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Three main improvements on previous algebraic cryptanalysis:
1. Free Grobner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.

3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.
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ARITHMETIZATION-ORIENTED PRIMITIVES

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic

Arithmetization-Oriented

Binary operations

Arithmetic operations

Algebraically complex (for cheap)

Algebraically simple

Small field (Fos)

Large field (Fq, g > 2%4)

e.g. AES, SHA-3

e.g. Griffin, Anemoi

SOLVING THE SYSTEM
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QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi Griffin ArionHash
Crypto23 Crypto23 arXiv

® Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

® |nstantiated with the Griffin-, Arion-7 and Anemoi families of permutations.
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QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi Griffin ArionHash
Crypto23 Crypto23 arXiv

® Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

® |nstantiated with the Griffin-, Arion-7 and Anemoi families of permutations.

® Many instances are defined: variable IF,, number of branches, exponents for
monomial permutations...

—> We attack some instances better than others.

SOLVING THE SYSTEM
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CICO PROBLEM
CICO Problem of size ¢ (capacity of the sponge) for permutation P:

P(x,...,%,0,...,0)=(¥,...,«,0,...,0)

¢ elements c elements

6/18



ARITHMETIZATION-ORIENTED PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM

00@000 [e]e]e} 000000

CICO PROBLEM
CICO Problem of size ¢ (capacity of the sponge) for permutation P:

/ /
P(x,...,%,0,...,0)=(*,...,%,0,...,0)
c elements c elements

Solving CICO of size c gives collisions to the hash function.

= Multivariate attack: solve CICO faster than brute-force attacks using a model of P.

= We focus on ¢ = 1.
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GRIFFIN-T - ROUND FUNCTION (4 BRANCHES)

i i i l

[ Affine layer J

= '
. (3 &

4 A, A\ Y

(1)} is the only high-degree operation = add one variable per (-)1/°.
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GRIFFIN-T - MODEL

e CICO problem: G,(---]|0) = (---1|0).
= One variable xq in the input. One equation for the output (last branch at 0).

® Nyounds €quations of the form x* = Pi(xo, x1, ... xi—1) ((.)l/a S—boxes)_
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GRIFFIN-T - MODEL

e CICO problem: G,(---]|0) = (---1|0).
= One variable xq in the input. One equation for the output (last branch at 0).

® Nyounds €quations of the form x* = Pi(xo, x1, ... xi—1) ((-)1/0‘ S—boxes).

EXAMPLE (a = 3, ONE ROUND)
X; = axg+ b

x§ 4 oxgxi 4 dxoxi 4+ =0

8/18
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GENERIC SYSTEM SOLVING

pi(xi,...,xy) =0

pr—1(x1, .., xn) =0
pk(Xla .. 'aXN) =0

1. Define system
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pi(xi,...,xy) =0 gi(xt,..,xn) =0

pr—1(x1,.. ., xn) =0 8r—1(x1,..,xn) =0
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1. Define system 2. Find a Grobner Basis
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pl(Xl,...,XN):O gl(xl,...,xN):0 gf(xl,...,xN):0
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1. Define system 2. Find a Grobner Basis 3. Change order to lex (FGLM)
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pl(Xl,...,XN):O gl(xl,...,xN):0 gf(Xl,...,XN):O
pr—1(x1, .., xn) =0 8r—1(x1,..,xn) =0 gn_1(xnv-1,xn) =0
pk(Xl,...,XN):O g,.@(xl,...,xN):0 g;\k/(XN):O

1. Define system 2. Find a Grobner Basis 3. Change order to lex (FGLM)
4. Find the roots in IF; of gy with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.
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GENERIC SYSTEM SOLVING

pi(xi,. .., xy) =0 0 g (x,...,xn) =0

gn—10n-1,xn) =0
=0 gn(xv) =0
asis 3. Change order to lex (FGLM)

pr—1(x1, .., xn) =0
pk(Xla .. 'aXN) =0

1. Define system 2.¥ind a Grobner
4. Find the roots in IF; of gy with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!
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GROBNER BASIS - EXAMPLES
USEFUL PROPOSITION

If LM-(p1),...,LM(px) are pairwise coprime (e.g. x> and y), then G is a Grébner
basis.
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USEFUL PROPOSITION

If LM-(p1),...,LM(px) are pairwise coprime (e.g. x> and y), then G is a Grébner
basis.

