Clustering Effect in Simon and Simeck

Gaëtan Leurent¹, Clara Pernot¹ and André Schrottenloher²

¹Inria, Paris ²CWI, Amsterdam

Friday, October 1st 2021

Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Introduction

Simon and Simeck

- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Attempt of ISO standardization...

But some experts were **suspicious** about:

- $\rightarrow\,$ the lack of clear need for standardisation of the new ciphers
- $\rightarrow\,$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm

More than 70 papers study Simon and Speck!

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Attempt of ISO standardization...

But some experts were suspicious about:

- $\rightarrow\,$ the lack of clear need for standardisation of the new ciphers
- $\rightarrow\,$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm

More than 70 papers study Simon and Speck!

 \Rightarrow A variant of Simon and Speck: Simeck. [YZSAG, CHES'15]

Summary of previous and new attacks

Cipher	Rounds	Attacked	Ref	Note
Simeck48/96	36	30	[QCW'16]	Linear † ‡
		32	New	Linear
Simeck64/128	44	37	[QCW'16]	Linear † ‡
		42	New	Linear
Simon96/96	52	37	[WWJZ'18]	Differential
		43	New	Linear
Simon96/144	54	38	[CW'16]	Linear
		45	New	Linear
Simon128/128	68	50	[WWJZ'18]	Differential
		53	New	Linear
Simon128/192	69	51	[WWJZ'18]	Differential
		55	New	Linear
Simon128/256	72	53	[CW'16]	Linear
		56	New	Linear

[†]The advantage is too low to do a key-recovery.

[‡]Attack use the duality between linear and differential distinguishers.

G. Leurent, C. Pernot and A. Schrottenloher

Clustering Effect in Simon and Simeck

Feistel cipher

A Feistel network is characterized by:

- its block size: n
- its key size: κ
- its number of round: *r*
- its round function: f

For each round $i = 0, \ldots, r - 1$:

$$\begin{cases} R^{i+1} = L^{i} \\ L^{i+1} = R^{i} \oplus f(L^{i}, k^{(i)}) \end{cases}$$

Example: Data Encryption Standard (DES).

Feistel cipher

A Feistel network is characterized by:

- its block size: n
- its key size: κ
- its number of round: r
- its round function: f

For each round $i = 0, \ldots, r - 1$:

$$x^{(i+1)} = x^{(i-1)} \oplus f(x^{(i)}) \oplus k^{(i)}$$

Example: Data Encryption Standard (DES).

Simon, Speck and Simeck

 \rightarrow Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \le 8) \land (x \le 1)) \oplus (x \le 2)$$

and a linear key schedule.

[BTSWSW'15]

 \rightarrow **Speck** is an Add-Rotate-XOR (ARX) cipher:

 $R_k(x,y) = \left(\left((x \lll \alpha) \boxplus y \right) \oplus k, (y \lll \beta) \oplus \left((x \lll \alpha) \boxplus y \right) \oplus k \right)$

which reuses its round function R_k in the key schedule.

[BTSWSW'15]

Simon, Speck and Simeck

 \rightarrow Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \le 8) \land (x \le 1)) \oplus (x \le 2)$$

and a linear key schedule.

[BTSWSW'15]

 \rightarrow **Speck** is an Add-Rotate-XOR (ARX) cipher:

 $R_k(x,y) = \left(\left((x \lll \alpha) \boxplus y \right) \oplus k, (y \lll \beta) \oplus \left((x \lll \alpha) \boxplus y \right) \oplus k \right)$

which reuses its round function R_k in the key schedule.

[BTSWSW'15]

 \rightarrow Simeck is a Feistel network with a quadratic round function:

$$f(x) = ((x \lll 5) \land x) \oplus (x \lll 1)$$

which reuses its round function f in the key schedule. [YZSAG'15]

Simon and Simeck

Simon round function

n (block size)	32	48		64		96		128		
κ (key size)	64	72	96	96	128	96	144	128	192	256
r (rounds)	32	36	36	42	44	52	54	68	69	72

\rightarrow Linear key schedule.

Simon and Simeck

Simon round function

Simeck round function

n (block size)	32	4	8	6	54	ç	96		128	
κ (key size)	64	72	96	96	128	96	144	128	192	256
r (rounds)	32	36	36	42	44	52	54	68	69	72

 \rightarrow Linear key schedule.

п	32	48	64
κ	64	96	128
r	32	36	44

 \rightarrow Non-linear key schedule which reuses *f*.

