A new representation of the AES Key Schedule Application to mixFeed, ALE, and AES

Gaëtan Leurent, Clara Pernot
Inria, Paris

Friday, April 16th 2021

* Ríledion

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

- 1997-2000: Advanced Encryption Standard (AES) [FIPS-197].
- Rijndael is a block cipher designed by Rijmen and Daemen that had been selected by the NIST.
- Block size: 128 bits. Key size: 128, 192, 256 bits.
- The AES is the most widely used block cipher today.

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

- 1997-2000: Advanced Encryption Standard (AES) [FIPS-197].
- Rijndael is a block cipher designed by Rijmen and Daemen that had been selected by the NIST.
- Block size: 128 bits. Key size: 128, 192, 256 bits.
- The AES is the most widely used block cipher today.
- 2019-... : Lightweight Cryptography.
- 57 submissions.
- 56 were selected as Round 1 Candidates.
- 32 were selected as Round 2 Candidates.
- 10 finalists.

AES: Advanced Encryption Standard [FIPS-197]

Description of the AES-128.

AES: Advanced Encryption Standard [FIPS-197]

Description of the AES-128.

mixFeed [Chakraborty and Nandi, NIST LW Submission]

- mixFeed is a second-round candidate in the NIST Lightweight Standardization Process which was not selected as a finalist.
- It was submitted by Bishwajit Chakraborty and Mridul Nandi.
- It is an AEAD (Authenticated Encryption with Associated Data) algorithm.
- It is based on the AES block cipher.

mixFeed

Simplified scheme of mixFeed encryption.

mixFeed

Simplified scheme of mixFeed encryption.

Function Feed in the case where

$$
|D|=128 .
$$

mixFeed

Simplified scheme of mixFeed encryption.

Function Feed in the case where

$$
|D|=128 .
$$

Mustafa Khairallah's observation [ToSC'19]

Using brute-force and out of 33 tests, Khairallah found 20 cycles of length

$$
14018661024 \approx 2^{33.7}
$$

for the P permutation ${ }^{1}$.

Surprising facts:

\rightarrow all cycles found are of the same length.
\rightarrow this length is much smaller than the cycle length expected for a 128 -bit permutation.

[^0]
AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.
\rightarrow The subkey at round i is the concatenation of the words $w_{4 i}$ to $w_{3+4 i}$.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.
\rightarrow The subkey at round i is the concatenation of the words $w_{4 i}$ to $w_{3+4 i}$.

AES Key Schedule

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

K_{1}

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

K_{1}
$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{ord}\left(w_{i-1}\right)\right) \oplus R C o n(i / 4) \oplus w_{i-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

K_{1}
$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Ord}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$$
\begin{aligned}
& K_{0}=K \\
& \mathrm{w}_{\mathrm{i}}=\operatorname{SubW} \operatorname{Ord}\left(\operatorname{Rot} \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}
\end{aligned}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$$
\begin{aligned}
& K_{0}=K \\
& K_{1} \\
& \mathrm{w}_{\mathrm{i}}=\operatorname{SubW} \operatorname{Word}\left(\operatorname{Rot} \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}
\end{aligned}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$\mathrm{w}_{\mathrm{i}}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{ord}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{RotWord}\left(w_{i-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus w_{i-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(w_{i-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

One round of key schedule at byte level

One round of the AES key schedule.

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Difference diffusion

Leander, Minaud and Rønjom ([EC'15]) introduced an algorithm in order to detect invariant subspaces for a permutation, i.e. a subspace A and an offset u such as:

$$
F(A+u)=A+F(u)
$$

Let's recall how the generic algorithm works for a permutation $\mathrm{F}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$:

1) Guess an offset $u^{\prime} \in \mathbb{F}_{2}^{n}$ and a one-dimensional subspace A_{0}.
2) Compute $A_{i+1}=\operatorname{span}\left\{\left(F\left(u^{\prime}+A_{i}\right)-F\left(u^{\prime}\right)\right) \cup A_{i}\right\}$
3) If the dimension of A_{i+1} equals the dimension of A_{i}, we found an invariant subspace and exit.
4) Else, we go on step 2.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

$\rightarrow \rightarrow$| | | | |
| :--- | :--- | :--- | :--- |
| a^{\prime}
 b^{\prime} b^{\prime} b^{\prime} b^{\prime}
 c^{\prime} c^{\prime}
 d^{\prime} d^{\prime} | | | |

