The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives

Augustin Bariant^{1,2}, Aurélien Boeuf², Axel Lemoine^{2,4}, Irati Manterola Ayala³, Morten Øygarden³, Léo Perrin², and Håvard Raddum³

¹ANSSI, Paris, France ²INRIA, Paris, France ³Simula UiB, Bergen, Norway ⁴DGA, France

Journées C2 2025, Pornichet

Anemoi Crypto23

Griffin Crypto23

ArionHash arXiv

Anemoi Crypto23

ArionHash arXiv

Full-round break of some instances

Anemoi Crypto23

Full-round break of some instances

Full-round break of some instances

Maybe full-round break?

Full-round break of some instances

Full-round break of some instances

of some instances

of some instances

Three main improvements on previous algebraic cryptanalysis:

- 1. Free Gröbner basis for some monomial orders.
- 2. Better approach to solving the system than generic FGLM variants.
- 3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Freelunch Systems

Solving the System 000000

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

SOLVING THE SYSTEM 000000

ARITHMETIZATION-ORIENTED PRIMITIVES

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic	Arithmetization-Oriented
Binary operations	Arithmetic operations
Algebraically complex (for cheap)	Algebraically simple
Small field (\mathbb{F}_{2^8})	Large field ($\mathbb{F}_{q}, \ q>2^{32}$)
e.g. AES, SHA-3	e.g. Griffin, Anemoi

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of hash functions.
- Instantiated with the Griffin- π , Arion- π and Anemoi families of permutations.

QUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi	Griffin	ArionHash
Crypto23	Crypto23	arXiv

- Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of hash functions.
- Instantiated with the Griffin- π , Arion- π and Anemoi families of permutations.
- Many instances are defined: variable F_p, number of branches, exponents for monomial permutations...

 \implies We attack some instances better than others.

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*',\underbrace{0,\ldots,0}_{c \text{ elements}})$$

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

CICO PROBLEM

CICO Problem of size c (capacity of the sponge) for permutation P:

$$P(*,\ldots,*,\underbrace{0,\ldots,0}_{c \text{ elements}}) = (*',\ldots,*',\underbrace{0,\ldots,0}_{c \text{ elements}})$$

Solving CICO of size c gives collisions to the hash function.

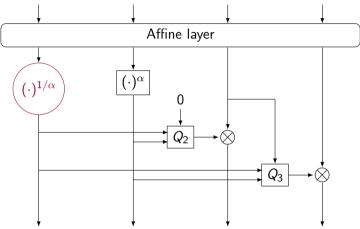
⇒ Multivariate attack: solve CICO by solving a polynomial model of P. ⇒ We focus on c = 1.

$$P(x, *, ..., *, 0) = (*', ..., *', 0).$$

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

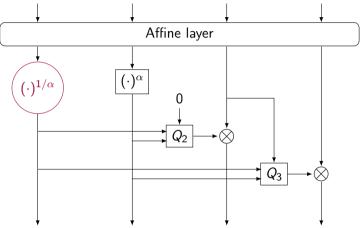
GRIFFIN- π - Round Function (4 branches)



FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GRIFFIN- π - Round Function (4 branches)



 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

Freelunch Systems

SOLVING THE SYSTEM 000000

GRIFFIN- π - Model

- CICO problem: G_π(···||0) = (···||0).
 ⇒ One variable x₀ in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ $((\cdot)^{1/\alpha}$ S-boxes).

