The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives

Augustin Bariant^{1,2}, Aurélien Boeuf², Axel Lemoine^{2,4}, Irati Manterola Ayala³, Morten Øygarden³, Léo Perrin², and Håvard Raddum³

> ¹ANSSI, Paris, France ²INRIA, Paris, France ³Simula UiB, Bergen, Norway ⁴DGA, France

> > COSMIQ Seminar, Paris

Anemoi Crypto23

Griffin Crypto23

ArionHash arXiv

Anemoi Crypto23

ArionHash

arXiv

Full-round break of some instances

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

Three main improvements on previous cryptanalysis:

- $1. \ {\rm Free}$ Gröbner basis for some monomial orders.
- $2. \,$ Better approach to solving the system than generic FGLM variants.
- 3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System 00000000

INTRODUCTION TO GRÖBNER BASES

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

WHAT DO WE WANT?

Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_N]$. We want to solve:

$$\begin{cases} p_1(x_1,...,x_N) = 0 \\ p_2(x_1,...,x_N) = 0 \\ \vdots \\ p_k(x_1,...,x_N) = 0 \end{cases}$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

WHAT DO WE WANT?

$$\begin{cases} m_{1,1}x_1 + \dots + m_{1,N}x_N + a_1 = 0 \\ m_{2,1}x_1 + \dots + m_{2,N}x_N + a_2 = 0 \\ \vdots \\ m_{k,1}x_1 + \dots + m_{k,N}x_N + a_k = 0 \end{cases}$$

Polynomials of **degree 1**: Linear system \Rightarrow **Linear algebra**.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

WHAT DO WE WANT?

 $\left\{egin{array}{l} p_1(x_1) = 0 \ p_2(x_1) = 0 \ dots \ p_k(x_1) = 0 \end{array}
ight.$

One variable: Univariate root finding \Rightarrow **Euclidian division** (for Berlekamp-Rabin algorithm).

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM

WHAT DO WE WANT?

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM, Fast-FGLM...).

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

The Problem with Multivariate

• Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

 $13 = 4 \times 3 + 1.$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

The Problem with Multivariate

• Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13=4\times3+1.$$

• Euclidian division on **univariate polynomials** ($\mathbb{F}[X]$):

$$A = BQ + R$$
, $\deg(R) < \deg(B)$.

Division of $X^3 + X + 1$ by X:

$$X^3 + X + 1 = (X^2 + 1)X + 1.$$

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x$$

or
$$x = 1 \cdot (x+y) - y ?$$

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System 00000000

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x \quad \Leftarrow x < y$$

or
$$x = 1 \cdot (x+y) - y \quad \Leftarrow y < x$$

Need to define a monomial ordering.

 \implies Division steps determined by leading monomials (LM).

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Monomial orderings

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, x^{1000} ? y

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Monomial orderings

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz$? $y^{2}z$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

Monomial orderings

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

 $x <_{\text{lex}} y <_{\text{lex}} z$, y? x^2

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, z^2 ? xyz

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Monomial orderings

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x ?
$$yz^2$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

MONOMIAL ORDERINGS

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x >_{wglex}
$$yz^2$$
 because $wt(x) = 6$ and $wt(yz) = wt(y) + 2wt(z) = 5$.
 x^2 ? z^6

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Monomial orderings

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$\begin{array}{l} x >_{\mathsf{wglex}} yz^2 \text{ because } \mathsf{wt}(x) = 6 \text{ and } \mathsf{wt}(yz) = \mathsf{wt}(y) + 2\mathsf{wt}(z) = 5 \\ x^2 <_{\mathsf{wglex}} z^6 \text{ because } \mathsf{wt}(x^2) = \mathsf{wt}(z^6) = 12 \text{ and } x^2 <_{\mathsf{lex}} z^6 \end{array}$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

The solution: Gröbner Bases.