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

We obtain 4 families of invariant affine subspaces whose linear parts are:

$$
\begin{aligned}
& E_{0}=\left\{(a, b, c, d, 0, b, 0, d, a, 0,0, d, 0,0,0, d) \text { with } a, b, c, d \in \mathbb{F}_{2^{8}}\right\} \\
& E_{1}=\left\{(a, b, c, d, a, 0, c, 0,0,0, c, d, 0,0, c, 0) \text { with } a, b, c, d \in \mathbb{F}_{2^{8}}\right\} \\
& E_{2}=\left\{(a, b, c, d, 0, b, 0, d, 0, b, c, 0,0, b, 0,0) \text { with } a, b, c, d \in \mathbb{F}_{2^{8}}\right\} \\
& E_{3}=\left\{(a, b, c, d, a, 0, c, 0, a, b, 0,0, a, 0,0,0) \text { with } a, b, c, d \in \mathbb{F}_{2^{8}}\right\}
\end{aligned}
$$

$$
\forall u \in\left(\mathbb{F}_{2^{8}}\right)^{16}, R\left(E_{i}+u\right)=E_{i+1}+R(u)
$$

The full space is the direct sum of those four vector spaces:

$$
\left(\mathbb{F}_{2^{8}}\right)^{16}=E_{0} \oplus E_{1} \oplus E_{2} \oplus E_{3}
$$

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6) Conclusion

New representation of the AES Key Schedule

To describe a representation that makes the 4 subspaces appear more clearly, we will perform a linear transformation $A=C_{0}^{-1}$, which corresponds to a base change:

$$
\left.\begin{array}{rl}
s_{0} & =k_{15} \\
s_{4} & =k_{14}
\end{array} \quad s_{1}=k_{14} \oplus k_{10} \oplus k_{6} \oplus k_{13} \oplus k_{9} \oplus k_{5} \oplus k_{1} \quad s_{2}=k_{13} \oplus k_{5}=s_{12} \oplus k_{4}=k_{12} \oplus k_{8}=s_{7}=k_{15} \oplus k_{11}\right)
$$

New representation of the AES Key Schedule

One round of the AES key schedule (alternative representation).

New representation of the AES Key Schedule

r rounds of the key schedule in the new representation.

- B_{i} is similar to B but the round constant c_{i} is XORed to the output of the S-box.
- $C_{i}=A^{-1} \times \mathrm{SR}^{i}$, with SR the matrix corresponding to rotation of 4 bytes to the right.

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Cycle analysis of 11-round AES key schedule

Two iterations of 11 rounds of the key schedule in the new representation.

Cycle analysis of 11-round AES key schedule

We define:

$$
\begin{aligned}
f_{1}= & B_{11} \circ B \circ B \circ B \circ B_{7} \circ \\
& B \circ B \circ B \circ B_{3} \circ B \circ B \\
f_{2}= & B \circ B_{10} \circ B \circ B \circ B \circ \\
& B_{6} \circ B \circ B \circ B \circ B_{2} \circ B \\
f_{3}= & B \circ B \circ B_{9} \circ B \circ B \circ \\
& B \circ B_{5} \circ B \circ B \circ B \circ B_{1} \\
f_{4}= & B \circ B \circ B \circ B_{8} \circ B \circ \\
& B \circ B \circ B_{4} \circ B \circ B \circ B
\end{aligned}
$$

Two iterations of 11 rounds of the key schedule in the new representation.

Cycle analysis of 11-round AES key schedule

4 iterations of P in the new model.

Cycle analysis of 11-round AES key schedule

4 iterations of P in the new model.

$$
\widetilde{P}=A \circ P \circ A^{-1}
$$

$$
\widetilde{P}:(a, b, c, d) \mapsto\left(f_{2}(b), f_{3}(c), f_{4}(d), f_{1}(a)\right)
$$

$$
\widetilde{P}^{4}:(a, b, c, d) \mapsto\left(\phi_{1}(a), \phi_{2}(b), \phi_{3}(c), \phi_{4}(d)\right)
$$

$$
\phi_{1}(a)=f_{2} \circ f_{3} \circ f_{4} \circ f_{1}(a)
$$

$$
\phi_{2}(b)=f_{3} \circ f_{4} \circ f_{1} \circ f_{2}(b)
$$

$$
\phi_{3}(c)=f_{4} \circ f_{1} \circ f_{2} \circ f_{3}(c)
$$

$$
\phi_{4}(d)=f_{1} \circ f_{2} \circ f_{3} \circ f_{4}(d)
$$

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

- Conversely, if a, b, c, d are in small cycles of the corresponding ϕ_{i}, then (a, b, c, d) is in a cycle of \widetilde{P}^{4} of length the lowest common multiple of the small cycle lengths.