Arithmetization-Oriented Primitives $0000 \oplus 0$

Freelunch Systems

SOLVING THE SYSTEM 000000

GRIFFIN- π - Model

- CICO problem: G_π(···||0) = (···||0).
 ⇒ One variable x₀ in the input. One equation for the output (last branch at 0).
- N_{rounds} equations of the form $x_i^{\alpha} = P_i(x_0, x_1, \dots, x_{i-1})$ $((\cdot)^{1/\alpha} \text{ S-boxes}).$

Example ($\alpha = 3$, one round)

$$x_1^3 = ax_0 + b$$

$$x_0^7 + cx_0^4 x_1 + dx_0 x_1^2 + \dots = 0$$

Freelunch Systems 000 SOLVING THE SYSTEM 000000

GENERIC SYSTEM SOLVING

$$\begin{cases}
p_1(x_1, \dots, x_N) = 0 \\
\vdots \\
p_{k-1}(x_1, \dots, x_N) = 0 \\
p_k(x_1, \dots, x_N) = 0
\end{cases}$$

1. Define system

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_1(x_1, \dots, x_N) = 0 \\ \vdots \\ p_{k-1}(x_1, \dots, x_N) = 0 \\ p_k(x_1, \dots, x_N) = 0 \end{cases} \begin{cases} g_1(x_1, \dots, x_N) = 0 \\ \vdots \\ g_{\kappa-1}(x_1, \dots, x_N) = 0 \\ g_{\kappa}(x_1, \dots, x_N) = 0 \end{cases}$$

1. Define system 2. Find a **Gröbner Basis**

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Find a **Gröbner Basis** 3. Change order to **lex** (FGLM)

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases}$$

1. Define system 2. Find a **Gröbner Basis** 3. Change order to **lex** (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Step 2 and **Step 3** are the most costly. Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GENERIC SYSTEM SOLVING

$$\begin{cases} p_{1}(x_{1},...,x_{N}) = 0 \\ \vdots \\ p_{k-1}(x_{1},...,x_{N}) = 0 \\ p_{k}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} m_{1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa-1}(x_{1},...,x_{N}) = 0 \\ g_{\kappa}(x_{1},...,x_{N}) = 0 \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \end{cases} \begin{cases} g_{1}^{*}(x_{1},...,x_{N}) = 0 \\ \vdots \\ g_{N-1}^{*}(x_{N-1},x_{N}) = 0 \\ g_{N}^{*}(x_{N}) = 0 \end{cases} \end{cases}$$

1. Define system 2. Find a **Gröbner Basis** 3. Change order to **lex** (FGLM)

4. Find the roots in \mathbb{F}_q of g_N^* with univariate methods, etc.

Step 2 and **Step 3** are the most costly. Designers of Anemoi and Griffin base their security on the hardness of **Step 2**.

But we can skip it!

FREELUNCH SYSTEMS

Solving the System

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

Gröbner Basis - Examples

USEFUL PROPOSITION If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

SOLVING THE SYSTEM 000000

Gröbner Basis - Examples

USEFUL PROPOSITION If $LM_{\leq}(p_1), \ldots, LM_{\leq}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

• $\{x^2 - 1, y^2 - x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).

SOLVING THE SYSTEM 000000

Gröbner Basis - Examples

USEFUL PROPOSITION If $LM_{<}(p_1), \ldots, LM_{<}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- {x² − 1, y² − x} is not a Gröbner basis for the lex order with x > y (leading monomials are x² and x).

SOLVING THE SYSTEM 000000

Gröbner Basis - Examples

USEFUL PROPOSITION If $LM_{\leq}(p_1), \ldots, LM_{\leq}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- {x² − 1, y² − x} is not a Gröbner basis for the lex order with x > y (leading monomials are x² and x).
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.

SOLVING THE SYSTEM 000000

Gröbner Basis - Examples

USEFUL PROPOSITION If $LM_{\leq}(p_1), \ldots, LM_{\leq}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

In $\mathbb{F}[x, y]$:

- $\{x^2 1, y^2 x\}$ is a Gröbner basis for the **grevlex** order (leading monomials are x^2 and y^2).
- {x² − 1, y² − x} is not a Gröbner basis for the lex order with x > y (leading monomials are x² and x).
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.
- { $y^3 + x, y^3 + x^2$ } is a Gröbner basis for weighted degree orders with wt(x) = 2 and wt(y) = 1, as then LM($y^3 + x$) = y^3 and LM($y^3 + x^2$) = x^2 are coprime.