SOLVING THE SYSTEM 00000000

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

SOLVING THE SYSTEM 00000000

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

USEFUL PROPOSITION If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

• $\{y^2 - 1, y - x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).

SOLVING THE SYSTEM 00000000

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.

SOLVING THE SYSTEM 00000000

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.

SOLVING THE SYSTEM 00000000

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.
- However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and wt(y) = 1, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are coprime.

Gröbner Bases 0000000●

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GENERIC SYSTEM SOLVING

$$\begin{pmatrix}
p_1(x_1,...,x_N) = 0 \\
\vdots \\
p_{k-1}(x_1,...,x_N) = 0 \\
p_k(x_1,...,x_N) = 0
\end{pmatrix}$$

1. Define system

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_1(x_1, \dots, x_N) = 0 \\ \vdots \\ p_{k-1}(x_1, \dots, x_N) = 0 \\ p_k(x_1, \dots, x_N) = 0 \end{cases} \begin{cases} g_1(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{\kappa-1}(x_1, \dots, x_N) = 0 \\ g_{\kappa}(x_1, \dots, x_N) = 0 \end{cases}$$

1. Define system 2. Find a GB (F4/F5)

11 / 38

Gröbner Bases 0000000 \bullet

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)

Gröbner Bases 0000000● Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Find a GB (F4/F5) 3. Change order to lex (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Remark: Steps 2 and 3 are both computationally costly, but not for the same reasons. For most AOPs, step 2 dominates, **but we can skip it**.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

INTRODUCTION TO GRÖBNER BASES

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

WHAT IS A HASH FUNCTION?

DEFINITION

A hash function is a function that maps an input of **any size** in \mathbb{F}_q to an element of \mathbb{F}_q^r for a **fixed** integer *r*.

- collision resistance: hard to find x, y such that H(x) = H(y).
- preimage resistance: given $y \in \mathbb{F}_q^r$, hard to find x such that H(x) = y.
- second preimage resistance: given x, hard to find x' such that H(x) = H(x').

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

SPONGE HASH FUNCTIONS

A sponge construction, originally designed for the standard SHA-3. P is, for example, a **fixed-key Block Cipher**.

FREELUNCH SYSTEMS 0000000

SOLVING THE SYSTEM 00000000

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*',\underbrace{0,\ldots,0}_{c \text{ elements}})$$

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*',\underbrace{0,\ldots,0}_{c \text{ elements}})$$

Solving CICO of size c gives collisions to the hash function.

 \Rightarrow Multivariate attack: solve CICO faster than brute-force attacks using a model of *P*. \Rightarrow We focus on c = 1.

$$P(x, *, ..., *, 0) = (*', ..., *', 0).$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS 0000000

SOLVING THE SYSTEM 00000000

BLOCK CIPHER

The ever-popular Block Cipher construction.

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ARITHMETIZATION-ORIENTED SYMMETRIC PRIMITIVES

FREELUNCH SYSTEMS

ARITHMETIZATION-ORIENTED SYMMETRIC PRIMITIVES

 Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with a "simple" arithmetic description (e.g. using x → x³ as the main nonlinear function), sometimes over F_q for a specific large q (> 2⁶⁴, up to ≈ 2²⁵⁶).

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ARITHMETIZATION-ORIENTED SYMMETRIC PRIMITIVES

 Advanced protocols (Zero-Knowledge proofs, MPC, FHE...) need primitives with a "simple" arithmetic description (e.g. using x → x³ as the main nonlinear function), sometimes over F_q for a specific large q (> 2⁶⁴, up to ≈ 2²⁵⁶).

Classic	Arithmetization-Oriented
Binary operations	Arithmetic operations
Algebraically complex (for cheap)	Algebraically simple
Small field (\mathbb{F}_{2^8})	Large field $(\mathbb{F}_q, q>2^{64})$
e.g. AES, SHA-3	e.g. Griffin, Anemoi

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ARITHMETIZATION FOR ZERO-KNOWLEDGE

- Implementation of ZK based on algebraic equations.
- Low degree equations = Better performance.

