and } \text{wt}(yz) = \text{wt}(y) + 2\text{wt}(z) = 5 \\
&\times^2 \quad <_{\text{wglex}} z^6 \text{ because } \text{wt}(x^2) = \text{wt}(z^6) = 12 \text{ and } x^2 <_{\text{lex}} z^6\n\end{aligned}
$$

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder can depend on the choice of divisors!**

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM
 COOLSCOPE ARITHMETIZATION

00000000

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder can depend on the choice of divisors!**

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

y^2	y^2	
1	red. by $y^2 - 1$	red. by $y - x$
1	xy	
1	red. by $y - x$	
1	xd. by $y - x$	
1	xd. by $y - x$	

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM
 COOLSCOPE ARITHMETIZATION

0000000

00000000

The Problem... Still.

Consider a system $\{p_1, \ldots, p_k\}$.

 \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: **final remainder can depend on the choice of divisors!**

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

$$
\begin{array}{ccc}\ny^2 \\
\downarrow & \text{red. by } y^2 - 1 \\
1 \\
\downarrow & \text{no further red.} \\
1\n\end{array}\n\qquad\n\begin{array}{ccc}\ny^2 \\
\downarrow & \text{red. by } y - x \\
\downarrow & \text{red. by } y - x \\
\downarrow & \text{red. by } y - x \\
x^2\n\end{array}
$$

The solution: Gröbner Bases.

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM COOL

00000000

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and \lt a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by *<* of any polynomial P does not depend on the order chosen for the reductors.

nnnnnnn

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and \lt a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by *<* of any polynomial P does not depend on the order chosen for the reductors.

Useful Proposition If LM*<*(p1)*, . . . ,* LM*<*(p^k) are pairwise **coprime** (e.g. x 2 and y), then G is a Gröbner basis.

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

• {y ² − 1*,* y − x} is not a Gröbner basis for **lex** order with x *<* y (previous example).

Gröbner Basis - Examples

 \ln $\mathbb{F}[x, y]$:

- {y ² − 1*,* y − x} is not a Gröbner basis for **lex** order with x *<* y (previous example).
- However, it is a Gröbner basis for **lex** order with $x > y$. Proof: LM $(y^2 1) = y^2$ and $LM(y - x) = x$ are **coprime**.

0000000

nnnnnnn

Gröbner Basis - Examples

 \ln $\mathbb{F}[x, y]$:

- {y ² − 1*,* y − x} is not a Gröbner basis for **lex** order with x *<* y (previous example).
- However, it is a Gröbner basis for **lex** order with $x > y$. Proof: LM $(y^2 1) = y^2$ and $LM(y - x) = x$ are **coprime**.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.

0000000

nnnnnnn

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- {y ² − 1*,* y − x} is not a Gröbner basis for **lex** order with x *<* y (previous example).
- However, it is a Gröbner basis for **lex** order with $x > y$. Proof: LM $(y^2 1) = y^2$ and $LM(y - x) = x$ are **coprime**.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any **lex** or **deglex** order.
- However, it is a Gröbner basis for **weighted degree** orders with $wt(x) = 2$ and $wt(y) = 1$, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are **coprime**.

Generic System Solving

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1, \ldots, x_N) = 0 \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}
$$

1. Define system

Generic System Solving

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1, \ldots, x_N) = 0 \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 g_{k-1}(x_1, \ldots, x_N) = 0 \\
 g_k(x_1, \ldots, x_N) = 0 \\
1.\n\end{cases}
$$
\n1. Define system 2. Find a GB (F4/F5)
Generic System Solving

$$
\begin{cases}\n p_1(x_1,...,x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1,...,x_N) = 0 \\
 p_k(x_1,...,x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1,...,x_N) = 0 \\
\vdots \\
 g_{k-1}(x_1,...,x_N) = 0 \\
 g_k(x_1,...,x_N) = 0\n\end{cases}\n\begin{cases}\ng_1^*(x_1,...,x_N) = 0 \\
\vdots \\
 g_{k-1}^*(x_{k-1},x_N) = 0 \\
\vdots \\
 g_N^*(x_N) = 0\n\end{cases}
$$
\n1. Define system 2. Find a GB (F4/F5) 3. Change order to **lex** (FGLM)

Generic System Solving

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
 \vdots \\
 p_{k-1}(x_1, \ldots, x_N) = 0 \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1, \ldots, x_N) = 0 \\
 \vdots \\
 g_{k-1}(x_1, \ldots, x_N) = 0 \\
 g_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1^*(x_1, \ldots, x_N) = 0 \\
 \vdots \\
 g_{k-1}^*(x_{k-1}, \ldots, x_N) = 0 \\
 g_k^*(x_N) = 0\n\end{cases}
$$
\n1. Define system 2. Find a GB (F4/F5) 3. Change order to **lex** (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM

COORDOOLS

0000000

nnnnnnn

Generic System Solving

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1, \ldots, x_N) = 0 \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 g_{k-1}(x_1, \ldots, x_N) = 0 \\
 g_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1^*(x_1, \ldots, x_N) = 0 \\
\vdots \\
 g_{k-1}^*(x_{k-1}, x_N) = 0 \\
 g_k^*(x_N) = 0\n\end{cases}
$$
\n1. Define system 2. Find a GB (F4/F5) 3. Change order to **lex** (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons. For most AOPs, step 2 dominates, **but we can skip it**.

