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Three main improvements on previous algebraic cryptanalysis:
1. Free Grobner basis for some monomial orders.
2. Better approach to solving the system than generic FGLM variants.

3. Bypassing the first few rounds of Griffin and Arion with symmetric-like techniques.
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ARITHMETIZATION-ORIENTED PRIMITIVES

AOPs: dedicated primitives for advanced protocols (ZK proofs, MPC, FHE...)

Classic

Arithmetization-Oriented

Binary operations

Arithmetic operations

Algebraically complex (for cheap)

Algebraically simple

Small field (F»s)

Large field (Fq, g > 232)

e.g. AES, SHA-3

e.g. Griffin, Anemoi

SOLVING THE SYSTEM
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QUuUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi Griffin ArionHash
Crypto23 Crypto23 arXiv

e Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

® |nstantiated with the Griffin-r, Arion-7 and Anemoi families of permutations.
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QUuUICK OVERVIEW OF GRIFFIN, ARION, ANEMOI

Our targets:

Anemoi Griffin ArionHash
Crypto23 Crypto23 arXiv

e Griffin, ArionHash and AnemoiSponge = Arithmetization-Oriented families of
hash functions.

® |nstantiated with the Griffin-r, Arion-7 and Anemoi families of permutations.

® Many instances are defined: variable IF,, number of branches, exponents for
monomial permutations...

— We attack some instances better than others.

SOLVING THE SYSTEM
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CICO Problem of size ¢ (capacity of the sponge) for permutation P:

P(%,...,%,0,...,0)=(¥,...,%,0,...,0)

¢ elements ¢ elements
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CICO PROBLEM
CICO Problem of size ¢ (capacity of the sponge) for permutation P:

/ /
P(x,...,%,0,...,0)=(*,...,%,0,...,0)
¢ elements ¢ elements

Solving CICO of size c gives collisions to the hash function.

= Multivariate attack: solve CICO by solving a polynomial model of P.
= We focus on ¢ = 1.
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GRIFFIN-T - ROUND FUNCTION (4 BRANCHES)

i i l |

[ Affine layer }

T v
. 3 0%

4 A 4

(1)} is the only high-degree operation = add one variable per (-)1/°.
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GRIFFIN-T - MODEL

e CICO problem: G.(---]|0) = (---||0).
= One variable x; in the input. One equation for the output (last branch at 0).

® N,ounds equations of the form x® = P;(xp, x1,...Xj_1 )Y S_boxes).
1
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GRIFFIN-T - MODEL

e CICO problem: G.(---]|0) = (---||0).
= One variable x; in the input. One equation for the output (last branch at 0).

® Nyounds €quations of the form x™ = Pi(xo, x1,...xi—1) ((-)1/0‘ S-boxes).

EXAMPLE (o = 3, ONE ROUND)
xP =axo+b

x§ 4 exgx A+ dxpxd +--- =0

8/18
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GENERIC SYSTEM SOLVING

Pkt ) = 0

pr—1(x1,..,xn) =0
Pr(x1; - xn) =0

1. Define system
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GENERIC SYSTEM SOLVING

pi(xi,...,xy) =0 gi(xi, .., xy) =0
pr—1(x1,...,xn) =0 gr—1(x1,...,xn) =0

Pr(x1; - xn) =0 8x(x1,. ., xn) =0
1. Define system 2. Find a Grobner Basis
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GENERIC SYSTEM SOLVING

pl(Xl,...,XN):O gl(Xl,...,XN):O gf(xl,--.,XN):O
Pr-1(x1, .., xn) =0 Gr—1(x1,. ., xn) =0 gn—1(xnv—1,xn) =0
Pe(x1,. ..o xn) =0 gr(x1, .. xn) =0 gn(xv) =0

1. Define system 2. Find a Grobner Basis 3. Change order to lex (FGLM)
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1. Define system 2. Find a Grobner Basis 3. Change order to lex (FGLM)
4. Find the roots in F of gy with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.
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GENERIC SYSTEM SOLVING

pi(xi,...,xy) =0 R =0 gi(x1,...,xny) =0
Pr—1(x1, .., xn) =0 , gn-10nv-1,xn) =0
pk(Xl,...,XN):O 4 g ooy =0 gK/(XN):O
1. Define system 2.¥ind a Grobner Basis 3. Change order to lex (FGLM)

4. Find the roots in F of gy with univariate methods, etc.

Step 2 and Step 3 are the most costly. Designers of Anemoi and Griffin base their
security on the hardness of Step 2.