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

- Conversely, if a, b, c, d are in small cycles of the corresponding ϕ_{i}, then (a, b, c, d) is in a cycle of \widetilde{P}^{4} of length the lowest common multiple of the small cycle lengths.
- Due to the structure of the ϕ_{i} functions, all of them have the same cycle structure:

$$
\phi_{2}=f_{2}^{-1} \circ \phi_{1} \circ f_{2} ; \quad \phi_{3}=f_{3}^{-1} \circ \phi_{2} \circ f_{3} ; \quad \phi_{4}=f_{4}^{-1} \circ \phi_{3} \circ f_{4}
$$

Cycle analysis of 11-round AES key schedule

Length	\# cycles	Proba	Smallest element			
3504665256	1	0.82	00	00	00	01
255703222	1	0.05	00	00	00	$0 b$
219107352	1	0.05	00	00	00	1 d
174977807	1	0.04	00	00	00	00
99678312	1	0.02	00	00	00	21
13792740	1	0.003	00	00	00	75
8820469	1	$2^{-8,93}$	00	00	00	24
7619847	1	$2^{-9,14}$	00	00	00	c1
5442633	1	$2^{-9,63}$	00	00	02	78
4214934	1	2^{-10}	00	00	05	77
459548	1	$2^{-13,2}$	00	00	38	fe
444656	1	$2^{-13,24}$	00	00	$0 b$	68
14977	1	$2^{-18,13}$	00	06	82	$5 c$
14559	1	$2^{-18,18}$	00	04	fa	b1
5165	1	$2^{-19,67}$	00	$0 a$	d4	4 e
4347	1	$2^{-19,92}$	00	04	94	$3 a$
1091	1	$2^{-21.91}$	00	21	$4 b$	$3 b$
317	1	$2^{-23,7}$	00	28	41	36
27	1	$2^{-27,25}$	01	$3 a$	$0 d$	$0 c$
6	1	$2^{-29,42}$	06	23	25	51
5	3	$3 \cdot 2^{-29,68}$	06	$1 a$	ea	18
4	2	$2 \cdot 2^{-30}$	23	c6	$6 f$	$2 b$
2	3	$3 \cdot 2^{-31}$	69	ea	63	75
1	2	$2 \cdot 2^{-32}$	$7 e$	be	d1	92

Cycle structure of ϕ_{1} for 11-round AES-128 key schedule.

Cycle analysis of 11-round AES key schedule

Length	\# cycles	Proba	Smallest element
3504665256	1	0.82	00000001
255703222	1	0.05	000000 Ob
219107352	1	0.05	0000001 d
174977807	1	0.04	00000000
99678312	1	0.02	00000021
13792740	1	0.003	00000075
8820469	1	$2^{-8,93}$	00000024
7619847	1	$2^{-9,14}$	000000 c 1
5442633	1	$2^{-9,63}$	00000278
4214934	1	2^{-10}	00000577
459548	1	$2^{-13,2}$	000038 fe
444656	1	$2^{-13,24}$	00000 b 68
14977	1	$2^{-18,13}$	$0006825 c$
14559	1	$2^{-18,18}$	$0004 \mathrm{fa} \mathrm{b1}$
5165	1	$2^{-19,67}$	00 0a d4 4e
4347	1	$2^{-19,92}$	0004943 a
1091	1	$2^{-21.91}$	00214 b 3 b
317	1	$2^{-23,7}$	00284136
27	1	$2^{-27,25}$	01 3a Od Oc
6	1	$2^{-29,42}$	06232551
5	3	$3 \cdot 2^{-29,68}$	061 a ea 18
4	2	$2 \cdot 2^{-30}$	23 c 6 6f 2b
2	3	$3 \cdot 2^{-31}$	69 ea 6375
1	2	$2 \cdot 2^{-32}$	7 e be d1 92

With probability $0.82^{4} \simeq 0.45$, we have a, b, c and d in a cycle of length $\ell=3504665256$, resulting in:
\rightarrow a cycle of length ℓ for \widetilde{P}^{4},
\rightarrow a cycle of length at most
$4 \ell=14018661024$ for \widetilde{P} and P.

Cycle structure of ϕ_{1} for 11-round AES-128 key schedule.

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.
\rightarrow This explains the observation on mixFeed [Khairallah, ToSC'19].