 $\begin{smallmatrix} \text{Freelunch Systems} \\ \text{OO} \bullet \end{smallmatrix}$

SOLVING THE SYSTEM 000000

GRIFFIN- π - Model

EXAMPLE ($\alpha = 3$, TWO ROUNDS)

$$\begin{aligned} x_1^3 &= a x_0 + b \\ x_2^3 &= c x_0^7 + \cdots \\ x_0^{49} &+ d x_0^{46} + e x_0^{45} + \cdots = 0 \end{aligned}$$

FREELUNCH SYSTEMS

Solving the System 000000

Griffin- π - Model

EXAMPLE ($\alpha = 3$, TWO ROUNDS)

$$x_1^3 = ax_0 + b$$

$$x_2^3 = cx_0^7 + \cdots$$

$$x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$$

X In grevlex (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} .

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GRIFFIN- π - Model

EXAMPLE ($\alpha = 3$, TWO ROUNDS)

$$x_1^3 = ax_0 + b$$

$$x_2^3 = cx_0^7 + \cdots$$

$$x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$$

★ In grevlex (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} . ↓ In weighted grevlex, with wt(x_0) = wt(x_1) = 1 and wt(x_2) = 3, the leading monomials are x_1^3 , x_2^3 and x_0^{49} .

FREELUNCH SYSTEMS

SOLVING THE SYSTEM 000000

GRIFFIN- π - Model

EXAMPLE ($\alpha = 3$, TWO ROUNDS)

$$x_1^3 = ax_0 + b$$

$$x_2^3 = cx_0^7 + \cdots$$

$$x_0^{49} + dx_0^{46} + ex_0^{45} + \cdots = 0$$

★ In grevlex (degree-first), the leading monomials are x_1^3 , x_0^7 and x_0^{49} . ↓ In weighted grevlex, with $wt(x_0) = wt(x_1) = 1$ and $wt(x_2) = 3$, the leading monomials are x_1^3 , x_2^3 and x_0^{49} .

- ⇒ It's a Gröbner basis! (coprime leading monomials)
- \implies This generalizes for more rounds.

Freelunch Systems

Solving the System

ARITHMETIZATION-ORIENTED PRIMITIVES

FREELUNCH SYSTEMS FOR FREE GRÖBNER BASES

Solving the System given a Gröbner Basis

Freelunch Systems

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_l^3)$.
- *D_I* the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).

Freelunch Systems

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_l^3)$.
- *D_I* the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).
- Order change is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)

Freelunch Systems

FGLM IN A NUTSHELL

- Given a Gröbner basis G_1 for some ordering $<_1$, and an ordering $<_2$, FGLM computes a Gröbner basis G_2 for $<_2$ in $O(n_{var}D_l^3)$.
- *D_I* the number of **solutions of the system** in the algebraic closure (in our case the product of the degrees of the leading monomials of the GB).
- Order change is interesting because a GB in lex order must have a univariate polynomial in the smallest variable, which we can solve. (This corresponds to eliminating the other variables.)
- Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is already enough to break some instances of Griffin and Arion.

Solving the System $_{\rm OO \bullet OOO}$

FASTER CHANGE OF ORDER STRATEGY

- Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din.
- Strategy: for the smallest variable x, compute the characteristic polynomial χ of the linear operation P → Red_<(x · P, G).
- $\chi(\mathbf{x}) = 0.$
- Our systems **do not** verify an important property of the original paper.

Computing the Characteristic Polynomial

Step 1: Compute the matrix T of the linear operation in $\mathbb{F}[x_0, x_1, \ldots, x_N]$ that maps P to $\text{Red}_{<}(x_0 \cdot P, G)$. We only have very loose complexity bounds for this step.

Step 2: Compute det(XI - T).

 \implies T is sparse. With block matrix reasoning, this reduces to computing the determinant of a polynomial matrix of size $D_1 = d_1 \cdots d_N$.