But we can skip it!
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GROBNER BASIS - EXAMPLES
USEFUL PROPOSITION

If LM-(p1),...,LM-(px) are pairwise coprime (e.g. x> and y), then G is a Grobner
basis.
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GROBNER BASIS - EXAMPLES

USEFUL PROPOSITION
If LM-(p1),...,LM-(px) are pairwise coprime (e.g. x> and y), then G is a Grobner

basis.
In F[x, y]:
® {x?> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
x? and y?).
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® {x?> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
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If LM-(p1),...,LM-(px) are pairwise coprime (e.g. x> and y), then G is a Grobner
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In F[x, y]:
® {x?> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
x? and y?).

® {x?> —1,y> — x} is not a Grobner basis for the lex order with x > y (leading
monomials are x? and x).

® {3+ x,y® + x?} is not a Grébner basis for any lex or deglex order.
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GROBNER BASIS - EXAMPLES

USEFUL PROPOSITION
If LM-(p1),...,LM-(px) are pairwise coprime (e.g. x> and y), then G is a Grobner

basis.
In F[x, y]:
® {x?> —1,y? — x} is a Grobner basis for the grevlex order (leading monomials are
x? and y?).

® {x?> —1,y> — x} is not a Grobner basis for the lex order with x > y (leading
monomials are x? and x).

® {3+ x,y® + x?} is not a Grébner basis for any lex or deglex order.

® {y3+x,y>+ x?} is a Grobner basis for weighted degree orders with wt(x) = 2
and wt(y) = 1, as then LM(y® + x) = y* and LM(y> + x?) = x? are coprime.
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GRIFFIN-T - MODEL

EXAMPLE (a =3, TWO ROUNDS)

xP =axg+ b
X23:CXg-|-"-

5 dg e+ =0
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EXAMPLE (a =3, TWO ROUNDS)
xp =axo+b
X23 = ng + .-

5 dg e+ =0

X In grevlex (degree-first), the leading monomials are xi, x| and x;°.
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GRIFFIN-T - MODEL

EXAMPLE (a =3, TWO ROUNDS)

xP =axg+ b
X23:CX5+---
P+ dg e+ =0

X In grevlex (degree-first), the leading monomials are xi, x| and x;°.

v In weighted grevlex, with wt(x;) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are xi, x5 and x;°.
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GRIFFIN-T - MODEL

EXAMPLE (a = 3, TWO ROUNDS)

xP =axg+ b
X23:CXg—{—---
P+ dg e+ =0

X In grevlex (degree-first), the leading monomials are xi, x| and x;°.

v In weighted grevlex, with wt(x;) = wt(x1) = 1 and wt(x2) = 3, the leading
monomials are xi, x5 and x;°.

= It’s a Grobner basis! (coprime leading monomials)

= This generalizes for more rounds.
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FGLM 1IN A NUTSHELL

® Given a Grobner basis Gy for some ordering <1, and an ordering <5, FGLM
computes a Grébner basis G, for < in O(nya D3).

® D, the number of solutions of the system in the algebraic closure (in our case
the product of the degrees of the leading monomials of the GB).
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computes a Grébner basis G, for < in O(nya D3).

® D, the number of solutions of the system in the algebraic closure (in our case
the product of the degrees of the leading monomials of the GB).

® Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)
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FGLM 1IN A NUTSHELL

® Given a Grobner basis Gy for some ordering <1, and an ordering <5, FGLM
computes a Grébner basis G, for < in O(nya D3).

® D, the number of solutions of the system in the algebraic closure (in our case
the product of the degrees of the leading monomials of the GB).