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.
\rightarrow This explains the observation on mixFeed [Khairallah, ToSC'19].
\rightarrow This contradicts the assumption made in a security proof of mixFeed:

Assumption [Chakraborty and Nandi, NIST LW Workshop]

For any $K \in\{0,1\}^{n}$ chosen uniformly at random, probability that K has a period at most ℓ is at most $\ell / 2^{n / 2}$.

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Assuming that Z belongs to a cycle of length ℓ, we have the following attack considering a message M made of m blocks, with $m>\ell$:

1) Encrypt the message M, and obtain the corresponding ciphertext C and $\operatorname{tag} T$.
2) Calculate $S_{o}[0]=I V$ and $S_{i}[\ell+1]$ using M_{r} and C_{r} for $r=1$ and $r=\ell+1$.
3) Choose M_{x} and C_{x} such that $\left(S_{i}[\ell+1], C_{x}\right)=$ Feed $\left(S_{o}[0], M_{x}\right)$.
4) The T tag will also authenticate the new ciphertext

$$
C^{\prime}=C_{x}\left\|C_{\ell+2}\right\| \cdots \| C_{m}
$$

Forgery attack against mixFeed

1) Encrypt a message M, and obtain the corresponding ciphertext C and $\operatorname{tag} T$.
2) Calculate $S_{o}[0]=I V$ and $S_{i}[\ell+1]$ using M_{r} and C_{r} for $r=1$ and $r=\ell+1$.

Forgery attack against mixFeed

1) Encrypt a message M, and obtain the corresponding ciphertext C and $\operatorname{tag} T$.
2) Calculate $S_{o}[0]=I V$ and $S_{i}[\ell+1]$ using M_{r} and C_{r} for $r=1$ and $r=\ell+1$.

3) Choose M_{x} and C_{x} such that $\left(S_{i}[\ell+1], C_{x}\right)=$ Feed $\left(S_{o}[0], M_{x}\right)$.
4) The T tag will also authenticate the new ciphertext $C^{\prime}=C_{x}\left\|C_{\ell+2}\right\| \cdots \| C_{m}$.

Forgery attack against mixFeed

Summary of the forgery attack:
\rightarrow Data complexity: a known plaintext of length higher than $2^{37.7}$ bytes
\rightarrow Memory complexity: negligible
\rightarrow Time complexity: negligible
\rightarrow Success rate: 45\%
\Rightarrow Verified using the mixFeed reference implementation

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Application to ALE [Bog+14]

Authenticated encryption with ALE.

Application to ALE

ALE has been designed so that each AES encryption is performed with different keys, to avoid attacks that use pairs of messages encrypted with the same key.
\rightarrow Using the same approach as for mixFeed, we find that 76% of the keys belong to cycles of length $16043203220 \approx 2^{33.9}$.
\rightarrow Short length cycles allows us to easily find states encrypted under the same key.
\rightarrow We used the tool developed by Bouillaguet, Derbez, and Fouque [Crypto'11] in order to find an attack against ALE.

Application to ALE

ALE has been designed so that each AES encryption is performed with different keys, to avoid attacks that use pairs of messages encrypted with the same key.
\rightarrow Using the same approach as for mixFeed, we find that 76% of the keys belong to cycles of length $16043203220 \approx 2^{33.9}$.
\rightarrow Short length cycles allows us to easily find states encrypted under the same key.
\rightarrow We used the tool developed by Bouillaguet, Derbez, and Fouque [Crypto'11] in order to find an attack against ALE.

Attack		Enc	Verif	Time	Ref
Existential Forgery	Known Plaintext	$2^{110.4}$	2^{102}	$2^{110.4}$	$[$ Wu+13]
Existential Forgery	Known Plaintext	2^{103}	2^{103}	2^{104}	[KR14]
Existential Forgery	Known Plaintext	1	2^{120}	2^{120}	[KR14]
State Recovery, Almost Univ. Forgery	Known Plaintext	1	2^{121}	2^{121}	[KR14]
State Recovery, Almost Univ. Forgery	Chosen Plaintext	$2^{57.3}$	0	$2^{104.4}$	New

Comparison of attacks against ALE.

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6) Conclusion

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

Property on the AES Key Schedule

One round of the AES key schedule with graphic representations of bytes positions (alternative representation).

Only the XOR of the colored bytes is required for each state.

Property on the AES Key Schedule

Property on the AES Key Schedule

How to compute K_{14}^{i} ?

Property on the AES Key Schedule

How to compute K_{14}^{i} ?