 \implies In Griffin and Arion, d_0 is by far the highest degree, so this reduces complexity by a lot.

 \implies This can be computed with fast linear algebra, in $\mathcal{O}(d_0 \log(d_0)^2 d_1^{\omega} \cdots d_N^{\omega})$.

Freelunch Systems

Solving the System 000000

Our Full Algorithm

- 1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.
- 2. matGen: Compute the multiplication matrix T of multiplication by x_0 . Complexity hard to evaluate.
- 3. polyDet: Compute the characteristic polynomial χ of T ($\chi(\chi_0) = 0$). \implies Longest step aside from matGen.
- 4. uniSol: Find roots of χ with half-gcd in $\tilde{\mathcal{O}}(D_{l})$.

CONCLUSION

- Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Designers can focus on the growth of D_1 with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

Solving the System

CONCLUSION

- Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Designers can focus on the growth of D_1 with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

Ongoing work:

- Better approach for matGen.
- Resultant based attacks (see eprint.iacr.org/2025/259).
- CICO on more than one branch?

Solving the System

CONCLUSION

- Arithmetization-Oriented hash functions (and similar) should not base their security on the complexity of finding a Gröbner basis (F4/F5).
- Designers can focus on the growth of D_1 with the number of rounds (impacts the complexity of solving algorithms).
- Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to be secure.

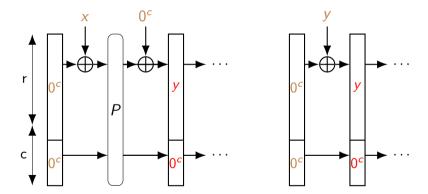
Ongoing work:

- Better approach for matGen.
- Resultant based attacks (see eprint.iacr.org/2025/259).
- CICO on more than one branch?

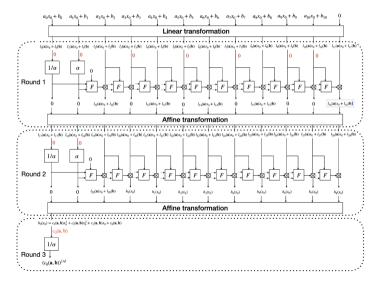
THANK YOU FOR YOUR ATTENTION!

Collision from the CICO Problem

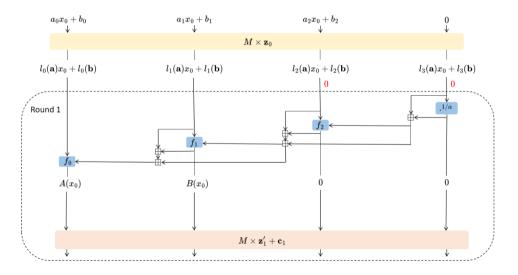
• Suppose you know x such that $P(x \parallel 0^c) = (y \parallel 0^c)$.



GRIFFIN TRICK



ARION TRICK



Consider a multivariate polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_N]$. We want to solve:

$$\begin{cases} p_1(x_1, ..., x_N) = 0 \\ p_2(x_1, ..., x_N) = 0 \\ \vdots \\ p_k(x_1, ..., x_N) = 0 \end{cases}$$

$$\begin{cases} m_{1,1}x_1 + \dots + m_{1,N}x_N + a_1 = 0\\ m_{2,1}x_1 + \dots + m_{2,N}x_N + a_2 = 0\\ \vdots\\ m_{k,1}x_1 + \dots + m_{k,N}x_N + a_k = 0 \end{cases}$$

Polynomials of **degree 1**: Linear system \Rightarrow **Linear algebra**.

$$\begin{cases} p_1(x_1) = 0 \\ p_2(x_1) = 0 \\ \vdots \\ p_k(x_1) = 0 \end{cases}$$

One variable: Univariate root finding \Rightarrow **Euclidian division** (for Berlekamp-Rabin algorithm).

$$\begin{pmatrix}
p_1(x_1,\ldots,x_N) = 0 \\
p_2(x_1,\ldots,x_N) = 0 \\
\vdots \\
p_k(x_1,\ldots,x_N) = 0
\end{cases}$$

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM, Fast-FGLM...).

• Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

 $13 = 4 \times 3 + 1.$

• Euclidian division on integers:

$$a = bq + r$$
, $0 \le r < b$.

Division of 13 by 3:

$$13 = 4 \times 3 + 1.$$

• Euclidian division on **univariate polynomials** (**F**[X]):

$$A = BQ + R$$
, $\deg(R) < \deg(B)$.

Division of $X^3 + X + 1$ by X:

$$X^3 + X + 1 = (X^2 + 1)X + 1.$$

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x$$

or
$$x = 1 \cdot (x+y) - y ?$$

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in $\mathbb{F}[x, y]$:

$$x = 0 \cdot (x+y) + x \quad \Leftarrow x < y$$

or
$$x = 1 \cdot (x+y) - y \quad \Leftarrow y < x$$

Need to define a monomial ordering.

 \implies Division steps determined by **leading monomials (LM)**.

In $\mathbb{F}[x, y, z]$:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, x^{1000} ? y

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz$? $y^{2}z$

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

 $x <_{\text{lex}} y <_{\text{lex}} z$, y? x^2

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, z^2 ? xyz

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^{6}yz <_{\text{lex}} y^{2}z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x ?
$$yz^2$$

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x >_{wglex}
$$yz^2$$
 because $wt(x) = 6$ and $wt(yz) = wt(y) + 2wt(z) = 5$.
 x^2 ? z^6

In $\mathbb{F}[x, y, z]$:

• **LEXicographical:** Compare degree of highest variable, then second-highest, etc.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $x^{1000} <_{\text{lex}} y$, $x^6 y z <_{\text{lex}} y^2 z$.

• Graded LEX: Compare total degree first, then switch to lex if equality.

$$x <_{\text{lex}} y <_{\text{lex}} z$$
, $y <_{\text{glex}} x^2$, $z^2 <_{\text{glex}} xyz$, $xy <_{\text{glex}} xz <_{\text{glex}} yz$.

Weighted Graded LEX: Compare the weighted sum of degrees, then lex if equality. Examples for x < lex y < lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

$$\begin{array}{l} x >_{\text{wglex}} yz^2 \text{ because } \textbf{wt}(x) = 6 \text{ and } \textbf{wt}(yz) = \textbf{wt}(y) + 2\textbf{wt}(z) = 5 \\ x^2 <_{\text{wglex}} z^6 \text{ because } \textbf{wt}(x^2) = \textbf{wt}(z^6) = 12 \text{ and } x^2 <_{\text{lex}} z^6 \end{array}$$

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

THE PROBLEM... STILL.

Consider a system $\{p_1, \ldots, p_k\}$. \implies Division of a polynomial p by $\{p_1, \ldots, p_k\}$ for some ordering: final remainder can depend on the choice of divisors!

Example: in $\mathbb{F}[x, y]$ with **lex** ordering $(x <_{lex} y)$, divide y^2 by $\{y^2 - 1, y - x\}$.

The solution: Gröbner Bases.

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

WHAT IS A GRÖBNER BASIS?

Let $G = \{p_1, \ldots, p_k\}$ and < a monomial ordering.

DEFINITION

G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend on the order chosen for the reductors.

USEFUL PROPOSITION

If $LM_{\leq}(p_1), \ldots, LM_{\leq}(p_k)$ are pairwise **coprime** (e.g. x^2 and y), then G is a Gröbner basis.

GRÖBNER BASIS - EXAMPLES

In $\mathbb{F}[x, y]$:

• $\{y^2 - 1, y - x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.