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOLS FREELUNCH SYSTEM

[Introduction to Gröbner Bases](#page-7-0)

[Arithmetization-Oriented Primitives](#page-39-0)

[Freelunch Systems for Free Gröbner Bases](#page-58-0)

[Solving the System given a Gröbner Basis](#page-69-0)

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM

nnnnnn

DOOOOOO

WHAT IS A HASH FUNCTION?

DEFINITION

A hash function is a function that maps an input of **any size** in \mathbb{F}_q to an element of \mathbb{F}_q^r for a **fixed** integer r.

- **collision resistance**: hard to find x, y such that $H(x) = H(y)$.
- **preimage resistance**: given $y \in \mathbb{F}_q^r$, hard to find x such that $H(x) = y$.
- **second preimage resistance**: given x, hard to find x' such that $H(x) = H(x')$.

Sponge Hash Functions

P is, for example, a **fixed-key Block Cipher**.

CICO PROBLEM

CICO Problem of size c **(capacity of the sponge) for permutation** P:

$$
P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}})
$$

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOL

nnnnnnn

CICO PROBLEM

CICO Problem of size c **(capacity of the sponge) for permutation** P:

$$
P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}})
$$

Solving CICO of size c gives collisions to the hash function.

 \Rightarrow Multivariate attack: solve CICO faster than brute-force attacks using a model of P. \Rightarrow We focus on $c = 1$.

$$
P(x,*,\ldots,*,0)=(*,\ldots,*,0).
$$

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOOOOOO **SYSTEM**

Block Cipher

The ever-popular Block Cipher construction.

Arithmetization-Oriented Symmetric Primitives

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM
COOLOGION SOLVING THE SYSTEM

nnnnnn

10000000

Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with a "simple" arithmetic description (e.g. using $x \mapsto x^3$ as the main nonlinear function), sometimes over \mathbb{F}_q for a specific large q $(>$ 2 64 , up to \approx $2^{256}).$

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM
COOLOGION SOLVING THE SYSTEM

10000000

Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with a "simple" arithmetic description (e.g. using $x \mapsto x^3$ as the main nonlinear function), sometimes over \mathbb{F}_q for a specific large q $(>$ 2 64 , up to \approx $2^{256}).$

Arithmetization for Zero-Knowledge

- Implementation of ZK based on algebraic equations.
- **Low degree equations = Better performance**.

Function \rightarrow Set of equations \rightarrow Proof system

Arithmetization for Zero-Knowledge

- Implementation of ZK based on algebraic equations.
- **Low degree equations = Better performance**.

Function \rightarrow Set of equations \rightarrow Proof system

DOOOOOO

Quick Overview of Griffin, Arion, Anemoi

Our targets:

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin-*π*, Arion-*π* and Anemoi families of permutations (all fixed-key block ciphers).

Quick Overview of Griffin, Arion, Anemoi

Our targets:

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin-*π*, Arion-*π* and Anemoi families of permutations (all fixed-key block ciphers).
- **Many** instances are defined: variable \mathbb{F}_p , number of branches, exponents for monomial permutations...

 \implies We attack some instance better than others.

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOOOOOO **SOLVING THE SYSTEM**

GRIFFIN-π - ROUND FUNCTION (4 BRANCHES)

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOOOOOO **SYSTEM**

GRIFFIN- π - ROUND FUNCTION (4 BRANCHES)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOLS THE SYSTEM

G RIFFIN- π - MODEL

• **CICO** problem: $G_{\pi}(\cdots||0) = (\cdots||0)$.

 \implies One variable x_0 in the input. One equation for the output (last branch at 0).

• N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \ldots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOLS THE SYSTEM

G riffin- π - Model

• **CICO** problem: $G_{\pi}(\cdots||0) = (\cdots||0)$.

 \implies One variable x_0 in the input. One equation for the output (last branch at 0).