Property on the AES Key Schedule

How to compute K_{14}^{i} ?
\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.
\rightarrow A byte in the 2 nd column depends on only 64 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.
\rightarrow A byte in the 2nd column depends on only 64 bits of information.
\rightarrow A byte in the first column depends on 128 bits of information.

Property on the AES Key Schedule

Summary: even after a large number of rounds, the key schedule does not mix all the bytes!

Computing the value of a byte of a subkey does not necessarily require to know the whole master key:
\rightarrow A byte in the first column depends on at most 128 bits of information
\rightarrow A byte in the second column depends on at most 64 bits of information
\rightarrow A byte in the third column depends on at most 64 bits of information
\rightarrow A byte in the last column depends on at most 32 bits of information
\Rightarrow This allows to combine more efficiently information on the first and the last subkeys.

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE

4 Combining Efficiently Information from Subkeys

- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Impossible Differential - AES

The attack is in 2 parts:
(1) find the possible candidates for the bytes marked G .
(2) find the master keys corresponding to these bytes.

7-round impossible differential attack ([MDRM, IC'10]).
Figure adapted from Tikz for Cryptographers [Jean].

Impossible Differential - AES

The attack is in 2 parts:
(1) find the possible candidates for the bytes marked G .
(2) find the master keys corresponding to these bytes.

7-round impossible differential attack ([MDRM, IC'10]).
Figure adapted from Tikz for Cryptographers [Jean].

Impossible Differential - AES

7-round impossible differential attack ([MDRM, IC'10]). Figure adapted from Tikz for Cryptographers [Jean].

The attack is in 2 parts:
(1) find the possible candidates for the bytes marked G .
(2) find the master keys corresponding to these bytes.

We improve (2) by combining information from K^{0} and K^{7} more efficiently thanks to properties related to our new representation.

Impossible Differential - AES

Attack	Data	Time	Mem.	Ref.
Meet-in-the-middle	2^{97}	2^{99}	2^{98}	[Derbez, Fouque, Jean, EC'13]
	2^{105}	2^{105}	2^{90}	[Derbez, Fouque, Jean, EC'13]
	2^{105}	2^{105}	2^{81}	[Bonnetain, Naya-Plasencia, Schrottenloher, ToSC'19]
	2^{113}	2^{113}	2^{74}	[Bonnetain, Naya-Plasencia, Schrottenloher, ToSC'19]
Impossible differential	2^{113}	2^{113}	2^{74}	[Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{105.1}$	2^{113}	$2^{74.1}$	[Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{106.1}$	$2^{112.1}$	$2^{73.1}$	Variant of [Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{104.9}$	$2^{110.9}$	$2^{71.9}$	New

Best single-key attacks against 7-round AES-128.

[^1]
Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4. Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6) Conclusion

Table of contents

I Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4.) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

New Representation of the AES-192 Key Schedules

One round of the AES-192 key schedule (alternative representation).

New Representation of the AES-192 Key Schedules

r rounds of the AES-192 key schedule in the new representation.

New Representation of the AES-256 Key Schedules

r rounds of the AES-256 key schedule in the new representation. B_{i} is similar to B but the round constant c_{i} is XORed to the output of the first S-box.

Table of contents

(1) Introduction

(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(6) Conclusion

Properties on the AES Key Schedule (1)

Proposition

Let P_{r} and P_{r}^{\prime} defined in one of the following ways:

- $A E S-128: P_{r}=\left(k_{r}[5], k_{r}[7], k_{r}[13], k_{r}[15]\right)$, and $P_{r}^{\prime}=\left(k_{r}[4], k_{r}[6], k_{r}[12], k_{r}[14]\right)$.
- AES-192: $P_{r}=\left(k_{r}[5], k_{r}[7], k_{r}[13], k_{r}[15], k_{r}[21], k_{r}[23]\right)$, and $\left.P_{r}^{\prime}=\left(k_{r}[4], k_{r}[6], k_{r}[12], k_{r}[14], k_{r}[20], k_{r} 22\right]\right)$.
- AES-256: $P_{r}=\left(k_{r}[5], k_{r}[7], k_{r}[13], k_{r}[15], k_{r}[21], k_{r}[23], k_{r}[29], k_{r}[31]\right)$, and $\left.P_{r}^{\prime}=\left(k_{r}[4], k_{r}[6], k_{r}[12], k_{r}[14], k_{r}[20], k_{r} 22\right], k_{r}[28], k_{r}[30]\right)$.

