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What is a Symmetric Primitive?
“Security”: confidentiality, authentication, integrity...

Secure
Protocols

Modes of Operation

(GCM, Sponge Functions...)

Primitives

(Block Ciphers, Stream Ciphers, PRFs...)
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What is a Symmetric Primitive?

s f . . . f

c0 c1 cN−2 cN−1

The ever-popular Block Cipher construction.

• Key-dependent ci(K ): family of permutations EK .
• Fixed, public ci : pseudo-random permutation (useful for hash

functions, PRFs, XOFs...)
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What is a Hash Function?

Definition
A hash function is a function that maps an input of any size in Fq
to an element of Fr

q for a fixed integer r .

• collision resistance: hard to find x , y such that
H(x) = H(y).

• preimage resistance: given y ∈ Fr
q, hard to find x such that

H(x) = y .
• second preimage resistance: given x , hard to find x ′ such

that H(x) = H(x ′).
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Sponge Hash Functions

M0

capacity

rate

P

M1

P

M2

P

M3

P

H(M)

A sponge construction, originally designed for the standard SHA-3.
P is, for example, a fixed-key Block Cipher.
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Arithmetization-Oriented Symmetric
Primitives

• Advanced protocols (Zero-Knowledge proofs, MPC, FHE...)
call for primitives with a “simple” arithmetic description
(unlike the AES or SHA-3), sometimes over Fp for a large p.

Classic: binary oper-
ations, algebraically

complex nonlinear layers
over a small field (F28)

AOP: arithmetic operations,
algebraically simple nonlinear
layers over a large (sometimes

prime) field Fq, q ≥ 264.

Example
Primitive using the nonlinear component S : x 7→ x3 (Mimc and
variants, Rescue...).
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Arithmetization for Zero-Knowledge

• Zero-Knowledge proof: prove that a statement on my
private data is true, and reveal nothing else.

• Implemented using “constraint systems” (R1CS, AIR,
Plonk...). Less constraints = Better performance.

Function → Arithmetic circuit → Set of constraints

x3

Low degree

Few constraints

AES
S-box

High degree

Many constraints

x1/3

High degree

Few constraintsFew constraints

(Because low degree inverse)
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A Typical Round Function

s0

s1

s2

S
S
S

M

c0 c1 c2

⊕
⊕

⊕

The round function of an SPN Block Cipher. Design basis for the AES.
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Rescue-Prime

• Defined in Fp with p prime > 264. Here we focus on m = 3,
c = 1 and p ≈ 2256.

s0
s1
s2

xα

xα

xα

M

c0 c1 c2

x 1
α

x 1
α

x 1
α

M

c3 c4 c5

Two steps of Rescue for m = 3 (repeated N ≥ 8 times).

• Defined for any MDS matrix M and round constants ci .
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Rescue’s Design Choices

• Alternate xα and x 1
α for resistance against algebraic attacks.

• Low verification cost, high degree overall.
• xα has good cryptographic properties (APN for α = 3).
• Wide-trail strategy is used, like in the AES, as a security

argument.

Main motivation: Are the usual security arguments sufficient?
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Differential Uniformity

Definition
Differential uniformity of a function F :

δ(F ) = max
σ ̸=0,β

|{F (x + σ) − F (x) = β s.t. x ∈ (Fp)m}|

→ This quantity must be minimized.
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High Differential Uniformities in Rescue

Graph taken from eprint.iacr.org/2020/820.
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High Differential Uniformities in Rescue

The cause? Affine spaces of dimension 1 nicely mapping from one
to another.

(
z
X

)
2 rounds

(
aX + b
cX + d

)
2 rounds

(
eX + f
gX + h

)

• 1 round or 3 rounds: the function is not affine.
• Because p is big (≥ 264), affine spaces of dim 1 are also big.
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High Differential Uniformities in Rescue

δ(F ) = max
σ ̸=0,β

|{F (x + σ) − F (x) = β s.t. x ∈ (Fp)m}|.

∀X ∈ Fp, F
(

z
X

)
=
(

eX + f
gX + h

)
.

F
(

z
X + 1

)
− F

(
z
X

)
=
(

e(X + 1) + f
g(X + 1) + h

)
−
(

eX + f
gX + h

)

=
(

e
g

)
= β

→ δ(F ) ≥ p
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Structure of our work

High Differential Uniformities in RescueHigh Differential Uniformities in Rescue

Affine Space ChainsAffine Space Chains
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Affine Space Chains

Note a +
〈
v
〉

:= {a + Xv such that X ∈ Fp}.

a0 + ⟨v0⟩ f−−→ a1 + ⟨v1⟩ f−−→ . . .
f−−→ aN + ⟨vN⟩
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Main Observation

s0
s1
s2

xα

xα

xα

M

c0 c1 c2

Rescue round.

Write elements of

0
0
a

+
〈1

v
0

〉 as

s0
s1
s2

 =

 X
vX
a

 .
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Main Observation

s0
s1
s2

xα

xα

xα

M

c0 c1 c2

Rescue round.

s0
s1
s2

 =

 X
vX
a

 −→

 Xα

vαXα

aα

 =

 0
0
aα

+ Xα

 1
vα

0


This is the most important part! It only relies on the fact that the Sbox is

a monomial.
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Separable Affine Spaces

Definition
An affine space of dimension 1 is separable if and only if there
exists a representation of it denoted a + ⟨v⟩ such that:

∀ 1 ≤ i ≤ m , ai · vi = 0 .

or, equivalently, supp(v) ∩ supp(a) = ∅.