Simon and Simeck

Differential Cryptanalysis

- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

A **differential** is a pair (δ, δ') such that:

[BS, CRYPTO'90]

$$\Pr_{K,x}[E_k(x)\oplus E_k(x\oplus\delta)=\delta']\gg 2^{-n}$$

A **differential** is a pair (δ, δ') such that:

[BS, CRYPTO'90]

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$

To obtain a differential with a high probability, we use **differential characteristic** (or trail) to specify the intermediate state difference after each round: $(\delta_0, \delta_1, \ldots, \delta_r)$. \rightarrow for one round:

$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$

A **differential** is a pair (δ, δ') such that:

[BS, CRYPTO'90]

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$

To obtain a differential with a high probability, we use **differential characteristic** (or trail) to specify the intermediate state difference after each round: $(\delta_0, \delta_1, \ldots, \delta_r)$. \rightarrow for one round:

$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$

Simon and **Simeck** with independent round keys are Markov ciphers, so according to Lai, Massey and Murphy [EC'91]: \rightarrow for one trail on *r* rounds:

$$\Pr[\delta_0 \to \delta_1 \to \ldots \to \delta_r] = \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

A **differential** is a pair (δ, δ') such that:

[BS, CRYPTO'90]

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$

To obtain a differential with a high probability, we use **differential characteristic** (or trail) to specify the intermediate state difference after each round: $(\delta_0, \delta_1, \ldots, \delta_r)$. \rightarrow for one round:

$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$

Simon and **Simeck** with independent round keys are Markov ciphers, so according to Lai, Massey and Murphy [EC'91]: \rightarrow for one trail on *r* rounds:

$$\Pr[\delta_0 \to \delta_1 \to \ldots \to \delta_r] = \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

 \rightarrow for all trails on *r* rounds:

$$\Pr[\delta_0 \stackrel{r}{\rightsquigarrow} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1}} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

The transition probabilities can also be written in a matrix A: \rightarrow For one round:

$$A = \begin{pmatrix} Pr[0 \to 0] & Pr[0 \to 1] & \cdots & Pr[0 \to 2^{n} - 1] \\ Pr[1 \to 0] & Pr[1 \to 1] & \cdots & Pr[1 \to 2^{n} - 1] \\ \vdots & \vdots & \ddots & \vdots \\ Pr[2^{n} - 1 \to 0] & Pr[2^{n} - 1 \to 1] & \cdots & Pr[2^{n} - 1 \to 2^{n} - 1] \end{pmatrix}$$

 \rightarrow For *r* rounds:

$$A^{r} = \begin{pmatrix} Pr[0 \stackrel{r}{\leadsto} 0] & Pr[0 \stackrel{r}{\leadsto} 1] & \cdots & Pr[0 \stackrel{r}{\leadsto} 2^{n} - 1] \\ Pr[1 \stackrel{r}{\leadsto} 0] & Pr[1 \stackrel{r}{\leadsto} 1] & \cdots & Pr[1 \stackrel{r}{\leadsto} 2^{n} - 1] \\ \vdots & \vdots & \ddots & \vdots \\ Pr[2^{n} - 1 \stackrel{r}{\leadsto} 0] & Pr[2^{n} - 1 \stackrel{r}{\leadsto} 1] & \cdots & Pr[2^{n} - 1 \stackrel{r}{\leadsto} 2^{n} - 1] \end{pmatrix}$$

 \Rightarrow Computing A^r is infeasible for practical ciphers.

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

If $\Pr[\delta \rightsquigarrow \delta'] \gg 2^{-n}$, we obtain a distinguisher:

$$ightarrow \ Q pprox D/\Pr[\delta \rightsquigarrow \delta']$$
 for the cipher

 $\rightarrow Q \approx D/2^n$ for a random permutation

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

A linear approximation is a pair of masks (α, α') such that:

$$|\Pr_{\mathbf{x}}[\mathbf{x} \cdot \alpha = E_k(\mathbf{x}) \cdot \alpha'] - 1/2| \gg 2^{-n/2}$$

for most keys k.

[Matsui, EC'93]

A linear approximation is a pair of masks (α, α') such that:

$$|\Pr_{x}[x \cdot \alpha = E_{k}(x) \cdot \alpha'] - 1/2| \gg 2^{-n/2}$$

for most keys *k*. [Matsui, EC'93] If the cipher is a key-alternating cipher with **independent round keys**:

$$c(\alpha \to \alpha') = 2 \Pr_{x} [x \cdot \alpha = R(x) \cdot \alpha'] - 1$$
$$c_{k}(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}) = \sum_{\alpha_{1}, \alpha_{2}, \dots \alpha_{n-1}} (-1)^{\bigoplus_{i} k_{i} \cdot \alpha_{i}} \prod_{i=1}^{r} c(\alpha_{i-1} \to \alpha_{i})$$

A linear approximation is a pair of masks (α, α') such that:

$$|\Pr_{x}[x \cdot \alpha = E_{k}(x) \cdot \alpha'] - 1/2| \gg 2^{-n/2}$$

for most keys *k*. [Matsui, EC'93] If the cipher is a key-alternating cipher with **independent round keys**:

$$c(\alpha \to \alpha') = 2 \Pr_{x}[x \cdot \alpha = R(x) \cdot \alpha'] - 1$$
$$c_{k}(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}) = \sum_{\alpha_{1}, \alpha_{2}, \dots, \alpha_{n-1}} (-1)^{\bigoplus_{i} k_{i} \cdot \alpha_{i}} \prod_{i=1}^{r} c(\alpha_{i-1} \to \alpha_{i})$$

 \rightarrow When there is a **single dominant trail**, we can approximate the correlation of the linear approximation as the correlation of the trail, up to a change of sign.