Function \rightarrow Set of equations \rightarrow Proof system

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ARITHMETIZATION FOR ZERO-KNOWLEDGE

- Implementation of ZK based on algebraic equations.
- Low degree equations = Better performance.

Function \rightarrow Set of equations \rightarrow Proof system

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge are Arithmetization-Oriented families of hash functions.
- Based on Griffin- π , Arion- π and Anemoi families of permutations (all fixed-key block ciphers).
- Many instances are defined: variable F_p, number of branches, exponents for monomial permutations...

 \implies We attack some instance better than others.

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GRIFFIN- π - ROUND FUNCTION (4 BRANCHES)

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GRIFFIN- π - ROUND FUNCTION (4 BRANCHES)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GRIFFIN- π - Model

• CICO problem: $\mathcal{G}_{\pi}(\cdots ||0) = (\cdots ||0).$

 \implies One variable x_0 in the input. One equation for the output (last branch at 0).

• N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GRIFFIN- π - Model

- CICO problem: G_π(···||0) = (···||0).
 ⇒ One variable x₀ in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

$$x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_1(x_1, \dots, x_N) = 0 \\ \vdots \\ p_{k-1}(x_1, \dots, x_N) = 0 \\ p_k(x_1, \dots, x_N) = 0 \end{cases} \begin{cases} g_1(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{\kappa-1}(x_1, \dots, x_N) = 0 \\ g_{\kappa}(x_1, \dots, x_N) = 0 \end{cases} \begin{cases} g_1^*(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{N-1}^*(x_{N-1}, x_N) = 0 \\ g_N^*(x_N) = 0 \end{cases} \begin{cases} g_1^*(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{N-1}^*(x_{N-1}, x_N) = 0 \\ g_N^*(x_N) = 0 \end{cases}$$

1. Define system2. Find a GB (F4/F5)3. Change order to lex (FGLM)4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System 00000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\nu}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Ind a GB (F4/N5) 3. Change order to lex (FGLM) \end{cases}

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Designers of Anemoi and Griffin base their security on the hardness of Step 2.

But we can skip it!

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System 00000000

INTRODUCTION TO GRÖBNER BASES

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

GRIFFIN- π - Model

- CICO problem: G_π(···||0) = (···||0).
 ⇒ One variable x₀ in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

$$x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

GRIFFIN- π - Model

- CICO problem: G_π(···||0) = (···||0).
 ⇒ One variable x₀ in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ ($\cdot^{1/\alpha}$ S-boxes).

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

$$x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$$

Observation: x_1 has a lower degree than x_0 in the last equation.

 \implies In **grevlex**, the leading monomials are x_0^7 and x_1^3 . \implies **It's a Gröbner basis** ! (coprime leading monomials)

 \implies For more rounds, **grevlex** doesn't work. We need weighted degree orders, with $wt(x_0) = 1$ and $wt(x_i) = 7^{i-1}$.

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Arion- π - Round Function (4 branches)

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Arion- π - Round Function (4 branches)

 $\cdot^{1/\alpha}$ is the only high-degree operation \implies add one variable per $\cdot^{1/\alpha}$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ANEMOI - NONLINEAR LAYER (2 BRANCHES)

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

ANEMOI - NONLINEAR LAYER (2 BRANCHES)

 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Anemoi - Model

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Anemoi - Model

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Anemoi - Model

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 00000000

Anemoi - Model

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 $\implies \text{The first equation and } p^* \text{ are a Gröbner basis for some weighted order.}$ $\implies \text{This adds a few parasitic solutions (corresponding to x_1 = 0), but not many.}$ $\implies \text{This generalizes for more rounds (multiply the last polynomial by some of the } x_i$

and reduce it). Freelunch is saved!

