
The Algebraic Freelunch: Efficient Gröbner
Basis Attacks Against Arithmetization-Oriented

Primitives

Augustin Bariant1,2, Aurélien Boeuf2, Axel Lemoine2,4, Irati Manterola Ayala3,
Morten Øygarden3, Léo Perrin2, and Håvard Raddum3

1ANSSI, Paris, France 2INRIA, Paris, France
3Simula UiB, Bergen, Norway 4DGA, France

COSMIQ Seminar, Paris

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

3 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What do we want?

Consider a multivariate polynomial ring F[x1, x2, . . . , xN].
We want to solve:

p1(x1, . . ., xN) = 0
p2(x1, . . ., xN) = 0

...
pk(x1, . . ., xN) = 0

4 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What do we want?

m1,1x1 + · · · + m1,NxN + a1 = 0
m2,1x1 + · · · + m2,NxN + a2 = 0

...
mk,1x1 + · · · + mk,NxN + ak = 0

Polynomials of degree 1: Linear system ⇒ Linear algebra.

4 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What do we want?

p1(x1) = 0
p2(x1) = 0

...
pk(x1) = 0

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin
algorithm).

4 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What do we want?

p1(x1, . . . , xN) = 0
p2(x1, . . . , xN) = 0

...
pk(x1, . . . , xN) = 0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).

4 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

5 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

5 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y

? ⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

6 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y ?

⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

6 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x ⇐ x < y
or

x = 1 · (x+y) − y

?

⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

6 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000 ?

<lex

y

, x6yz

?<lex

y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz ?

<lex

y2z

.

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y ?

<glex

x2

, z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2 ?

<glex

xyz

, xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x ?

>wglex

yz2

because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2 ?

<wglex

z6

because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?

<wglex z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x , y] with lex ordering (x <lex y), divide y2 by
{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

8 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!
Example: in F[x , y] with lex ordering (x <lex y), divide y2 by

{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

8 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!
Example: in F[x , y] with lex ordering (x <lex y), divide y2 by

{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

8 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

9 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

9 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

10 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

10 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

10 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

10 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system

2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.

11 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5)

3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.

11 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)

4. Find the roots in Fq of g∗
N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.

11 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.

11 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.

11 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

12 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

What is a Hash Function?

Definition
A hash function is a function that maps an input of any size in Fq to an element of
Fr

q for a fixed integer r .
• collision resistance: hard to find x , y such that H(x) = H(y).
• preimage resistance: given y ∈ Fr

q, hard to find x such that H(x) = y .
• second preimage resistance: given x , hard to find x ′ such that H(x) = H(x ′).

13 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Sponge Hash Functions

M0

capacity

rate
P

M1

P

M2

P

M3

P

H(M)

A sponge construction, originally designed for the standard SHA-3.
P is, for example, a fixed-key Block Cipher.

14 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

15 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

15 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Block Cipher

s f . . . f

c0 c1 cN−2 cN−1

The ever-popular Block Cipher construction.

16 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x 7→ x3 as the main nonlinear
function), sometimes over Fq for a specific large q (> 264, up to ≈ 2256).

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 264)

e.g. AES, SHA-3 e.g. Griffin, Anemoi

17 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x 7→ x3 as the main nonlinear
function), sometimes over Fq for a specific large q (> 264, up to ≈ 2256).

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 264)

e.g. AES, SHA-3 e.g. Griffin, Anemoi

17 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x 7→ x3 as the main nonlinear
function), sometimes over Fq for a specific large q (> 264, up to ≈ 2256).

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 264)

e.g. AES, SHA-3 e.g. Griffin, Anemoi

17 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization for Zero-Knowledge
• Implementation of ZK based on algebraic equations.
• Low degree equations = Better performance.

Function → Set of equations → Proof system

x3

High ZK performance

Low (algebraic) security

AES
S-box

Low ZK performance

High (algebraic) security

x1/3

High ZK performance

Good (algebraic) security?

(Low degree inverse:

y = xα vs yα = x)

18 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization for Zero-Knowledge
• Implementation of ZK based on algebraic equations.
• Low degree equations = Better performance.

Function → Set of equations → Proof system

x3

High ZK performance

Low (algebraic) security

AES
S-box

Low ZK performance

High (algebraic) security

x1/3

High ZK performance

Good (algebraic) security?

(Low degree inverse:

y = xα vs yα = x)

18 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of
hash functions.

• Based on Griffin-π, Arion-π and Anemoi families of permutations (all fixed-key
block ciphers).

• Many instances are defined: variable Fp, number of branches, exponents for
monomial permutations...

=⇒ We attack some instance better than others.

19 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of
hash functions.

• Based on Griffin-π, Arion-π and Anemoi families of permutations (all fixed-key
block ciphers).

• Many instances are defined: variable Fp, number of branches, exponents for
monomial permutations...

=⇒ We attack some instance better than others.

19 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Round Function (4 branches)

20 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Round Function (4 branches)

·1/α is the only high-degree operation =⇒ add one variable per ·1/α.

21 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

22 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

22 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!

23 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!

23 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

24 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model
• CICO problem: Gπ(· · · ||0) = (· · · ||0).

