
The Algebraic Freelunch: Efficient Gröbner
Basis Attacks Against Arithmetization-Oriented

Primitives

Augustin Bariant1,2, Aurélien Boeuf2, Axel Lemoine2,4, Irati Manterola Ayala3,
Morten Øygarden3, Léo Perrin2, and Håvard Raddum3

1ANSSI, Paris, France 2INRIA, Paris, France
3Simula UiB, Bergen, Norway 4DGA, France

Journées C2 2025, Pornichet

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

Full-round break
of some instances

Full-round break
of some instances

Maybe full-round break?

Three main improvements on previous algebraic cryptanalysis:
1. Free Gröbner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.
3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

3 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Primitives

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic Arithmetization-Oriented

Binary operations Arithmetic operations

Algebraically complex (for cheap) Algebraically simple

Small field (F28) Large field (Fq, q > 232)

e.g. AES, SHA-3 e.g. Griffin, Anemoi

4 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

• Instantiated with the Griffin-π, Arion-π and Anemoi families of permutations.

• Many instances are defined: variable Fp, number of branches, exponents for
monomial permutations...

=⇒ We attack some instances better than others.

5 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Quick Overview of Griffin, Arion, Anemoi

Our targets:

Anemoi
Crypto23

Griffin
Crypto23

ArionHash
arXiv

• Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

• Instantiated with the Griffin-π, Arion-π and Anemoi families of permutations.
• Many instances are defined: variable Fp, number of branches, exponents for

monomial permutations...
=⇒ We attack some instances better than others.

5 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO by solving a polynomial model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

6 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

CICO Problem

CICO Problem of size c (capacity of the sponge) for permutation P:

P(∗, . . . , ∗, 0, . . . , 0︸ ︷︷ ︸
c elements

) = (∗′, . . . , ∗′, 0, . . . , 0︸ ︷︷ ︸
c elements

)

Solving CICO of size c gives collisions to the hash function.

⇒ Multivariate attack: solve CICO by solving a polynomial model of P.
⇒ We focus on c = 1.

P(x , ∗, . . . , ∗, 0) = (∗′, . . . , ∗′, 0).

6 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Round Function (4 branches)

Affine layer

(·)1/α (·)α

Q2

Q3

⊗

⊗

0

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.

7 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Round Function (4 branches)

Affine layer

(·)1/α (·)α

Q2

Q3

⊗

⊗

0

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.
7 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1)

(
(·)1/α S-boxes

)
.

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

8 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

• CICO problem: Gπ(· · · ||0) = (· · · ||0).
=⇒ One variable x0 in the input. One equation for the output (last branch at 0).

• Nrounds equations of the form xα
i = Pi(x0, x1, . . . xi−1)

(
(·)1/α S-boxes

)
.

Example (α = 3, one round)

x3
1 = ax0 + b

x7
0 + cx4

0 x1 + dx0x2
1 + · · · = 0

8 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system

3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!

9 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a Gröbner Basis

3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!

9 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a Gröbner Basis 3. Change order to lex (FGLM)

4. Find the roots in Fq of g∗
N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!

9 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a Gröbner Basis 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!

9 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Generic System Solving

p1(x1, . . ., xN) = 0
...

pk−1(x1, . . ., xN) = 0
pk(x1, . . ., xN) = 0

g1(x1, . . ., xN) = 0
...

gκ−1(x1, . . ., xN) = 0
gκ(x1, . . ., xN) = 0

g∗
1 (x1, . . . , xN) = 0

...
g∗

N−1(xN−1, xN) = 0
g∗

N(xN) = 0

1. Define system 2. Find a Gröbner Basis 3. Change order to lex (FGLM)
4. Find the roots in Fq of g∗

N with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!