 \rightarrow When there are several dominant trails, they can interact constructively or destructively depending on the key.

Clustering Effect in Simon and Simeck

16 / 62

Nyberg defined the Expected Linear Potential and showed:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\rightsquigarrow} \alpha_r) = \mathsf{Exp}_k(c_k^2(\alpha_0 \stackrel{r}{\rightsquigarrow} \alpha_r))$$
$$= \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

 \rightarrow Similarly to the differential case, this can be seen as the computation of the powers of a matrix *C* with coefficients $c^2(\alpha \rightarrow \alpha')$.

[EC'94]

• Linear distinguisher:

We collect $D = O(1/ \text{ELP}[\alpha \rightsquigarrow \alpha'])$ pairs (P, C) and compute:

$$Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})/D$$

If $ELP[\alpha \rightsquigarrow \alpha'] \gg 2^{-n}$, we obtain a distinguisher: $\rightarrow Q^2 \approx ELP[\alpha \rightsquigarrow \alpha']$ for the cipher $\rightarrow Q^2 \approx 2^{-n/2}$ for a random permutation

Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

 $\rightarrow \ Q \approx D/\Pr[\delta \rightsquigarrow \delta'] \text{ for the cipher}$ $\rightarrow \ Q \approx D/2^n \text{ for a random permutation}$

- Linear distinguisher: We collect $D = O(1/ELP[\alpha \rightarrow \alpha'])$ pairs (P, C) and compute: $Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})/D$
 - $\begin{array}{l} \rightarrow \ Q^2 \approx {\it ELP}[\alpha \rightsquigarrow \alpha'] \mbox{ for the cipher} \\ \rightarrow \ Q^2 \approx 2^{-n/2} \mbox{ for a random permutation} \end{array}$

Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

- $\rightarrow Q \approx D/\Pr[\delta \rightsquigarrow \delta'] \text{ for the cipher}$ $\rightarrow Q \approx D/2^n \text{ for a random permutative}$
- $ightarrow \ Q pprox D/2^n$ for a random permutation

• Linear distinguisher: We collect $D = O(1/ELP[\alpha \rightsquigarrow \alpha'])$ pairs (P, C) and compute: $Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})/D$ $\rightarrow Q^2 \approx ELP[\alpha \rightsquigarrow \alpha']$ for the cipher

 $ightarrow Q^2 pprox 2^{-n/2}$ for a random permutation

How to find stronger distinguishers for Simon and Simeck?

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers

- Probability of transition through f
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Probability of transition through f

Probability of transition through f

Consider a difference $\alpha = 1$ on the left part:

Since f is quadratic...

- \Rightarrow f' is affine.
- \Rightarrow all the possible outputs of f' are equally probable.
- \Rightarrow all the possible outputs of f' form a **vector space** that can be build efficiently.
- ⇒ the exact probability of transitions can be computed efficiently for Simon and Simeck! [KLT, CRYPTO'15]

Kölbl, Leander and Tiessen demonstrated that:

• For a given $\alpha,$ there is an affine space U_{α} such that

$$\Pr_{x}[f(\alpha \oplus x) \oplus f(x) = \beta] = \begin{cases} 2^{-\dim(U_{\alpha})} & \text{if } \beta \in U_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

 U_{lpha} is a coset of the image of a linear function:

$$U_{\alpha} = \log (x \mapsto f(x) \oplus f(x \oplus \alpha) \oplus f(\alpha)) \oplus f(\alpha)$$

Kölbl, Leander and Tiessen demonstrated that:

• For a given lpha, there is an affine space U_{lpha} such that

$$\Pr_{x}[f(\alpha \oplus x) \oplus f(x) = \beta] = \begin{cases} 2^{-\dim(U_{\alpha})} & \text{if } \beta \in U_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

 U_{lpha} is a coset of the image of a linear function:

$$U_{\alpha} = \log (x \mapsto f(x) \oplus f(x \oplus \alpha) \oplus f(\alpha)) \oplus f(\alpha)$$

Given the Feistel structure of the round function, we deduce:

$$\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)] = \begin{cases} 2^{-\dim(U_{\delta_L})} & \text{if } \delta_L = \delta'_R \text{ and } \delta_R \oplus \delta'_L \in U_{\delta_L} \\ 0 & \text{otherwise} \end{cases}$$

Table of contents

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Conclusion

We know how to compute $\Pr[(\delta_L, \delta_R) \rightarrow (\delta'_L, \delta'_R)]$ easily now... \rightarrow But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{\sim} (\delta'_L, \delta'_R)]$ remains hard!

We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now... \to But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

Observation: Simeck diffusion in the worst case

We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now... \to But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

Observation: Simeck diffusion in the best case

We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

Conclusion: Simeck has a relatively slow diffusion!

Our idea is to focus on trails that are only active in a window of w bits:

Our idea is to focus on trails that are only active in a window of w bits:

- w: the size of the window ($w \le n/2$).
- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

• w: the size of the window $(w \le n/2)$.

- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A lower bound of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \le \Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r]$$

• w: the size of the window ($w \le n/2$).

- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A lower bound of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \underset{w}{\overset{r}{\longrightarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \le \Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r]$$

⇒ This can be done by computing A'_w , with A_w the matrix of transitions $\Pr[\delta \rightarrow \delta']$ for all $\delta, \delta' \in \Delta^2_w$.

• w: the size of the window ($w \le n/2$).

- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A lower bound of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \le \Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r]$$

⇒ This can be done by computing A'_w , with A_w the matrix of transitions $\Pr[\delta \rightarrow \delta']$ for all $\delta, \delta' \in \Delta^2_w$.

 \Rightarrow To reduce the memory requirement, we compute it on the fly!

Algorithm Computation of $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ **Require:** Pre-computation of U_{α} for all $\alpha \in \Delta_W$. $X \leftarrow [0 \text{ for } i \in \Delta^2_w]$ $X[\delta_L, \delta_R] \leftarrow 1$ for 0 < i < r do $Y \leftarrow [0 \text{ for } i \in \Delta^2_w]$ for $\alpha \in \Delta_w$ do for $\beta \in \Delta_w$ do for $\gamma \in U_{\alpha}$ do $Y[\beta \oplus \gamma, \alpha] = Y[\beta \oplus \gamma, \alpha] + 2^{-\dim(U_{\alpha})}X[\alpha, \beta]$ $X \leftarrow Y$ return $X[\delta'_I, \delta'_R]$

 $\begin{array}{l} \mbox{Algorithm Computation of } \Pr[(\delta_L, \delta_R) \stackrel{r}{\underset{w}{\rightarrow}} (\delta'_L, \delta'_R)] \\ \hline \hline \mbox{Require: Pre-computation of } U_\alpha \mbox{ for all } \alpha \in \Delta_W. \\ X \leftarrow [0 \mbox{ for } i \in \Delta^2_w] \\ X[\delta_L, \delta_R] \leftarrow 1 \\ \mbox{for } 0 \leq i < r \mbox{ do} \\ Y \leftarrow [0 \mbox{ for } i \in \Delta^2_w] \\ \mbox{ for } \alpha \in \Delta_w \mbox{ do} \\ \mbox{ for } \beta \in \Delta_w \mbox{ do} \\ Y[\beta \oplus \gamma, \alpha] = Y[\beta \oplus \gamma, \alpha] + 2^{-\dim(U_\alpha)}X[\alpha, \beta] \\ X \leftarrow Y \\ \mbox{return } X[\delta'_L, \delta'_R] \end{array}$

29 / 62

 $\Rightarrow \mbox{This requires } r \times 2^{2w} \times \max_{\alpha \in \Delta_w} |U_{\alpha}| \mbox{ operations,} \\ \mbox{ and to store } 2^{2w+1} \mbox{ probabilities.} \end{cases}$

 \Rightarrow In practice, for w = 18 and r = 30, it takes a week on a 48-core machine using 1TB of RAM.

Tighter lower bound for the probability of differentials

Rounds	Differential	Proba (previous)	Reference	Proba (new)
26	(0,11) ightarrow (22,1)	2 ^{-60.02}	[Kölbl, Roy, 16]	2 ^{-54.16}
26	(0,11) ightarrow (2,1)	$2^{-60.09}$	[Qin, Chen, Wang, 16]	$2^{-54.16}$
27	(0,11) ightarrow (5,2)	$2^{-61.49}$	[Liu, Li, Wang, 17]	$2^{-56.06}$
27	(0,11) ightarrow (5,2)	$2^{-60.75}$	[Huang, Wang, Zhang, 18]	п
28	(0,11) ightarrow (A8,5)	$2^{-63.91}$	[Huang, Wang, Zhang, 18]	$2^{-59.16}$

Comparison of our lower bound on the differential probability for Simeck (with w = 18), and estimates used in previous attacks.

Differentials with high probabilities

The best characteristics we have identified are a set of 64 characteristics:

$$\{ (1,2), (1,3), (1,22), (1,23), (2,5), (2,7), (2,45), (2,47) \} \\ \rightarrow \\ \{ (2,1), (3,1), (22,1), (23,1), (5,2), (7,2), (45,2), (47,2) \}$$

 \Rightarrow However, $(0,1) \rightarrow (1,0)$ is almost as good and will lead to a more efficient key-recovery because it has fewer active bits!

Differentials with high probabilities

Computation of the log_2 of the probability of differentials for Simeck, and the total number of trails (using w = 18):

	Differential				
Rounds	$(0,1) \to (1,0)$		$(1,2) \rightarrow (2,1)$		
10	$-\infty$		$-\infty$		
11	-23.25	(28.0)	-27.25		
12	-26.40	(36.2)	-26.17		
13	-28.02	(47.2)	-26.90		
14	-30.06	(58.2)	-29.59		
15	-31.93	(70.8)	-31.37		
:	:	:	:		
	.:				
20	-41.75	(131.9)	-41.26		
	:				
		(102.0)			
25	-51.01	(192.9)	-50.54		
30	-60.41	(254.0)			
31	-62.29	(266.2)	-61.81		
		()			
32	-64.17	(278.4)	-63.69		

Differentials with high probabilities

How does our lower bound vary depending on the size of the window w?