® Order change is interesting because a GB in lex order must have a univariate
polynomial in the smallest variable, which we can solve. (This corresponds to
eliminating the other variables.)

® Free Grobner basis, FGLM and symmetric techniques to bypass the first rounds is
already enough to break some instances of Griffin and Arion.
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FASTER CHANGE OF ORDER STRATEGY

Idea from a 2022 paper by Jérémy Berthomieu, Vincent Neiger, Mohab Safey El
Din.

Strategy: for the smallest variable x, compute the characteristic polynomial y of
the linear operation P — Red<(x - P, G).

x(x) =0.

@Our systems do not verify an important property of the original paper.
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COMPUTING THE CHARACTERISTIC POLYNOMIAL

Step 1: Compute the matrix T of the linear operation in F[xo, x1, ..., xy] that maps
P to Red(xp - P, G). We only have very loose complexity bounds for this step.

Step 2: Compute det(X/—T).

= T is sparse. With block matrix reasoning, this reduces to computing the
determinant of a polynomial matrix of size D; = d; - - - dy.

= In Griffin and Arion, dy is by far the highest degree, so this reduces complexity by
a lot.

= This can be computed with fast linear algebra, in O(dlog(dy)?d¥ - - - d5)).
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OUR FULL ALGORITHM

1. sysGen: Compute the Freelunch system and the order for a free Grobner basis.

2. matGen: Compute the multiplication matrix T of multiplication by xq.

@Complexity hard to evaluate.

3. polyDet: Compute the characteristic polynomial x of T (x(x0) = 0).
—> Longest step aside from matGen.

4. uniSol: Find roots of x with half-gcd in O(D).

17/18
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CONCLUSION

® Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grébner basis (F4/F5).

® Designers can focus on the growth of D; with the number of rounds (impacts the
complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.
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® Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grébner basis (F4/F5).

® Designers can focus on the growth of D; with the number of rounds (impacts the
complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
® Better approach for matGen.
® Resultant based attacks (see eprint.iacr.org/2025/259).
® CICO on more than one branch?
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CONCLUSION

® Arithmetization-Oriented hash functions (and similar) should not base their
security on the complexity of finding a Grébner basis (F4/F5).

® Designers can focus on the growth of D; with the number of rounds (impacts the
complexity of solving algorithms).

® Anemoi, Griffin and Arion need to recompute their numbers of rounds in order to
be secure.

Ongoing work:
® Better approach for matGen.
® Resultant based attacks (see eprint.iacr.org/2025/259).
® CICO on more than one branch?

THANK YOU FOR YOUR ATTENTION!
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GRIFFIN TRICK

a.,qr by a,x(,l+ by alx(r b, a(x(,l+ by udx(,r by agx”l+ by aaxl,l+ by n7xul+ by axxnr- by aqx(,l+ by a,(,xI, +byy 0
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ARION TRICK
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WHAT DO WE WANT?

Consider a multivariate polynomial ring F[x1, x2, ..., xp].
We want to solve:

pl(Xl7 .. 'aXN) =0
pa(x1; .. xn) =0

Pr(x1; -+ xn) =0

O00@000000000000
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WHAT DO WE WANT?

myixy+ -+ myyuxy+ar =0

mo1x1+ -+ monxy +a2 =0

My1x1 + -+ menxy +ax =0

Polynomials of degree 1: Linear system = Linear algebra.

S14/-2
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WHAT DO WE WANT?

pi(x1) =0
p2(x1) =0
pr(x1) =0

One variable: Univariate root finding = Euclidian division (for Berlekamp-Rabin
algorithm).
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WHAT DO WE WANT?

pi(xi,...,xy) =0
p2(x1,...,xn) =0

pk(Xl>"'7XN) =0

Several variables, high degree: Linear algebra + Euclidian division (F4/F5, FGLM,
Fast-FGLM...).

S14/-2
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THE PROBLEM WITH MULTIVARIATE
e Euclidian division on integers:

a=bg+r, 0<r<b.

Division of 13 by 3:
13=4x3+1.