=⇒ One variable x0 in the input. One equation for the output (last branch at 0).
• Nrounds equations of the form xα

i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

Observation: x1 has a lower degree than x0 in the last equation.
=⇒ In grevlex, the leading monomials are x7

0 and x3
1 . =⇒ It’s a Gröbner basis !

(coprime leading monomials)
=⇒ For more rounds, grevlex doesn’t work. We need weighted degree orders, with
wt(x0) = 1 and wt(xi) = 7i−1.

25 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model
• CICO problem: Gπ(· · · ||0) = (· · · ||0).

=⇒ One variable x0 in the input. One equation for the output (last branch at 0).
• Nrounds equations of the form xα

i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

Observation: x1 has a lower degree than x0 in the last equation.
=⇒ In grevlex, the leading monomials are x7

0 and x3
1 . =⇒ It’s a Gröbner basis !

(coprime leading monomials)
=⇒ For more rounds, grevlex doesn’t work. We need weighted degree orders, with
wt(x0) = 1 and wt(xi) = 7i−1.

25 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arion-π - Round Function (4 branches)

26 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arion-π - Round Function (4 branches)

·1/α is the only high-degree operation =⇒ add one variable per ·1/α.

27 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

28 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.

29 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

30 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

30 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

30 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

30 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

31 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a zero-dimensional ideal I, a Gröbner basis G1 for I some ordering <1, and
an ordering <2, FGLM computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI is the degree of the ideal, a.k.a. the number of solutions of the system in

the algebraic closure.

• This is interesting because a GB in lex order must have a univariate polynomial
in the smallest variable, which we can solve. (This corresponds to eliminating the
other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

32 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a zero-dimensional ideal I, a Gröbner basis G1 for I some ordering <1, and
an ordering <2, FGLM computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI is the degree of the ideal, a.k.a. the number of solutions of the system in

the algebraic closure.
• This is interesting because a GB in lex order must have a univariate polynomial

in the smallest variable, which we can solve. (This corresponds to eliminating the
other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

32 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a zero-dimensional ideal I, a Gröbner basis G1 for I some ordering <1, and
an ordering <2, FGLM computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI is the degree of the ideal, a.k.a. the number of solutions of the system in

the algebraic closure.
• This is interesting because a GB in lex order must have a univariate polynomial

in the smallest variable, which we can solve. (This corresponds to eliminating the
other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

32 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Faster Change of Order Strategy

• Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

• Strategy: for the smallest variable x , compute the characteristic polynomial χ of
the linear operation P 7→ Red<(x · P, G).

• χ(x) = 0. Generically, this is exactly the univariate polynomial in x in the
reduced GB of I in lex order.

• Issue: our systems do not verify an important property of the original paper.

33 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in F[x0, x1, . . . , xN] that maps
P to x0 · P.

• Need to reduce monomials of the form xk0+1
0 xk1

1 · · · xkN
N . We have no tight

complexity estimate for this step.

• The matrix is sparse. If leading monomials are xd0
0 , . . . , xdN

N :

T0 =

0 0 0 ∗
1 0 0 ∗

0
0

0 0 1 ∗

︸ ︷︷ ︸

(d0 − 1)d1 · · · dN

︸ ︷︷ ︸
d1 · · · dN

34 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in F[x0, x1, . . . , xN] that maps
P to x0 · P.

• Need to reduce monomials of the form xk0+1
0 xk1

1 · · · xkN
N . We have no tight

complexity estimate for this step.
• The matrix is sparse. If leading monomials are xd0

0 , . . . , xdN
N :

T0 =

0 0 0 ∗
1 0 0 ∗

0
0

0 0 1 ∗

︸ ︷︷ ︸

(d0 − 1)d1 · · · dN

︸ ︷︷ ︸
d1 · · · dN

34 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Computing the Characteristic Polynomial

Step 2: Given T , compute det(XI − M).
=⇒ T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D1 = d1 · · · dN .
=⇒ In Griffin and Arion, d0 is by far the highest degree, so this reduces complexity by
a lot.
=⇒ This can be computed with fast linear algebra, in O(d0log(d0)2dω

1 · · · dω
N).

35 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Our Full Algorithm

1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
2. matGen: Compute the multiplication matrix T . Complexity hard to evaluate.
3. polyDet: Compute the characteristic polynomial χ of T .

=⇒ Longest step aside from matGen.
4. uniSol: Find roots of χ with Berlekamp-Rabin in O(DI log(DI)log(pDI)).

36 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Experimental Results

Complexity of Griffin Complexity of Anemoi
(7 out of 10 rounds, α=3) (7 out of 21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.

37 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Experimental Results

Complexity of Griffin Complexity of Anemoi
(7 out of 10 rounds, α=3) (7 out of 21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.

37 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:
• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.
Open Questions:

• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38

Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.
Open Questions:

• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38

Collision from the CICO Problem

• Suppose you know x such that P(x || 0c) = (y || 0c).

x

c

r 0c

0c

P

0c

y

0c

· · ·

· · ·

y

0c

0c

y

0c

· · ·

· · ·

1 / 3

Griffin Trick

2 / 3

Arion Trick

3 / 3

	Introduction to Gröbner Bases
	Arithmetization-Oriented Primitives
	Freelunch Systems for Free Gröbner Bases
	Solving the System given a Gröbner Basis
	Appendix