Examples

•
(

a
0

)
+
〈(0

b

)〉
is a separable affine space for all a and b.

•
(

0
1

)
+
〈(1

1

)〉
is not.
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0
aα
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0
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Main Observation

M

 0
0
aα

+

c1
c2
c3

+
〈
M

 1
vα

0

〉

For this space to be separable, we need that there exists λ ∈ Fp
such that

M

 1
vα

0

 and M

 0
0
aα

+

c1
c2
c3

+ λM

 1
vα

0


have disjoint supports.
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Main Result

Theorem
The image of a separable affine space a + ⟨v⟩ by a round of a
monomial SPN is an affine space. Also, the image is still separable
if and only if there exists λ in Fp such that:

∀i ∈ supp(M ◦ S)(v),

ci = λ(M ◦ S)(v)i − (M ◦ S)(a)i
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Our Designs

• Stir, a weak instance of Rescue.

• Snare, a tweakable cipher with a secret weak tweak. Directly
based on the MALICIOUS framework1.

• AES-like ciphers where we can introduce and control
differential uniformity spikes.

1Thomas Peyrin and Haoyang Wang, The MALICIOUS Framework:
Embedding Backdoors into Tweakable Block Ciphers
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Stir

• Based on Rescue.
• MDS matrix M and round constants c are carefully chosen to

impose one affine space chain over the whole permutation.

s0
s1
s2

xα

xα

xα

M

c0 c1 c2

x 1
α

x 1
α

x 1
α

M

c3 c4 c5
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Stir

0
0
0

+
〈v1

v2
0

〉 −→

 0
0
a3

+
〈v ′

1
v ′

2
0

〉 −→ ... −→

0
0
0

+
〈v ′′

1
v ′′

2
0

〉

• Yields p ≈ 264 solutions to the “CICO problem”. This breaks
security arguments in sponge constructions.
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More on the CICO Problem

Definition (CICO Problem of size c)
Given a permutation P, find x of size (n − c) such that
P(x || 0c) = (∗ || 0c).

• Given a sponge construction of rate r and capacity c, solving
the CICO problem of size c on its inner permutation gives a
collision.

• There are variants (e.g. given y of size r , find x such that
P(x || 0c) = (y || ∗).
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Collision from the CICO Problem

• Suppose you know x such that P(x || 0c) = (y || 0c).

x

c

r 0c

0c

P

0c

y

0c

· · ·

· · ·

y

0c

0c

y

0c

· · ·

· · ·
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Snare

s0

s1

s2

xα

xα

xα

M

ρ x

⊕
⊕

K0 A0 x + 0

T H
c0 + t0

⊕

x 1
α

x 1
α

x 1
α

M

ρ x

c1 + t1

⊕

⊕
⊕

• H is an XOF (eXtendable Output Function), like SHAKE256.
• The ti are the tweak hashes.
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Snare

Idea: Choose ci = −H(T ∗)i for some secret tweak T ∗.
→ When T = T ∗, ci and ti annihilate one another and an
invariant vector space appears.

T H
c0 + t0

0

c1 + t1

0
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Snare

〈1
ρ
0

〉 1 round−−−−→
〈1

ρ
0

〉 −→ ... −→
〈1

ρ
0

〉
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Snare

1
ρ
0

 1 round−−−−→ P1(K0)

1
ρ
0

 −→ ... −→ Pn(K0)

1
ρ
0



• Retrieve K0 with multivariate polynomial solving (Gröbner
bases), with m times less equations as the general case.

→ Algebraic attack complexity put to the mth root!
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Affine Space Chain vs Affine Function

• Last 2 designs are based on affine space chains.
• Having an affine space chain doesn’t mean that the function

itself is affine.
• In the beginning we measured high differential uniformites

because the function itself is affine on these subspaces.
• Can we recreate that?

a1 + Xv1 −→ a2 + (Xα + λ)v2 −→ a3 + (Xα + λ)
1
α v3
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Morse Code with Differential Uniformity

• Same thing as Snare, but with elements over F2n and the
inverse function x 7→ x−1 as an Sbox.

s0

s1

s2

x−1

x−1

x−1
M

r0 r1 r2

⊕
⊕

⊕
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Morse Code with Differential Uniformity

Idea: Same strategy as Snare, but make it so that the mapping
from the input to output affine space is itself affine every 2 or 3
rounds!

• For a 2-round delay, the coefficient X of the affine space basis
verifies X −→ X−1 −→ X (Case λ = 0).

• High differential uniformity every 2 or 3 rounds (controlled by
our choices of ci ).
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Morse Code with Differential Uniformity

This differential uniformity graph spells “-- . .-. .-. -.-- -..-
-- .- ...” (ILOVEALMASTY) over 80 rounds (m = 2, F26).
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Conclusion

• Bad choice of round constants may lead to high differential
uniformities.

• Our weak designs satisfy state-of-the art security arguments
(APN Sbox, MDS matrix, wide-trail strategy...). Usual
security arguments are not sufficient in the AO context.

• The principles behind these techniques are applicable to other
AOPs, like Arion-π and Griffin, and were exploited to break
them (see eprint.iacr.org/2024/347 on “Freelunch
Attacks”).

Thank you for listening!
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