-13/-2
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THE PROBLEM WITH MULTIVARIATE
e Euclidian division on integers:

a=bg+r, 0<r<b.

Division of 13 by 3:
13=4x3+1.

¢ Euclidian division on univariate polynomials (F[X]):
A=BQ+ R, deg(R) < deg(B).
Division of X3+ X + 1 by X:

X34+ X+1=(X24+1)X+1.

13 /-2



O0000e0000000000

THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?
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THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:

A = BQ + R... condition on R?
Division of x by x + y in F[x, y]:

x=0-(x+y)+x
or
x=1-(x+y)—y?

12/-2
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THE PROBLEM WITH MULTIVARIATE

® Euclidian division on multivariate polynomials:
A = BQ + R... condition on R?
Division of x by x + y in F[x, y]:

x=0-(x+y)+x < x<y
or

x=1-(x+y)—y <« y<x

Need to define a monomial ordering.
= Division steps determined by leading monomials (LM).

-12/-2
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

XlOOO ?

X <lex Y <lex Z 5 y

S11/-2
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <jex Y, Xyz 1 y°z

S11/-2



O00000@000000000

MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

S11/-2



O00000@000000000

MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.

2
X<lex Y <lexZ, ¥y 7 X
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.

2 2
X <lex Y <lex Z, Y <glex X", Z ? xyz
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.

2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:

x 7 yz?
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:

X >wglex yZ° because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5.

S11/-2
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MONOMIAL ORDERINGS
In F[x, y, z]:
e |LEXicographical: Compare degree of highest variable, then second-highest, etc.

1000 6 2
X <lex Y <lex Z, X <lex Y, XYZ<lexyY Z.

¢ Graded LEX: Compare total degree first, then switch to lex if equality.
2 2
X <lex Y <lex Z, Y <glex X™, Z7 <glex XYZ , XY <glex XZ <glex Y Z .

® Weighted Graded LEX: Compare the weighted sum of degrees, then lex if
equality. Examples for x <jex ¥ <iex z and wt(x) = 6,wt(y) = 1,wt(z) = 2:
X >wglex yZ° because wt(x) = 6 and wt(yz) = wt(y) + 2wt(z) = 5.

x2 <wglex 2% because wt(x2) = wt(z6) =12 and x? <jex 2° .

S11/-2
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THE PROBLEM... STILL.

Consider a system {p1,...,pk}-
= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!
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THE PROBLEM... STILL.

Consider a system {p1,...,pk}-

= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x, y] with lex ordering (x <jex y), divide y2 by {y? — 1,y — x}.

y? y?
ﬂ red. by y? — 1 ﬂ red. by y — x
1 Xy
ﬂ no further red. ﬂ red. by y — x
1 x2
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THE PROBLEM... STILL.

Consider a system {p1,...,pk}-

= Division of a polynomial p by {p1,...,px} for some ordering: final remainder
can depend on the choice of divisors!

Example: in F[x, y] with lex ordering (x <jex y), divide y2 by {y? — 1,y — x}.

y? y?
ﬂ red. by y? — 1 ﬂ red. by y — x
1 Xy
ﬂ no further red. ﬂ red. by y — x
1 x2

The solution: Grobner Bases.
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WHAT 1S A GROBNER BASIS?

Let G ={p1,...,px} and < a monomial ordering.

DEFINITION
G is a Grobner basis iff reduction defined by < of any polynomial P does not depend

on the order chosen for the reductors.
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WHAT 1S A GROBNER BASIS?

Let G ={p1,...,px} and < a monomial ordering.

DEFINITION
G is a Grobner basis iff reduction defined by < of any polynomial P does not depend
on the order chosen for the reductors.

USEFUL PROPOSITION
If LM_(p1), ..., LM (py) are pairwise coprime (e.g. x> and y), then G is a Grébner
basis.
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GROBNER BASIS - EXAMPLES

In F[x, y]:

® {y?2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
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GROBNER BASIS - EXAMPLES

In F[x, y]:
® {y?2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = 2
and LM(y — x) = x are coprime.
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GROBNER BASIS - EXAMPLES

In F[x, y]:
® {y?2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).
® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = 2
and LM(y — x) = x are coprime.