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System

INTRODUCTION TO GRÖBNER BASES

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

SOLVING THE SYSTEM GIVEN A GRÖBNER BASIS

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System

FGLM IN A NUTSHELL

- Given a zero-dimensional ideal *I*, a Gröbner basis G_1 for *I* some ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- *D*₁ is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.

FREELUNCH SYSTEMS

Solving the System

FGLM IN A NUTSHELL

- Given a zero-dimensional ideal *I*, a Gröbner basis G_1 for *I* some ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- *D*₁ is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.
- **This is interesting** because a GB in **lex** order **must have** a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)

Solving the System

FGLM in a Nutshell

- Given a zero-dimensional ideal *I*, a Gröbner basis G_1 for *I* some ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_I^3)$.
- *D*₁ is the degree of the ideal, a.k.a. the number of **solutions of the system** in the algebraic closure.
- This is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

Freelunch Systems

Solving the System

FASTER CHANGE OF ORDER STRATEGY

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial χ of the linear operation P → Red_<(x · P, G).
- χ(x) = 0. Generically, this is exactly the univariate polynomial in x in the
 reduced GB of *l* in lex order.
- **Issue:** our systems **do not** verify an important property of the original paper.

Solving the System $_{\rm OOO \bullet OOOO}$

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

Need to reduce monomials of the form x₀^{k₀+1}x₁^{k₁} ··· x_N^{k_N}. We have no tight complexity estimate for this step.

Solving the System $_{\rm OOO \bullet OOOO}$

Computing the Multiplication Matrix

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \dots, x_N]$ that maps P to $x_0 \cdot P$.

- Need to reduce monomials of the form x₀^{k₀+1}x₁^{k₁} ··· x_N^{k_N}. We have no tight complexity estimate for this step.
- The matrix is sparse. If leading monomials are $x_0^{d_0}, \ldots, x_N^{d_N}$:

Solving the System $_{\rm OOOO \bullet OOO}$

Computing the Characteristic Polynomial

Step 2: Given *T*, compute det($\times I - M$).

 \implies T is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.

 \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.

 \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0 \log(d_0)^2 d_1^{\omega} \cdots d_N^{\omega})$.

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS

Solving the System 00000000

Our Full Algorithm

- $1. \ {\tt sysGen:}$ Compute the Freelunch system and the order for a free Gröbner basis.
- 2. matGen: Compute the multiplication matrix T. Complexity hard to evaluate.
- 3. polyDet: Compute the characteristic polynomial χ of T.

 \implies Longest step aside from matGen.

4. uniSol: Find roots of χ with Berlekamp-Rabin in $\mathcal{O}(D_l \log(D_l) \log(pD_l))$.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

EXPERIMENTAL RESULTS

Complexity of Griffin (7 out of 10 rounds, $\alpha=3$)

10⁵ sysGen matGen 10³ polyDet 10¹ total 10⁻¹ 3 4 5 6 7 Number of rounds

Complexity of Anemoi (7 out of 21 rounds, $\alpha = 3$)

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

EXPERIMENTAL RESULTS

- \implies For Griffin, polyDet upper-bounds the others up to 7 rounds.
- \implies For Anemoi, matGen is the bottleneck.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D_i with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D₁ with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:

- Complexity of matGen/better approach?
- Other contexts where we can get a free Gröbner basis? Or "cheap" like in Anemoi?
- CICO on more than one branch?

Arithmetization-Oriented Primitives

FREELUNCH SYSTEMS

Solving the System

CONCLUSION

- Arithmetization-Oriented hash functions should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Instead, focus on the growth of D₁ with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds.

Open Questions:

- Complexity of matGen/better approach?
- Other contexts where we can get a free Gröbner basis? Or "cheap" like in Anemoi?
- CICO on more than one branch?

THANK YOU FOR YOUR ATTENTION!

Collision from the CICO Problem

• Suppose you know x such that $P(x \parallel 0^c) = (y \parallel 0^c)$.

GRIFFIN TRICK

ARION TRICK