• N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \ldots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = a x_0 + b
$$

$$
x_0^7 + c x_0^4 x_1 + d x_0 x_1^2 + \dots = 0
$$

GRÖBNER BASES **ARITHMETIZATION-ORIENTED PRIMITIVES** FREELUNCH SYSTEMS SOLVING THE SYSTEM COOLS THE SYSTEM

00000000

Generic System Solving

$$
\begin{cases}\n p_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1, \ldots, x_N) = 0 \\
 p_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1, \ldots, x_N) = 0 \\
\vdots \\
 g_{k-1}(x_1, \ldots, x_N) = 0 \\
 g_k(x_1, \ldots, x_N) = 0\n\end{cases}\n\begin{cases}\n g_1^*(x_1, \ldots, x_N) = 0 \\
\vdots \\
 g_{k-1}^*(x_{k-1}, x_N) = 0 \\
 g_k^*(x_N) = 0\n\end{cases}
$$

1. Define system 2. Find a GB (F4/F5) 3. Change order to **lex** (FGLM) 4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

Generic System Solving

$$
\begin{cases}\n p_1(x_1, ..., x_N) = 0 \\
\vdots \\
 p_{k-1}(x_1, ..., x_N) = 0 \\
 p_k(x_1, ..., x_N) = 0\n\end{cases}\n\begin{cases}\n g_1(x_1, ..., x_N) = 0 \\
 g_{k-1}(x_1, ..., x_N) = 0 \\
 g_{k-1}(x_1, ..., x_N) = 0 \\
 g_{k-1}(x_1, ..., x_N) = 0\n\end{cases}\n\begin{cases}\n g_1^*(x_1, ..., x_N) = 0 \\
\vdots \\
 g_{k-1}^*(x_{k-1}, x_N) = 0 \\
 g_k^*(x_N) = 0\n\end{cases}
$$
\n1. Define system\n1. Define system

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

But we can skip it!

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM SOLVING THE SYSTEM

[Introduction to Gröbner Bases](#page-7-0)

[Arithmetization-Oriented Primitives](#page-39-0)

[Freelunch Systems for Free Gröbner Bases](#page-58-0)

[Solving the System given a Gröbner Basis](#page-69-0)

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM SOLVING THE SYSTEM

00000000

G RIFFIN- π - MODEL

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. \Rightarrow One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \ldots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = a x_0 + b
$$

$$
x_0^7 + c x_0^4 x_1 + d x_0 x_1^2 + \dots = 0
$$

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM 000000000000

DOOOOOO

G riffin- π - Model

- **CICO** problem: $\mathcal{G}_{\pi}(\cdots||0) = (\cdots||0)$. \Rightarrow One variable x_0 in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \ldots x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = a x_0 + b
$$

$$
x_0^7 + c x_0^4 x_1 + d x_0 x_1^2 + \dots = 0
$$

Observation: x_1 has a lower degree than x_0 in the last equation.

 \implies In **grevlex**, the leading monomials are x_0^7 and x_1^3 . \implies **It's a Gröbner basis** ! (coprime leading monomials)

=⇒ For more rounds, **grevlex** doesn't work. We need **weighted degree** orders, with $\mathsf{wt}(\mathsf{x}_0) = 1$ and $\mathsf{wt}(\mathsf{x}_i) = 7^{i-1}$.

Arion-*π* - Round Function (4 branches)

ARION- π - ROUND FUNCTION (4 BRANCHES)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

Anemoi - Nonlinear layer (2 branches)

Anemoi - Nonlinear layer (2 branches)

 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Anemoi - Model

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = ax_0^2 + bx_0 + c
$$

$$
x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0
$$

ANEMOI - MODEL

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = ax_0^2 + bx_0 + c
$$

$$
x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0
$$

x 2 0 **cancels out: this isn't a Gröbner basis for any order!**

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM SOLVING THE SYSTEM

nnnnnnn

ANEMOI - MODEL

EXAMPLE $(\alpha = 3, \text{ ONE ROUND})$

$$
x_1^3 = ax_0^2 + bx_0 + c
$$

$$
x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0
$$

x 2 0 **cancels out: this isn't a Gröbner basis for any order! Solution:** multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$
p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots
$$

ANEMOI - MODEL

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$
x_1^3 = ax_0^2 + bx_0 + c
$$

$$
x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0
$$

x 2 0 **cancels out: this isn't a Gröbner basis for any order! Solution:** multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$
p^*(x_0,x_1) = ax_0^3 + bdx_0^2x_1 + \cdots
$$

 \implies The first equation and p^* are a Gröbner basis for some weighted order. \implies This adds a few parasitic solutions (corresponding to $x_1 = 0$), but not many. \implies This generalizes for more rounds (multiply the last polynomial by some of the x_i and reduce it). **Freelunch is saved**!