® {y3+x,y3+ x2} is not a Grobner basis for any lex or deglex order.
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GROBNER BASIS - EXAMPLES

In F[x, y]:
® {y?2—1,y —x} is not a Grobner basis for lex order with x < y (previous example).

® However, it is a Grobner basis for lex order with x > y. Proof: LM(y? — 1) = 2
and LM(y — x) = x are coprime.
® {y3+x,y3+ x2} is not a Grobner basis for any lex or deglex order.

® However, it is a Grobner basis for weighted degree orders with wt(x) = 2 and
wt(y) =1, as then LM(y® 4+ x) = y* and LM(y® + x?) = x? are coprime.

8/-2
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ANEMOI - MODEL

EXAMPLE (a = 3, ONE ROUND)

X =axg 4+ bxo+c

xox1+dx12+ex0+fx1+g:O
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ANEMOI - MODEL

EXAMPLE (a = 3, ONE ROUND)
X =axg 4+ bxo+c

x0x1+dx12+ex0+fx1+g:0

x; cancels out: this isn’t a Grobner basis for any order!

0O000000000e00000
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ANEMOI - MODEL

EXAMPLE (a = 3, ONE ROUND)

X =axg 4+ bxo+c

x0x1+dx12+ex0+fx1+g:0

x; cancels out: this isn’t a Grobner basis for any order!

Solution: multiply last equation by x7 and reduce it by the first equation. We get:

p*(x0,x1) = axg + bdxgxg + -
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ANEMOI - MODEL

EXAMPLE (a = 3, ONE ROUND)

X =axg 4+ bxo+c

X0x1+dx12+exo+fx1+g:0

x; cancels out: this isn’t a Grobner basis for any order!

Solution: multiply last equation by x7 and reduce it by the first equation. We get:

p*(x0,x1) = axg + bdxgxg + -

— The first equation and p* are a Grdbner basis for some weighted order.

= This adds a few parasitic solutions (corresponding to x; = 0), but not many.
= This generalizes for more rounds (multiply the last polynomial by some of the x;
and reduce it). Freelunch is saved!
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ARION-7 - ROUND FUNCTION (4 BRANCHES)

;'I Round 1 } e “,
H B |

=
~
=
e
— LOSLOS

M x 2} +¢;
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ARION-7 - ROUND FUNCTION (4 BRANCHES)

¥ ¥ \ ¥
M x Z()
S L
{ Round 1
2
fi &
Com— |
fO a5
M x 7, +c;
¥ ¥ ¥ ¥

(1)} is the only high-degree operation = add one variable per (-)1/2.
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ANEMOI - NONLINEAR LAYER (2 BRANCHES)

— (.)1/0‘ —H
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ANEMOI - NONLINEAR LAYER (2 BRANCHES)

L PE— = PEEN—
I/“\\ !

- 1 (.)l/a; N
\\\ //

He——— F -~

()%« is the only high-degree operation = add one variable per (-)¥/.
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EXPERIMENTAL RESULTS

LS g sysGen 10°| —— sysGen
—=— matGen —— matGen
olyDet 103 olyDet
EIOQ _____ poly 0 poly
[} [
£ £ 10
F oo =
107!
5 6 7 3 4 5 6 7
Number of rounds Number of rounds
Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, a=3) (broke up to 7 out of

21 rounds, a = 3)
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EXPERIMENTAL RESULTS

LS g sysGen 10°| —— sysGen ~
=— matGen =— matGen /
5 102 polyDet 3 10° polyDet 7
) o
£ ; £ 10
= =
100 =
107
/// =
L
5 7 3 4 5 6 7
Number of rounds Number of rounds
Complexity of Griffin Complexity of Anemoi
(broke up to 7 out of 10 rounds, a=3) (broke up to 7 out of

21 rounds, a = 3)

= For Griffin, polyDet upper-bounds the others up to 7 rounds.
—> For Anemoi, matGen is the bottleneck.
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