Table of contents

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Conclusion

Stronger Linear distinguishers for Simon-like ciphers We want to compute a **lower bound** of:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

Stronger Linear distinguishers for Simon-like ciphers We want to compute a **lower bound** of:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

(1) Since f is quadratic, the exact probability through one round is:

$$c((\alpha_L, \alpha_R) \to (\alpha'_L, \alpha'_R))^2 = \begin{cases} 2^{-\dim(V_{\alpha_R})} & \text{if } \alpha_R = \alpha'_L \text{ and } \alpha_L \oplus \alpha'_R \in V_{\alpha_R} \\ 0 & \text{otherwise} \end{cases}$$
$$V_\alpha = \operatorname{Img} \left(x \mapsto \left((\alpha \land (x \lll a - b)) \oplus ((\alpha \land x) \ggg a - b) \right) \ggg b \right) \oplus (\alpha \ggg c)$$
$$[\mathsf{KLT}, \mathsf{CRYPTO'15}]$$

Stronger Linear distinguishers for Simon-like ciphers We want to compute a **lower bound** of:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\leadsto} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

(1) Since f is quadratic, the exact probability through one round is:

$$c((\alpha_L, \alpha_R) \to (\alpha'_L, \alpha'_R))^2 = \begin{cases} 2^{-\dim(V_{\alpha_R})} & \text{if } \alpha_R = \alpha'_L \text{ and } \alpha_L \oplus \alpha'_R \in V_{\alpha_R} \\ 0 & \text{otherwise} \end{cases}$$
$$V_\alpha = \log\left(x \mapsto \left((\alpha \land (x \lll a - b)) \oplus ((\alpha \land x) \ggg a - b)\right) \ggg b\right) \oplus (\alpha \ggg c)$$
$$[\mathsf{KLT}, \mathsf{CRYPTO'15}]$$

(2) Approximation of the ELP using windows of w bits:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\rightsquigarrow} \alpha_r) \approx \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1} \in \Delta_w^2} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

35 / 62

Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \\ \rightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\}\}$

Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \\ \longrightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\} \}$

ightarrow They are bit-reversed versions of the optimal differential characteristics.

Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \rightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\}\}$

 \rightarrow They are bit-reversed versions of the optimal differential characteristics.

ightarrow For key-recovery attack, the preference is given to (1,0)
ightarrow (0,1).

Lower bound of linear and differential distinguishers

Comparison of the **probability** of differentials and the linear potential of linear approximations for Simeck (\log_2 , using w = 18). We also give the total number of trails included in the bound in parenthesis (\log_2):

	Differential			Linear		
Rounds	(0, 1) -	→ (1,0)	$(1,2) \rightarrow (2,1)$	(1,0) -	→ (0, 1)	$(1,2) \rightarrow (2,1)$
10	$-\infty$		$-\infty$	$-\infty$		$-\infty$
11	-23.25	(28.0)	-27.25	-23.81	(23.9)	-27.81
12	-26.40	(36.2)	-26.17	-26.39	(31.7)	-26.68
13	-28.02	(47.2)	-26.90	-27.98	(42.0)	-27.31
14	-30.06	(58.2)	-29.59	-29.95	(52.5)	-29.56
15	-31.93	(70.8)	-31.37	-31.86	(64.9)	-31.29
:	:	:	:	:	:	:
						•
20	-41.75	(131.9)	-41.26	-41.74	(124.5)	-41.25
:	:	:	:	:	:	
25	-51.01	(192.9)	-50.54	-51.00	(184.1)	-50.56
:	:	:	:	:	:	:
•	•	•	•	•	•	•
30	-60.41	(254.0)	-59.92	-60.36	(243.6)	-59.86
31	-62.29	(266.2)	-61.81	-62.24	(255.5)	-61.75
32	-64.17	(278.4)	-63.69	-64.12	(267.4)	-63.63
33	-66.05	(290.6)	-65.57	-66.00	(279.3)	-65.51

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability *p*:

$$(\alpha_0,\beta_0) \rightarrow (\alpha_1,\beta_1) \rightarrow \ldots \rightarrow (\alpha_r,\beta_r)$$

we can convert it into a linear trail:

$$(\overleftarrow{\beta}_0,\overleftarrow{\alpha}_0)\to(\overleftarrow{\beta}_1,\overleftarrow{\alpha}_1)\to\ldots\to(\overleftarrow{\beta}_r,\overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

$$(\alpha_0,\beta_0) \rightarrow (\alpha_1,\beta_1) \rightarrow \ldots \rightarrow (\alpha_r,\beta_r)$$

we can convert it into a linear trail:

$$(\overleftarrow{\beta}_0,\overleftarrow{\alpha}_0)\to(\overleftarrow{\beta}_1,\overleftarrow{\alpha}_1)\to\ldots\to(\overleftarrow{\beta}_r,\overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

 \rightarrow if all the non-linear gates are independent: the linear trail has squared correlation *p*.

Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

$$(\alpha_0,\beta_0) \rightarrow (\alpha_1,\beta_1) \rightarrow \ldots \rightarrow (\alpha_r,\beta_r)$$

we can convert it into a linear trail:

$$(\overleftarrow{\beta}_0,\overleftarrow{\alpha}_0)\to(\overleftarrow{\beta}_1,\overleftarrow{\alpha}_1)\to\ldots\to(\overleftarrow{\beta}_r,\overleftarrow{\alpha}_r)$$

where \overleftarrow{x} denotes bit-reversed x.

- \rightarrow if all the non-linear gates are independent: the linear trail has squared correlation *p*.
- $\rightarrow\,$ else: the probabilities of the linear and differential trails are not the same, but very similar.

What about Simon?

We also apply the same strategy against **Simon**, but the bound we obtain is **not as tight** as for Simeck: the linear potential still increases significantly with the window size w.

Effect of *w* on the probability of Simon linear hulls.

Table of contents

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis

Conclusion

Table of contents

1 Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck

Generalities

- Using Differential Cryptanalysis
- Using Linear Cryptanalysis

Conclusion

Reminder: Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

$$\rightarrow Q \approx D/\Pr[\delta \rightsquigarrow \delta'] \text{ for the cipher}$$

$$\rightarrow Q \approx D/2^n \text{ for a random permutation}$$

• Linear distinguisher: We collect $D = O(1/ \text{ELP}[\alpha \rightsquigarrow \alpha'])$ pairs (P, C) and compute:

$$Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})/D$$

$$ightarrow Q^2 pprox ELP[lpha \rightsquigarrow lpha']$$
 for the cipher
ightarrow Q^2 pprox 2^{-n/2} for a random permutation

Key Recovery

Distinguisher

Key Recovery

General description of a cipher.

• Some rounds are added **before** and/or **after** the distinguisher.

Key Recovery

General description of a cipher.

- Some rounds are added **before** and/or **after** the distinguisher.
- The statistic used by the distinguisher is Q, and it can be evaluated using a subset of the key: (k_p, k_t, k_b, k_c) .
- The total number of guessed bits is κ_g with $\kappa_g < \kappa$.

AlgorithmNaive key-recoveryfor all $k = (k_p, k_t, k_b, k_c)$ dofor all pairs in D docompute Q(k)if Q(k) > s thenk is a possible candidate

Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

AlgorithmNaive key-recoveryfor all $k = (k_p, k_t, k_b, k_c)$ dofor all pairs in D docompute Q(k)if Q(k) > s thenk is a possible candidate

Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

This can be reduced to approximately $D + 2^{\kappa_g}$ using algorithm tricks:

• Dynamic key guessing for Differential Cryptanalysis

[QHS'16, WWJZ'18]

• Fast Walsh Transform for Linear Cryptanalysis

[CSQ'07, FN'20]

 F_R : the probability distribution of Q for the right key. F_W : the probability distribution of Q for a wrong key.

 F_R : the probability distribution of Q for the right key. F_W : the probability distribution of Q for a wrong key.

We aim to keep a proportion 2^{-a} of key candidates, so we set a threshold s:

$$2^{-a} = 1 - F_W(s) \quad \Leftrightarrow \quad s = F_w^{-1}(1 - 2^{-a})$$

 F_R : the probability distribution of Q for the right key. F_W : the probability distribution of Q for a wrong key.

Then, the success probability is given by:

$$P_S = 1 - F_R(s)$$

Table of contents

1 Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Conclusion

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.

[QHS'16,WWJZ'18]

(1) Which key bits need to be guessed?

(2) How to rearrange operations to reduce time complexity?

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack. [QHS'16,WWJZ'18]

(1) Which key bits need to be guessed?

Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.

(2) How to rearrange operations to reduce time complexity?

Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack. [QHS'16,WWJZ'18]

(1) Which key bits need to be guessed?

Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.

(2) How to rearrange operations to reduce time complexity? Online part: guess subkey bits and filter data round by round, in order to compute Q(k).

r	Differential path	
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	30-round differ	ential (3 $ ightarrow$ 33)
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000

r	Differential path		ĺ
			1
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000	l
	30-round differ	ential (3 $ ightarrow$ 33)	Ĺ
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000	Ĺ

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

r	Differential path		
2	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	30-round differential $(3 \rightarrow 33)$		
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
34	0000000000000000000	000000000000000000000000000000000000000	

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

r	Differen	tial path	
0	0000000000000000000	0000000000000000*000**00***01***	1
1	0000000000000000000	000000000000000000000000000000000000000	
2	0000000000000000000	000000000000000000000000000000000000000	
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	30-round differe	ential (3 $ ightarrow$ 33)	
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1
34	0000000000000000000	000000000000000000000000000000000000000	
35	0000000000000000000	000000000000000000000000000000000000000	1
36	0000000000000000*000**00***01***	000000000000000000000000000000000000000	1
37	00000000000*000**00***0****1****	0000000000000000*000**00***01***	
38	00000*000**00***0**************	00000000000 * 000 * * 00 * * 0 * * * 1 * * * *	1
39	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *	000000*000**00***0************	1
40	* * 0 0 * * * 0 * * * * * * * * * * * *	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *	4