Gröbner Basis - Examples

In $\mathbb{F}[x, y]$:

- $\{y^2 1, y x\}$ is not a Gröbner basis for **lex** order with x < y (previous example).
- However, it is a Gröbner basis for lex order with x > y. Proof: $LM(y^2 1) = y^2$ and LM(y x) = x are coprime.
- $\{y^3 + x, y^3 + x^2\}$ is not a Gröbner basis for any lex or deglex order.
- However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and wt(y) = 1, as then $LM(y^3 + x) = y^3$ and $LM(y^3 + x^2) = x^2$ are coprime.

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order!

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

EXAMPLE ($\alpha = 3$, ONE ROUND)

$$x_1^3 = ax_0^2 + bx_0 + c$$

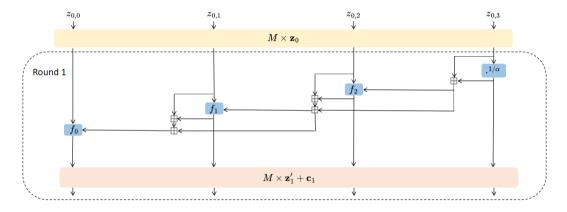
$$x_0x_1 + dx_1^2 + ex_0 + fx_1 + g = 0$$

 x_0^2 cancels out: this isn't a Gröbner basis for any order! Solution: multiply last equation by x_1^2 and reduce it by the first equation. We get:

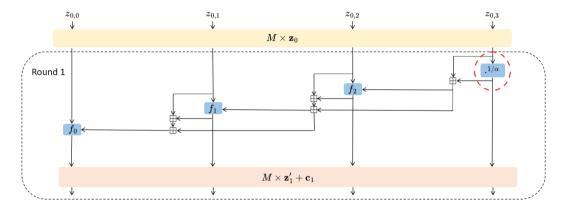
$$p^*(x_0, x_1) = ax_0^3 + bdx_0^2x_1 + \cdots$$

 $\implies \text{The first equation and } p^* \text{ are a Gröbner basis for some weighted order.}$ $\implies \text{This adds a few parasitic solutions (corresponding to x_1 = 0), but not many.}$ $\implies \text{This generalizes for more rounds (multiply the last polynomial by some of the } x_i \text{ and reduce it}). Freelunch is saved!}$

Arion- π - Round Function (4 branches)

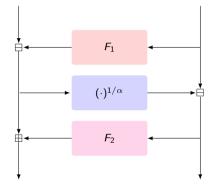


ARION- π - ROUND FUNCTION (4 BRANCHES)

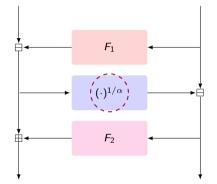


 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

ANEMOI - NONLINEAR LAYER (2 BRANCHES)

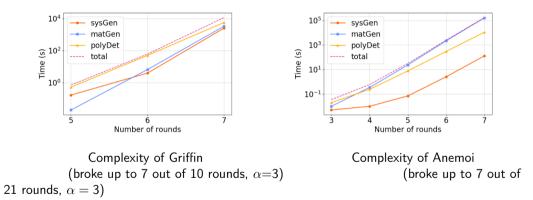


ANEMOI - NONLINEAR LAYER (2 BRANCHES)

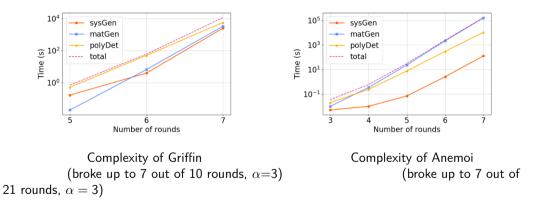


 $(\cdot)^{1/\alpha}$ is the only high-degree operation \implies add one variable per $(\cdot)^{1/\alpha}$.

EXPERIMENTAL RESULTS



EXPERIMENTAL RESULTS



- \implies For Griffin, polyDet upper-bounds the others up to 7 rounds.
- \implies For Anemoi, matGen is the bottleneck.