9 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

10 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

In F[x , y]:
• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are

x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.
In F[x , y]:

• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are
x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.
In F[x , y]:

• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are
x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.
In F[x , y]:

• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are
x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Gröbner Basis - Examples

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.
In F[x , y]:

• {x2 − 1, y2 − x} is a Gröbner basis for the grevlex order (leading monomials are
x2 and y2).

• {x2 − 1, y2 − x} is not a Gröbner basis for the lex order with x > y (leading
monomials are x2 and x).

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• {y3 + x , y3 + x2} is a Gröbner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

11 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

Example (α = 3, two rounds)

x3
1 = ax0 + b

x3
2 = cx7

0 + · · ·
x49

0 + dx46
0 + ex45

0 + · · · = 0

✗ In grevlex (degree-first), the leading monomials are x3
1 , x7

0 and x49
0 .

✓ In weighted grevlex, with wt(x0) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are x3

1 , x3
2 and x49

0 .
=⇒ It’s a Gröbner basis! (coprime leading monomials)
=⇒ This generalizes for more rounds.

12 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

Example (α = 3, two rounds)

x3
1 = ax0 + b

x3
2 = cx7

0 + · · ·
x49

0 + dx46
0 + ex45

0 + · · · = 0

✗ In grevlex (degree-first), the leading monomials are x3
1 , x7

0 and x49
0 .

✓ In weighted grevlex, with wt(x0) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are x3

1 , x3
2 and x49

0 .
=⇒ It’s a Gröbner basis! (coprime leading monomials)
=⇒ This generalizes for more rounds.

12 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

Example (α = 3, two rounds)

x3
1 = ax0 + b

x3
2 = cx7

0 + · · ·
x49

0 + dx46
0 + ex45

0 + · · · = 0

✗ In grevlex (degree-first), the leading monomials are x3
1 , x7

0 and x49
0 .

✓ In weighted grevlex, with wt(x0) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are x3

1 , x3
2 and x49

0 .

=⇒ It’s a Gröbner basis! (coprime leading monomials)
=⇒ This generalizes for more rounds.

12 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Griffin-π - Model

Example (α = 3, two rounds)

x3
1 = ax0 + b

x3
2 = cx7

0 + · · ·
x49

0 + dx46
0 + ex45

0 + · · · = 0

✗ In grevlex (degree-first), the leading monomials are x3
1 , x7

0 and x49
0 .

✓ In weighted grevlex, with wt(x0) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are x3

1 , x3
2 and x49

0 .
=⇒ It’s a Gröbner basis! (coprime leading monomials)
=⇒ This generalizes for more rounds.

12 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Arithmetization-Oriented Primitives

Freelunch Systems for Free Gröbner Bases

Solving the System given a Gröbner Basis

13 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).

• Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).
• Order change is interesting because a GB in lex order must have a univariate

polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

FGLM in a Nutshell

• Given a Gröbner basis G1 for some ordering <1, and an ordering <2, FGLM
computes a Gröbner basis G2 for <2 in O(nvar D3

I).
• DI the number of solutions of the system in the algebraic closure (in our case

the product of the degrees of the leading monomials of the GB).
• Order change is interesting because a GB in lex order must have a univariate

polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

• Free Gröbner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.

14 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Faster Change of Order Strategy

• Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

• Strategy: for the smallest variable x , compute the characteristic polynomial χ of
the linear operation P 7→ Red<(x · P, G).

• χ(x) = 0.

•
�

Our systems do not verify an important property of the original paper.

15 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Computing the Characteristic Polynomial

Step 1: Compute the matrix T of the linear operation in F[x0, x1, . . . , xN] that maps
P to Red<(x0 · P, G). We only have very loose complexity bounds for this step.

Step 2: Compute det(XI − T).
=⇒ T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D1 = d1 · · · dN .
=⇒ In Griffin and Arion, d0 is by far the highest degree, so this reduces complexity by
a lot.
=⇒ This can be computed with fast linear algebra, in O(d0log(d0)2dω

1 · · · dω
N).