In F[x, y]:

e (x> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
x? and y?).
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GROBNER BASIS - EXAMPLES

USEFUL PROPOSITION

If LM-(p1),...,LM(px) are pairwise coprime (e.g. x> and y), then G is a Grébner
basis.

In F[x, y]:
e (x> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
x? and y?).

® {x?>—1,y? — x} is not a Grobner basis for the lex order with x > y (leading
monomials are x> and x).

® {y3+ x,y®+ x} is not a Grobner basis for any lex or deglex order.

® {y®+x,y® + x?} is a Grobner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y> + x) = y3 and LM(y® + x?) = x? are coprime.

11/18
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EXAMPLE (a =3, TWO ROUNDS)
xp =axo+b
XS = ng + .-

5P dg e+ =0
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GRIFFIN-T - MODEL

EXAMPLE (a =3, TWO ROUNDS)

xp =axo+b

X23:CXg+---
5P dg e+ =0

= In grevlex (degree-first), the leading monomials are xi', x| and x;°. Proposition
does not apply.
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EXAMPLE (a =3, TWO ROUNDS)

xp =axo+b

3 7
X2:CX0+~-

T dx et =0

= In grevlex (degree-first), the leading monomials are xi', x| and x;°. Proposition

does not apply.
= In weighted grevlex, with wt(x)) = wt(x1) = 1 and wt(x2) = 3, the leading

monomials are xi, x3 and x°.

SOLVING THE SYSTEM
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GRIFFIN-T - MODEL

EXAMPLE (a =3, TWO ROUNDS)

xp =axo+b

3 7
X2:CXO+...

T dx et =0

= In grevlex (degree-first), the leading monomials are xi', x| and x;°. Proposition

does not apply.

= In weighted grevlex, with wt(x)) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are xi, x3 and x°.

= It’s a Grobner basis! (coprime leading monomials)

= This generalizes for more rounds.

SOLVING THE SYSTEM
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FGLM 1IN A NUTSHELL

® Given a Grobner basis G for some ordering <1, and an ordering <, FGLM
computes a Grobner basis G, for <5 in O(nva,D,3).

® D, the number of solutions of the system in the algebraic closure (in our case
the product of the degrees of the leading monomials of the GB).
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® D, the number of solutions of the system in the algebraic closure (in our case
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® Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

14/18



ARITHMETIZATION-ORIEN ) PRIMITIVES REELUNCH SYSTEMS SOLVING THE SYSTEM

0O0000C O@0000

FGLM 1IN A NUTSHELL

® Given a Grobner basis G for some ordering <1, and an ordering <, FGLM
computes a Grobner basis G, for <5 in O(nva,D,3).

® D, the number of solutions of the system in the algebraic closure (in our case
the product of the degrees of the leading monomials of the GB).

® Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

® Free Grobner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.
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FASTER CHANGE OF ORDER STRATEGY

Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

Strategy: for the smallest variable x, compute the characteristic polynomial y of
the linear operation P +— Red(x - P, G).

x(x) =0.

® |ssue: our systems do not verify an important property of the original paper.

15/18
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COMPUTING THE CHARACTERISTIC POLYNOMIAL

Step 1: Compute the matrix T of the linear operation in F[xo, x1, ..., xy] that maps
P to Red-(xp - P, G). We only have very loose complexity bounds for this step.

Step 2: Compute det(X/— T).

= T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D; = dy - - - dy.

= In Griffin and Arion, dy is by far the highest degree, so this reduces complexity by
a lot.

= This can be computed with fast linear algebra, in O(dplog(do)?ds’ - - - d5)).
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OUR FULL ALGORITHM

1. sysGen: Compute the Freelunch system and the order for a free Grébner basis.

2. matGen: Compute the multiplication matrix T of multiplication by xg.
— Complexity hard to evaluate.

3. polyDet: Compute the characteristic polynomial x of T (x(x0) = 0).
—> Longest step aside from matGen.

4. uniSol: Find roots of x with Berlekamp-Rabin in O(D).
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CONCLUSION

® These Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grobner basis (F4/F5).

