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Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.
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Arithmetization-Oriented Primitives

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 232)

e.g. AES, SHA-3 e.g. Griffin, Anemoi
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Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

• Instantiated with the Griffin-π, Arion-π and Anemoi families of permutations.

• Many instances are defined: variable Fp, number of branches, exponents for
monomial permutations...

=⇒ We attack some instances better than others.
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CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO by solving a polynomial model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).
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Griffin-π - Round Function (4 branches)

Affine layer

(·)1/α (·)α

Q2

Q3

⊗

⊗

0

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.
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Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1)

(
(·)1/α S-boxes

)
.

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0
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Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0



g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system

3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!
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Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

In F[x , y ]:
• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are

x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18
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Griffin-π - Model

Example (α = 3, two rounds)

x3
1 = ax0 + b

x3
2 = cx7

0 + · · ·
x49

0 + dx46
0 + ex45

0 + · · · = 0

✗ In grevlex (degree-first), the leading monomials are x3
1 , x7

0 and x49
0 .

✓ In weighted grevlex, with wt(x0) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are x3

1 , x3
2 and x49

0 .
=⇒ It’s a Gröbner basis! (coprime leading monomials)
=⇒ This generalizes for more rounds.
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FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I ).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).

• Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18



Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I ).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).
• Order change is interesting because a GB in lex order must have a univariate

polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18



Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I ).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).
• Order change is interesting because a GB in lex order must have a univariate

polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18



Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Faster Change of Order Strategy

• Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

• Strategy: for the smallest variable x , compute the characteristic polynomial χ of
the linear operation P 7→ Red<(x · P, G).

• χ(x) = 0.

•
�

Our systems do not verify an important property of the original paper.

15 / 18
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Computing the Characteristic Polynomial

Step 1: Compute the matrix T of the linear operation in F[x0, x1, . . . , xN ] that maps
P to Red<(x0 · P, G). We only have very loose complexity bounds for this step.

Step 2: Compute det(XI − T ).
=⇒ T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D1 = d1 · · · dN .
=⇒ In Griffin and Arion, d0 is by far the highest degree, so this reduces complexity by
a lot.
=⇒ This can be computed with fast linear algebra, in O(d0log(d0)2dω

1 · · · dω
N).
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Our Full Algorithm

1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.

2. matGen: Compute the multiplication matrix T of multiplication by x0.
�

Complexity hard to evaluate.

3. polyDet: Compute the characteristic polynomial χ of T (χ(x0) = 0).
=⇒ Longest step aside from matGen.

4. uniSol: Find roots of χ with half-gcd in Õ(DI).

17 / 18
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Conclusion

• Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Gröbner basis (F4/F5).

• Designers can focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
• Better approach for matGen.
• Resultant based attacks (see eprint.iacr.org/2025/259).
• CICO on more than one branch?

Thank you for your attention!
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Collision from the CICO Problem

• Suppose you know x such that P(x || 0c) = (y || 0c).

x

c

r 0c

0c

P

0c

y

0c

· · ·

· · ·

y

0c

0c

y

0c

· · ·

· · ·
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Griffin Trick
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Arion Trick
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What do we want?

Consider a multivariate polynomial ring F[x1, x2, . . . , xN ].
We want to solve: 

p1(x1, . . ., xN) = 0
p2(x1, . . ., xN) = 0

...
pk(x1, . . ., xN) = 0

-14 / -2



What do we want?



m1,1x1 + · · · + m1,NxN + a1 = 0
m2,1x1 + · · · + m2,NxN + a2 = 0

...
mk,1x1 + · · · + mk,NxN + ak = 0

Polynomials of degree 1: Linear system ⇒ Linear algebra.

-14 / -2



What do we want?



p1(x1) = 0
p2(x1) = 0

...
pk(x1) = 0

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin
algorithm).

-14 / -2



What do we want?



p1(x1, . . . , xN) = 0
p2(x1, . . . , xN) = 0

...
pk(x1, . . . , xN) = 0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).

-14 / -2



The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X ]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

-13 / -2



The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X ]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

-13 / -2



The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y ]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y

? ⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).
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Monomial orderings
In F[x , y , z ]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000 ?

<lex

y

, x6yz

?<lex

y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .
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The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x , y ] with lex ordering (x <lex y), divide y2 by
{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.
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What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.
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Gröbner Basis - Examples

In F[x , y ]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.
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Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!
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Arion-π - Round Function (4 branches)
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Arion-π - Round Function (4 branches)

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.
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Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞
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Experimental Results

Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, α=3) (broke up to 7 out of

21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.
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