16 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Our Full Algorithm

1. sysGen: Compute the Freelunch system and the order for a free Gröbner basis.

2. matGen: Compute the multiplication matrix T of multiplication by x0.
�

Complexity hard to evaluate.

3. polyDet: Compute the characteristic polynomial χ of T (χ(x0) = 0).
=⇒ Longest step aside from matGen.

4. uniSol: Find roots of χ with half-gcd in Õ(DI).

17 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Gröbner basis (F4/F5).

• Designers can focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
• Better approach for matGen.
• Resultant based attacks (see eprint.iacr.org/2025/259).
• CICO on more than one branch?

Thank you for your attention!

18 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Gröbner basis (F4/F5).

• Designers can focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
• Better approach for matGen.
• Resultant based attacks (see eprint.iacr.org/2025/259).
• CICO on more than one branch?

Thank you for your attention!

18 / 18

Arithmetization-Oriented Primitives Freelunch Systems Solving the System

Conclusion

• Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Gröbner basis (F4/F5).

• Designers can focus on the growth of DI with the number of rounds (impacts the
complexity of solving algorithms).

• Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
• Better approach for matGen.
• Resultant based attacks (see eprint.iacr.org/2025/259).
• CICO on more than one branch?

Thank you for your attention!

18 / 18

Collision from the CICO Problem

• Suppose you know x such that P(x || 0c) = (y || 0c).

x

c

r 0c

0c

P

0c

y

0c

· · ·

· · ·

y

0c

0c

y

0c

· · ·

· · ·

-17 / -2

Griffin Trick

-16 / -2

Arion Trick

-15 / -2

What do we want?

Consider a multivariate polynomial ring F[x1, x2, . . . , xN].
We want to solve:

p1(x1, . . ., xN) = 0
p2(x1, . . ., xN) = 0

...
pk(x1, . . ., xN) = 0

-14 / -2

What do we want?

m1,1x1 + · · · + m1,NxN + a1 = 0
m2,1x1 + · · · + m2,NxN + a2 = 0

...
mk,1x1 + · · · + mk,NxN + ak = 0

Polynomials of degree 1: Linear system ⇒ Linear algebra.

-14 / -2

What do we want?

p1(x1) = 0
p2(x1) = 0

...
pk(x1) = 0

One variable: Univariate root finding ⇒ Euclidian division (for Berlekamp-Rabin
algorithm).

-14 / -2

What do we want?

p1(x1, . . . , xN) = 0
p2(x1, . . . , xN) = 0

...
pk(x1, . . . , xN) = 0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).

-14 / -2

The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

-13 / -2

The Problem with Multivariate

• Euclidian division on integers:

a = bq + r , 0 ≤ r < b.

Division of 13 by 3:
13 = 4 × 3 + 1.

• Euclidian division on univariate polynomials (F[X]):

A = BQ + R , deg(R) < deg(B).

Division of X 3 + X + 1 by X :

X 3 + X + 1 = (X 2 + 1)X + 1.

-13 / -2

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y

? ⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

-12 / -2

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x

⇐ x < y

or
x = 1 · (x+y) − y ?

⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

-12 / -2

The Problem with Multivariate

• Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?

Division of x by x + y in F[x , y]:

x = 0 · (x+y) + x ⇐ x < y
or

x = 1 · (x+y) − y

?

⇐ y < x

Need to define a monomial ordering.
=⇒ Division steps determined by leading monomials (LM).

-12 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000 ?

<lex

y

, x6yz

?<lex

y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz ?

<lex

y2z

.

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?<glex

x2 , z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y ?

<glex

x2

, z2

?<glex

xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2 ?

<glex

xyz

, xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?>wglex

yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x ?

>wglex

yz2

because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?<wglex

z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2 ?

<wglex

z6

because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

Monomial orderings
In F[x , y , z]:

• LEXicographical: Compare degree of highest variable, then second-highest, etc.
x <lex y <lex z , x1000

?