® Instead, designers can focus on the growth of D; with the number of rounds
(impacts the complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

18/18



ARITHMETIZATION-ORIEN ) PRIMITIVES FREELUNCH SYSTEMS SOLVING THE SYSTEM
000 00000e

CONCLUSION

® These Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grobner basis (F4/F5).

® Instead, designers can focus on the growth of D; with the number of rounds
(impacts the complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
® Better approach for matGen (stay tuned).
® QOther contexts where we can get free or “cheap” Grébner bases?

e C|CO on more than one branch?
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CONCLUSION

® These Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grobner basis (F4/F5).

® Instead, designers can focus on the growth of D; with the number of rounds
(impacts the complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
® Better approach for matGen (stay tuned).
® QOther contexts where we can get free or “cheap” Grébner bases?
® CICO on more than one branch?

THANK YOU FOR YOUR ATTENTION!
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GRIFFIN TRICK
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WHAT DO WE WANT?

Consider a multivariate polynomial ring F[xq, x2, ..., xp].
We want to solve:

pl(Xl, .o .,XN) =0
p2(X17 . -7XN) =0

pr(x1,...,xn) =0

O00@000000000000
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WHAT DO WE WANT?

myixy+ -+ myyxy + a1 = 0

mo1x1+ -+ mnxy+a =0

My 1x1 + -+ mnxy +ax =0

Polynomials of degree 1: Linear system = Linear algebra.
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WHAT DO WE WANT?

pi(x1) =0
p2(x1) =0
pi(x1) =0

One variable: Univariate root finding = Euclidian division (for Berlekamp-Rabin
algorithm).
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WHAT DO WE WANT?

pr(x1,...,xn) =0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).
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THE PROBLEM WITH MULTIVARIATE
e Euclidian division on integers:

a=bg+r, 0<r<hb.

Division of 13 by 3:
13=4x3+1.
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THE PROBLEM WITH MULTIVARIATE
e Euclidian division on integers:

a=bg+r, 0<r<hb.

Division of 13 by 3:
13=4x3+1.

¢ Euclidian division on univariate polynomials (F[X]):
A=BQ+ R, deg(R) < deg(B).
Division of X3+ X 41 by X:

X34 X4+1=(X2+1)X +1.
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THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:

A= BQ + R... condition on R?
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THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:
A= BQ + R... condition on R?
Division of x by x + y in F[x, y]:

x=0-(x+y)+x
or
x=1-(x+y)—y?
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THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:
A= BQ + R... condition on R?
Division of x by x + y in F[x, y]:

x=0-(x+y)+x <« x<y
or

x=1-(x+y)—y <« y<x

Need to define a monomial ordering.
= Division steps determined by leading monomials (LM).

6/16
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MONOMIAL ORDERINGS
In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

XlOOO ?

X <lex Y <lex Z 5 y
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In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <jex Y, Xyz 1 y°z
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MONOMIAL ORDERINGS
In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.

2
X<lex Y <lexZ, ¥y 7 X
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2 2
X <lex Y <lex Z, Y <glex X", Z ? xyz
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In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.

2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .
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MONOMIAL ORDERINGS
In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:

x 7 yz?
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MONOMIAL ORDERINGS
In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:

X >wglex yZ° because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5.
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MONOMIAL ORDERINGS
In F[x, y, z]:
¢ |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:
X >wglex yZ° because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5.

x2 <wglex 2% because wt(x2) = wt(z6) =12 and x? <jex 2° .
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THE PROBLEM... STILL.

Consider a system {p1,...,pk}-
= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!
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Consider a system {p1,...,pk}-

= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x, y] with lex ordering (x <jex y), divide y? by {y? — 1,y — x}.

y? y?
ﬂ red. by y2 — 1 M red. by y — x
1 Xy
ﬂ no further red. ﬂ red. by y — x
1 x2
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THE PROBLEM... STILL.

Consider a system {p1,...,pk}-

= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x, y] with lex ordering (x <jex y), divide y? by {y? — 1,y — x}.

y? y?
ﬂ red. by y2 — 1 M red. by y — x
1 Xy
ﬂ no further red. ﬂ red. by y — x
1 x2

The solution: Grobner Bases.
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WHAT 1S A GROBNER BASIS?

Let G = {p1,...,pk} and < a monomial ordering.