Starting from the differential $(0,1) \rightarrow (1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

(1) Tracking the propagation of differences in the additional rounds.

r	Differential path		
0	0000000000000000000	1	
1	000000000000000000000000000000000000000		
2	000000000000000000000000000000000000000		
3	000000000000000000000000000000000000000	↓	
	30-round differential $(3 \rightarrow 33)$		
33	000000000000000000000000000000000000000	↑	
34	000000000000000000000000000000000000000		
35	000000000000000000000000000000000000000		
36	000000000000000000000000000000000000000		
37	000000000000000000000000000000000000000		
38	000000*000**00***0*********************		
39	0*000**00***0**************************		
40	**00***0*******************************	I	

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).

r	Differential path
0	0000000000000000000
1	000000000000000000000000000000000000000
2	000000000000000000000000000000000000000
3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	30-round differential (3 $ ightarrow$ 33)
33	000000000000000000000000000000000000000
34	000000000000000000000000000000000000000
35	000000000000000000000000000000000000000
36	000000000000000000000000000000000000000
37	000000000000000000000000000000000000000
38	000000*000**00***0*********************
39	0 * 0 0 0 * * 0 0 * * 0 * * * 0 * * * *
40	**00***0*******************************

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).

r	Different	tial path
0	000000000000000000000000000000000000000	000000000000000*000**00***01***
1	000000000000000000000000000000000000000	000000000000000000000000000000000000000
2	000000000000000000000000000000000000000	000000000000000000000000000000000000000
3	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	30-round differe	ential $(3 \rightarrow 33)$
33	000000000000000000000000000000000000000	000000000000000000000000000000000000000
34	000000000000000000000000000000000000000	000000000000000000000000000000000000000
35	000000000000000000000000000000000000000	000000000000000000000000000000000000000
36	0000000000000000*000**00***01***	000000000000000000000000000000000000000
37	00000000000*000**00***0***1****	000000000000000000000000000000000000000
38	00000*000**00***0*************	00000000000*000**00***0***1****
39	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *	000000*000**00***0************
40	* * 0 0 * * * 0 * * * * * * * * * * * *	0 * 0 0 0 * * 0 0 * * * 0 * * * * * * *

- (1) Tracking the propagation of differences in the additional rounds.
- (2) Determining the sufficient bit conditions (in red).
- (3) Deducing the necessary bits to check the sufficient bit conditions:

$$(k_p, k_t, k_b, k_c)$$

Round by round, we **guess** subkey bits and **filter** the pairs that do not check the sufficient bit conditions.

At the end, for each key guess (k_p, k_t, k_b, k_c) , we compute Q(k) the number of pairs satisfying the differential:

- \rightarrow for the **right** key guess, the expected value is $\lambda_R = p \times D/2$.
- \rightarrow for the wrong key guess, the expected value is $\lambda_W = D/2^{n-1}$.

 \Rightarrow F_R and F_W are **Poisson law** with parameter λ_R and λ_W .

Then, for all key guess k such that Q(k) > s, the corresponding master keys are reconstructed:

- If the key schedule is **linear**: this can be done using linear algebra and an exhaustive search of the $\kappa \kappa_g$ missing bits of the key.
- If the key schedule is non-linear: combining information from the top and the bottom part of the key is not immediate. Starting from the κ_{max} = max (κ_p + κ_t, κ_b + κ_c) bits, we do an exhaustive search of the κ - κ_{max} missing bits.

In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

 $P_S = 1 - F_R(s)$

with $\kappa_{min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c)$.

In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{\min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c).$

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C = C_1/P_S$.

In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{\min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c).$

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C = C_1/P_S$.

In total, the complexity and the probability of success are:

$$C_1 = D + 2^{\kappa_g} \cdot \lambda_W + 2^{\kappa + \kappa_{\min}} \cdot (1 - F_W(s))$$

$$P_S = 1 - F_R(s)$$

with $\kappa_{\min} = \min (\kappa_p + \kappa_t, \kappa_b + \kappa_c).$

 \Rightarrow The attack is repeated until it succeeds, using rotations of the initial differential: $C = C_1/P_S$.