<lex y , x6yz

?

<lex y2z .

• Graded LEX: Compare total degree first, then switch to lex if equality.

x <lex y <lex z , y

?

<glex x2 , z2

?

<glex xyz , xy <glex xz <glex yz .

• Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <lex y <lex z and wt(x) = 6, wt(y) = 1, wt(z) = 2:

x

?

>wglex yz2 because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5 .

x2

?

<wglex z6 because wt(x2) = wt(z6) = 12 and x2 <lex z6 .

-11 / -2

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x , y] with lex ordering (x <lex y), divide y2 by
{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

-10 / -2

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!
Example: in F[x , y] with lex ordering (x <lex y), divide y2 by

{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

-10 / -2

The Problem... Still.

Consider a system {p1, . . . , pk}.
=⇒ Division of a polynomial p by {p1, . . . , pk} for some ordering: final remainder
can depend on the choice of divisors!
Example: in F[x , y] with lex ordering (x <lex y), divide y2 by

{
y2 − 1, y − x

}
.

y2 y2ww� red. by y2 − 1
ww� red. by y − x

1 xyww� no further red.
ww� red. by y − x

1 x2

The solution: Gröbner Bases.

-10 / -2

What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

-9 / -2

What is a Gröbner Basis?

Let G = {p1, . . . , pk} and < a monomial ordering.

Definition
G is a Gröbner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

Useful Proposition
If LM<(p1), . . . , LM<(pk) are pairwise coprime (e.g. x2 and y), then G is a Gröbner
basis.

-9 / -2

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

-8 / -2

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

-8 / -2

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

-8 / -2

Gröbner Basis - Examples

In F[x , y]:
• {y2 − 1, y − x} is not a Gröbner basis for lex order with x < y (previous example).

• However, it is a Gröbner basis for lex order with x > y . Proof: LM(y2 − 1) = y2

and LM(y − x) = x are coprime.

• {y3 + x , y3 + x2} is not a Gröbner basis for any lex or deglex order.

• However, it is a Gröbner basis for weighted degree orders with wt(x) = 2 and
wt(y) = 1, as then LM(y3 + x) = y3 and LM(y3 + x2) = x2 are coprime.

-8 / -2

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

-7 / -2

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

-7 / -2

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

-7 / -2

Anemoi - Model

Example (α = 3, one round)

x3
1 = ax2

0 + bx0 + c
x0x1 + dx2

1 + ex0 + f x1 + g = 0

x2
0 cancels out: this isn’t a Gröbner basis for any order!

Solution: multiply last equation by x2
1 and reduce it by the first equation. We get:

p∗(x0, x1) = ax3
0 + bdx2

0 x1 + · · ·

=⇒ The first equation and p∗ are a Gröbner basis for some weighted order.
=⇒ This adds a few parasitic solutions (corresponding to x1 = 0), but not many.
=⇒ This generalizes for more rounds (multiply the last polynomial by some of the xi
and reduce it). Freelunch is saved!

-7 / -2

Arion-π - Round Function (4 branches)

-6 / -2

Arion-π - Round Function (4 branches)

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.

-5 / -2

Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

-4 / -2

Anemoi - Nonlinear layer (2 branches)

F1⊟

(·)1/α ⊟

F2⊞

(·)1/α is the only high-degree operation =⇒ add one variable per (·)1/α.

-3 / -2

Experimental Results

Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, α=3) (broke up to 7 out of

21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.

-2 / -2

Experimental Results

Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, α=3) (broke up to 7 out of

21 rounds, α = 3)

=⇒ For Griffin, polyDet upper-bounds the others up to 7 rounds.
=⇒ For Anemoi, matGen is the bottleneck.

-2 / -2

	Arithmetization-Oriented Primitives
	Freelunch Systems for Free Gröbner Bases
	Solving the System given a Gröbner Basis
	Appendix