DEFINITION
G is a Grobner basis iff reduction defined by < of any polynomial P does not depend

on the order chosen for the reductors.
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WHAT 1S A GROBNER BASIS?

Let G = {p1,...,pk} and < a monomial ordering.

DEFINITION
G is a Grobner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

USEFUL PROPOSITION
If LM-(p1),...,LM-(px) are pairwise coprime (e.g. x> and y), then G is a Grébner
basis.

9/16



0000000008000 000

GROBNER BASIS - EXAMPLES

In F[x, y]:

e {y2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
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GROBNER BASIS - EXAMPLES

In F[x, y]:
e {y2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = y?
and LM(y — x) = x are coprime.
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GROBNER BASIS - EXAMPLES

In F[x, y]:
e {y2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = y?
and LM(y — x) = x are coprime.

® {3+ x,y3 4+ x?} is not a Grobner basis for any lex or deglex order.
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GROBNER BASIS - EXAMPLES

In F[x, y]:
e {y2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).

® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = y?
and LM(y — x) = x are coprime.
® {3+ x,y3 4+ x?} is not a Grobner basis for any lex or deglex order.

® However, it is a Grobner basis for weighted degree orders with wt(x) = 2 and
wt(y) =1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x? are coprime.
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ANEMOI - MODEL

EXAMPLE (o = 3, ONE ROUND)

X3 =axi + bxo+c

x0x1+dx12+exo+fx1+g20

11/16



ANEMOI - MODEL

EXAMPLE (o = 3, ONE ROUND)
xp = axj + bxg+ ¢

X0X1+dX12+6XQ+fX1+g:0

x5 cancels out: this isn’'t a Grobner basis for any order!

0O000000000e00000
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ANEMOI - MODEL

EXAMPLE (o = 3, ONE ROUND)

xp = axj + bxg+ ¢

xoxl+dxf+exo+fx1+g:0

x5 cancels out: this isn’'t a Grobner basis for any order!
Solution: multiply last equation by x? and reduce it by the first equation. We get:

p*(x0,x1) = axg + bdxixy + -
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ANEMOI - MODEL

EXAMPLE (o = 3, ONE ROUND)

xp = axj + bxg+ ¢

x0x1+dxf+exo-|—fxl-|—g:0

x5 cancels out: this isn’t a Grobner basis for any order!
Solution: multiply last equation by x? and reduce it by the first equation. We get:

p*(x0,x1) = axg + bdxixy + -

= The first equation and p* are a Grobner basis for some weighted order.

= This adds a few parasitic solutions (corresponding to x; = 0), but not many.
= This generalizes for more rounds (multiply the last polynomial by some of the x;
and reduce it). Freelunch is saved!
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ARION-7 - ROUND FUNCTION (4 BRANCHES)

=
~
—
Ml
LSS
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ARION-7 - ROUND FUNCTION (4 BRANCHES)

/ Round 1

=
—
=
Me
— LOSTOS

M x 2} +¢;

()"« is the only high-degree operation = add one variable per (-)¥/.
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ANEMOI - NONLINEAR LAYER (2 BRANCHES)

He—— F ~—
— () - 5
He— F -~
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ANEMOI - NONLINEAR LAYER (2 BRANCHES)

A F —
I/“\\ !

- 1 (,)1/04; — A
\\\ //

He— F -~

()Y is the only high-degree operation == add one variable per (:)/.
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EXPERIMENTAL RESULTS

10 —— sysGen 10°| —— sysGen
—=— matGen - —=— matGen
olyDet 10° olyDet
ElOZ _____ poly 0 poly!
v v
£ £ 10
F =
10°
107t
5 6 7 3 4 5 6 7
Number of rounds Number of rounds
Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, a=3) (broke up to 7 out of

21 rounds, a = 3)
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21 rounds,

EXPERIMENTAL RESULTS

—— sysGen
=— matGen
polyDet

----- total

5 6 7

Number of rounds

Complexity of Griffin

(broke up to 7 out of 10 rounds, a=3)

a=23)

Time (s)

10°

10°

10!

1071

0000000000000 00e

—— sysGen
=— matGen
polyDet

Number of rounds

Complexity of Anemoi

(broke up to 7 out of

= For Griffin, polyDet upper-bounds the others up to 7 rounds.

— For Anemoi, matGen is the bottleneck.
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