If there exists an r_{0} such as $P_{r_{0}}$ and $P_{r_{0} \pm 1}^{\prime}$ are known, then for all $i \in \mathbb{Z}$, the bytes $P_{r_{0}+2 i}$ and $P_{r_{0}+2 i+1}^{\prime}$ are known (and they are easily computable).

Properties on the AES Key Schedule (2)

Proposition

Let P_{r} and P_{r}^{\prime} defined in one of the following ways:

- AES-128: $P_{r}=\left(k_{r}[0] \oplus k_{r}[4], k_{r}[2] \oplus k_{r}[6], k_{r}[8] \oplus k_{r}[12], k_{r}[10] \oplus k_{r}[14]\right)$, and $P_{r}^{\prime}=\left(k_{r}[1] \oplus k_{r}[5], k_{r}[3] \oplus k_{r}[7], k_{r}[9] \oplus k_{r}[13], k_{r}[11] \oplus k_{r}[15]\right)$.
- AES-192: $P_{r}=\left(k_{r}[0] \oplus k_{r}[4], k_{r}[2] \oplus k_{r}[6], k_{r}[8] \oplus k_{r}[12], k_{r}[10] \oplus k_{r}[14]\right.$, $\left.k_{r}[16] \oplus k_{r}[20], k_{r}[18] \oplus k_{r}[22]\right)$,
and $P_{r}^{\prime}=\left(k_{r}[1] \oplus k_{r}[5], k_{r}[3] \oplus k_{r}[7], k_{r}[9] \oplus k_{r}[13], k_{r}[11] \oplus k_{r}[15]\right.$, $\left.k_{r}[17] \oplus k_{r}[21], k_{r}[3] \oplus k_{r}[23]\right)$.
- AES-256: $P_{r}=\left(k_{r}[0] \oplus k_{r}[4], k_{r}[2] \oplus k_{r}[6], k_{r}[8] \oplus k_{r}[12], k_{r}[10] \oplus k_{r}[14]\right.$, $\left.k_{r}[16] \oplus k_{r}[20], k_{r}[18] \oplus k_{r}[22], k_{r}[24] \oplus k_{r}[28], k_{r}[26] \oplus k_{r}[30]\right)$, and $P_{r}^{\prime}=\left(k_{r}[1] \oplus k_{r}[5], k_{r}[3] \oplus k_{r}[7], k_{r}[9] \oplus k_{r}[13], k_{r}[11] \oplus k_{r}[15]\right.$, $\left.k_{r}[17] \oplus k_{r}[21], k_{r}[3] \oplus k_{r}[23], k_{r}[25] \oplus k_{r}[29], k_{r}[27] \oplus k_{r}[31]\right)$.

If there exists an r_{0} such as $P_{r_{0}}$ and $P_{r_{0} \pm 1}^{\prime}$ are known, then for all $i \in \mathbb{Z}$, the bytes $P_{r_{0}+2 i}$ and $P_{r_{0}+2 i+1}^{\prime}$ are known (and they are easily computable).

Properties on the AES Key Schedule

Representation of the position of the bytes of the proposition.
In cases (2), only the XOR of the two bytes of the same color must be known.

Table of contents

(1) Introduction
(2) A New Representation of the AES-128 Key Schedule

- Invariant Subspaces
- Alternative Representation
(3) Short Cycles of P
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
- Forgery Attack against ALE
(4) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(5) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule

6 Conclusion

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
\rightarrow Properties on the AES key schedule.

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
\rightarrow Properties on the AES key schedule.
\rightarrow Improvement of the Impossible Differential cryptanalysis against the AES by combining more efficiently information from subkeys.

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
\rightarrow Properties on the AES key schedule.
\rightarrow Improvement of the Impossible Differential cryptanalysis against the AES by combining more efficiently information from subkeys.
\rightarrow It confirms that the key schedule is probably the least safe part of AES, and should not be considered as a random permutation.

Conclusion

\rightarrow Alternatives representations of AES 128, 192 and 256 key schedule.
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
\rightarrow Properties on the AES key schedule.
\rightarrow Improvement of the Impossible Differential cryptanalysis against the AES by combining more efficiently information from subkeys.
\rightarrow It confirms that the key schedule is probably the least safe part of AES, and should not be considered as a random permutation.

For more details:

https://eprint.iacr.org/2020/1253

[^0]: ${ }^{1}$ Khairallah actually reported the length as 1133759136 , probably because of a 32 -bit overflow

[^1]: ${ }^{2}$ The time complexity is incorrectly given as $2^{106.88}$ in [Boura, Lallemand, Naya-Plasencia, Suder, JC'18].

