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Three main improvements on previous cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.
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Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis
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What do we want?

Consider a multivariate polynomial ring F[x1, x2, . . . , xN ].
We want to solve: 

p1(x1, . . ., xN) = 0
p2(x1, . . ., xN) = 0

...
pk(x1, . . ., xN) = 0
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What do we want?



m1,1x1 + · · · + m1,NxN + a1 = 0
m2,1x1 + · · · + m2,NxN + a2 = 0

...
mk,1x1 + · · · + mk,NxN + ak = 0

Polynomials of degree 1: Linear system ⇒ Linear algebra.
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What do we want?



p1(x1) = 0
p2(x1) = 0

...
pk(x1) = 0

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin
algorithm).
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What do we want?



p1(x1, . . . , xN) = 0
p2(x1, . . . , xN) = 0

...
pk(x1, . . . , xN) = 0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).
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The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X ]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.
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The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y ]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y

? ⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).
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Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000 ?

<lex

y

, x6yz

?<lex

y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz ?

<lex

y2z

.

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y ?

<glex

x2

, z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2 ?

<glex

xyz

, xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x ?

>wglex

yz2

because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2 ?

<wglex

z6

because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?

<wglex z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

7 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x , y ] with lex ordering (x <lex y), divide y2 by
{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.
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What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

9 / 38
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Gröbner Basis - Examples

In F[x , y ]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.
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Generic System Solving



p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0



g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0



g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system

2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons.
For most AOPs, step 2 dominates, but we can skip it.
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What is a Hash Function?

Definition
A hash function is a function that maps an input of any size in Fq to an element of
Fr

q for a fixed integer r .
• collision resistance: hard to find x , y such that H(x) = H(y).
• preimage resistance: given y ∈ Fr

q, hard to find x such that H(x) = y .
• second preimage resistance: given x , hard to find x ′ such that H(x) = H(x ′).
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Sponge Hash Functions

M0

capacity

rate
P

M1

P

M2

P

M3

P

H(M)

A sponge construction, originally designed for the standard SHA-3.
P is, for example, a fixed-key Block Cipher.
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CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

15 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO faster than brute-force attacks using a model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

15 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Block Cipher

s f . . . f

c0 c1 cN−2 cN−1

The ever-popular Block Cipher construction.
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Arithmetization-Oriented Symmetric Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with
a “simple” arithmetic description (e.g. using x 7→ x3 as the main nonlinear
function), sometimes over Fq for a specific large q (> 264, up to ≈ 2256).

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 264)

e.g. AES, SHA-3 e.g. Griffin, Anemoi
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Arithmetization for Zero-Knowledge
• Implementation of ZK based on algebraic equations.
• Low degree equations = Better performance.

Function → Set of equations → Proof system

x3

High ZK performance

Low (algebraic) security

AES
S-box

Low ZK performance

High (algebraic) security

x1/3

High ZK performance

Good (algebraic) security?

(Low degree inverse:

y = xα vs yα = x)
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Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of
hash functions.

• Based on Griffin-π, Arion-π and Anemoi families of permutations (all fixed-key
block ciphers).

• Many instances are defined: variable Fp, number of branches, exponents for
monomial permutations...

=⇒ We attack some instance better than others.
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Griffin-π - Round Function (4 branches)
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Griffin-π - Round Function (4 branches)

·1/α is the only high-degree operation =⇒ add one variable per ·1/α.
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Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0
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Generic System Solving



p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0



g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0



g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!
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Introduction to Gröbner Bases

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis
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Griffin-π - Model
• CICO problem: Gπ(· · · ||0) = (· · · ||0).

=⇒ One variable x0 in the input. One equation for the output (last branch at 0).
• Nrounds equations of the form xα

i = Pi(x0, x1, . . . xi−1) (·1/α S-boxes).

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

Observation: x1 has a lower degree than x0 in the last equation.
=⇒ In grevlex, the leading monomials are x7

0 and x3
1 . =⇒ It’s a Gröbner basis !

(coprime leading monomials)
=⇒ For more rounds, grevlex doesn’t work. We need weighted degree orders, with
wt(x0) = 1 and wt(xi) = 7i−1.
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Arion-π - Round Function (4 branches)
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Arion-π - Round Function (4 branches)

·1/α is the only high-degree operation =⇒ add one variable per ·1/α.
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Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

28 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.
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Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!
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Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

31 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a zero-dimensional ideal I, a Gröbner basis G1 for I some ordering <1, and
an ordering <2, FGLM computes a Gröbner basis G2 for <2 in O(nvar D3

I ).
• DI is the degree of the ideal, a.k.a. the number of solutions of the system in

the algebraic closure.

• This is interesting because a GB in lex order must have a univariate polynomial
in the smallest variable, which we can solve. (This corresponds to eliminating the
other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.
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Faster Change of Order Strategy

• Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

• Strategy: for the smallest variable x , compute the characteristic polynomial χ of
the linear operation P 7→ Red<(x · P, G).

• χ(x) = 0. Generically, this is exactly the univariate polynomial in x in the
reduced GB of I in lex order.

• Issue: our systems do not verify an important property of the original paper.

33 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in F[x0, x1, . . . , xN ] that maps
P to x0 · P.

• Need to reduce monomials of the form xk0+1
0 xk1

1 · · · xkN
N . We have no tight

complexity estimate for this step.

• The matrix is sparse. If leading monomials are xd0
0 , . . . , xdN

N :

T0 =



0 0 0 ∗
1 0 0 ∗

0
0

0 0 1 ∗


︸ ︷︷ ︸

(d0 − 1)d1 · · · dN

︸ ︷︷ ︸
d1 · · · dN
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Computing the Characteristic Polynomial

Step 2: Given T , compute det(XI − M).
=⇒ T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D1 = d1 · · · dN .
=⇒ In Griffin and Arion, d0 is by far the highest degree, so this reduces complexity by
a lot.
=⇒ This can be computed with fast linear algebra, in O(d0log(d0)2dω

1 · · · dω
N).

35 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Our Full Algorithm

1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
2. matGen: Compute the multiplication matrix T . Complexity hard to evaluate.
3. polyDet: Compute the characteristic polynomial χ of T .

=⇒ Longest step aside from matGen.
4. uniSol: Find roots of χ with Berlekamp-Rabin in O(DI log(DI)log(pDI)).
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Experimental Results

Complexity of Griffin Complexity of Anemoi
(7 out of 10 rounds, α=3) (7 out of 21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.
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Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:
• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.
Open Questions:

• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38



Gröbner Bases Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions should not base their security on the
complexity of finding a Gröbner basis (F4/F5).

• Instead, focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds.
Open Questions:

• Complexity of matGen/better approach?
• Other contexts where we can get a free Gröbner basis? Or “cheap” like in

Anemoi?
• CICO on more than one branch?

Thank you for your attention!

38 / 38



Collision from the CICO Problem

• Suppose you know x such that P(x || 0c) = (y || 0c).

x

c

r 0c

0c

P

0c

y

0c

· · ·

· · ·

y

0c

0c

y

0c

· · ·

· · ·
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Griffin Trick
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Arion Trick
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