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEM

[Introduction to Gröbner Bases](#page-7-0)

[Arithmetization-Oriented Primitives](#page-39-0)

[Freelunch Systems for Free Gröbner Bases](#page-58-0)

[Solving the System given a Gröbner Basis](#page-69-0)

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEM

0000000

FGLM IN A NUTSHELL

- Given a zero-dimensional ideal I, a Gröbner basis G¹ for I some ordering *<*1, and an ordering \lt_2 , FGLM computes a Gröbner basis G_2 for \lt_2 in $O(n_{var}D_i^3)$.
- \bullet D_l is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.

0000000

FGLM IN A NUTSHELL

- Given a zero-dimensional ideal *I*, a Gröbner basis G_1 for *I* some ordering \lt_{1} , and an ordering \lt_2 , FGLM computes a Gröbner basis G_2 for \lt_2 in $O(n_{var}D_i^3)$.
- \bullet D_l is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.
- **This is interesting** because a GB in **lex** order **must have** a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
FGLM IN A NUTSHELL

- Given a zero-dimensional ideal *I*, a Gröbner basis G_1 for *I* some ordering \lt_{1} , and an ordering \lt_2 , FGLM computes a Gröbner basis G_2 for \lt_2 in $O(n_{var}D_i^3)$.
- \bullet D_l is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.
- **This is interesting** because a GB in **lex** order **must have** a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

FASTER CHANGE OF ORDER STRATEGY

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial *χ* of the linear operation $P \mapsto \text{Red}_{\leq}(x \cdot P, G)$.
- $\chi(x) = 0$. Generically, this is **exactly** the univariate polynomial in x in the reduced GB of I in **lex** order.
- **Issue:** our systems **do not** verify an important property of the original paper.

0000000

COMPUTING THE MULTIPLICATION MATRIX

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \ldots, x_N]$ that maps P to $x_0 \cdot P$.

 \bullet Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight **complexity estimate for this step**.

∩∩∩≘∩∩∩∩

COMPUTING THE MULTIPLICATION MATRIX

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \ldots, x_N]$ that maps P to $x_0 \cdot P$.

- \bullet Need to reduce monomials of the form $x_0^{k_0+1}x_1^{k_1}\cdots x_N^{k_N}$. We have no tight **complexity estimate for this step**.
- The matrix is sparse. If leading monomials are $x_0^{d_0}, \ldots, x_N^{d_N}$:

COMPUTING THE CHARACTERISTIC POLYNOMIAL

Step 2: Given T , compute det($XI - M$).

 \implies T is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.

 \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.

 \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0\!\log(d_0)^2d_1^\omega\cdots d_N^\omega).$

[Gröbner Bases](#page-7-0) [Arithmetization-Oriented Primitives](#page-39-0) [Freelunch Systems](#page-58-0) [Solving the System](#page-69-0)

0000000

OUR FULL ALGORITHM

- 1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
- 2. matGen: Compute the multiplication matrix T. **Complexity hard to evaluate**.
- 3. polyDet: Compute the characteristic polynomial *χ* of T.
	- \implies **Longest step aside from** matGen.
- 4. uniSo1: Find roots of χ with Berlekamp-Rabin in $\mathcal{O}(D_l \log(D_l) \log(pD_l))$.

[Gröbner Bases](#page-7-0) [Arithmetization-Oriented Primitives](#page-39-0) [Freelunch Systems](#page-58-0) [Solving the System](#page-69-0)

Experimental Results

Complexity of Griffin Complexity of Anemoi (7 out of 10 rounds, $\alpha=3$) (7 out of 21 rounds, $\alpha=3$)

[Gröbner Bases](#page-7-0) [Arithmetization-Oriented Primitives](#page-39-0) [Freelunch Systems](#page-58-0) [Solving the System](#page-69-0)

Experimental Results

- \implies For Griffin, polyDet upper-bounds the others up to 7 rounds.
- \implies For Anemoi, matGen is the bottleneck.

GRÖBNER BASES ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEMS SOLVING THE SYSTEM

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_l with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

0000000C

[Gröbner Bases](#page-7-0) [Arithmetization-Oriented Primitives](#page-39-0) [Freelunch Systems](#page-58-0) [Solving the System](#page-69-0) 000000000000

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_l with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:

- Complexity of matGen/better approach?
- Other contexts where we can get a free Gröbner basis? Or "cheap" like in Anemoi?
- CICO on more than one branch?

[Gröbner Bases](#page-7-0) [Arithmetization-Oriented Primitives](#page-39-0) [Freelunch Systems](#page-58-0) [Solving the System](#page-69-0) 000000000000

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_l with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:

- Complexity of matGen/better approach?
- Other contexts where we can get a free Gröbner basis? Or "cheap" like in Anemoi?
- CICO on more than one branch?

THANK YOU FOR YOUR ATTENTION!

COLLISION FROM THE CICO PROBLEM

• Suppose you know x such that $P(x || 0^c) = (y || 0^c)$.

GRIFFIN TRICK

Arion Trick