Table of contents

1 Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Conclusion

Key-recovery using Linear Cryptanalysis – FWT We apply the **Fast Walsh Transform** approach proposed by [CSQ'07]:

$$q(k_{p}, k_{t}, k_{c}, k_{b}) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P, C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

Key-recovery using Linear Cryptanalysis – FWT We apply the **Fast Walsh Transform** approach proposed by [CSQ'07]:

$$q(k_{p}, k_{t}, k_{c}, k_{b}) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P, C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

Let define $P' \cdot \alpha = f(k_t, k_p \oplus \chi_p(P))$ and $C' \cdot \beta = g(k_b, k_c \oplus \chi_c(C))$

$$= \frac{1}{D} \sum_{P,C} (-1)^{f(k_t,k_p \oplus \chi_p(P)) \oplus g(k_b,k_c \oplus \chi_c(C))}$$

$$= \frac{1}{D} \sum_{i \in \mathbb{F}_2^{\kappa_p}} \sum_{j \in \mathbb{F}_2^{\kappa_c}} \#\{P,C : \chi_p(P) = i, \chi_c(C) = j\} \times (-1)^{f(k_t,k_p \oplus i) \oplus g(k_b,k_c \oplus j)}$$

Key-recovery using Linear Cryptanalysis – FWT We apply the **Fast Walsh Transform** approach proposed by [CSQ'07]:

$$q(k_{p}, k_{t}, k_{c}, k_{b}) = \frac{1}{D} (\#\{P, C : P' \cdot \alpha = C' \cdot \beta\} - \#\{P, C : P' \cdot \alpha \neq C' \cdot \beta\})$$
$$= \frac{1}{D} \sum_{P, C} (-1)^{P' \cdot \alpha \oplus C' \cdot \beta}$$

Let define $P' \cdot \alpha = f(k_t, k_p \oplus \chi_p(P))$ and $C' \cdot \beta = g(k_b, k_c \oplus \chi_c(C))$

$$= \frac{1}{D} \sum_{P,C} (-1)^{f(k_t,k_p \oplus \chi_p(P)) \oplus g(k_b,k_c \oplus \chi_c(C))}$$

$$= \frac{1}{D} \sum_{i \in \mathbb{F}_2^{\kappa_p}} \sum_{j \in \mathbb{F}_2^{\kappa_c}} \#\{P,C:\chi_p(P)=i,\chi_c(C)=j\} \times (-1)^{f(k_t,k_p \oplus i) \oplus g(k_b,k_c \oplus j)}$$

We remark that the previous expression is actually a convolution:

$$= \frac{1}{D} \sum_{i,j} \phi(i,j) \times \psi_{k_t,k_b}(k_p \oplus i, k_c \oplus j) = \frac{1}{D} (\phi * \psi_{k_t,k_b})(k_p, k_c),$$

with
$$\begin{cases} \phi(x,y) &= \#\{P, C : \chi_p(P) = x, \chi_c(C) = y\}\\ \psi_{k_t,k_b}(x,y) &= (-1)^{f(k_t,x) \oplus g(k_b,y)} \end{cases}$$

G. Leurent, C. Pernot and A. Schrottenloher

Key-recovery using Linear Cryptanalysis – FWT

We apply the **Fast Walsh Transform** approach proposed in [CSQ'07] and improved in [FN'20] to Simeck and Simon. The attack is decomposed in three phases:

Distillation phase. Compute $\phi(x, y) = \#\{P, C : \chi_p(P) = x, \chi_c(C) = y\}$ for $0 \le x < 2^{\kappa_p}$, $0 \le y < 2^{\kappa_c}$.

Analysis phase. For each guess of k_t, k_b , for all $0 \le x < 2^{\kappa_p}$, $0 \le y < 2^{\kappa_c}$, compute $\psi_{k_t,k_b}(x,y) = (-1)^{f(k_t,x) \oplus g(k_b,y)}$, then evaluate the convolution $\phi * \psi_{k_t,k_b}$ using the Fast Walsh Transform.

Search phase. For all keys with $q(k_p, k_t, k_c, k_b) \ge s$, exhaustively try all master keys corresponding to k_p, k_t, k_c, k_b .

Key-recovery using Linear Cryptanalysis – FWT

As seen previously, they can interact **constructively**, or **destructively**... But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters: [BN, ToSC'16]

Key-recovery using Linear Cryptanalysis – FWT

As seen previously, they can interact **constructively**, or **destructively**... But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters: [BN, ToSC'16]

Key-recovery using Linear Cryptanalysis – FWT

As seen previously, they can interact **constructively**, or **destructively**... But the correlation for the **right** and the **wrong** key follow **normal distribution** with parameters: [BN, ToSC'16]

Linear VS Differential Key-recovery

We have seen previously that linear and differential distinguishers are very close...

Linear VS Differential Key-recovery

We have seen previously that linear and differential distinguishers are very close...

But what about the key-recovery part?

Linear VS Differential Key-recovery

We have seen previously that **linear** and **differential distinguishers** are very **close**...

But what about the **key-recovery** part?

The main difference come from the number of bits that have to be guessed:

Key bits	Differential		Linear	
Rounds	total	independent	total	independent
1	0	0	0	0
2	2	2	2	2
3	9	9	7	7
4	27	27	16	16
5	56	56	30	30
6	88	88	50	48
7	120	114	75	68
8			104	88

 $\begin{array}{c} \mbox{Comparison of key recovery rounds for differential and linear attacks against} \\ \mbox{Simeck64/128}. \end{array}$

Key-Recovery Parameters

Examples of set of parameters for Simeck64/128:

• Differential cryptanalysis:

$$\begin{aligned} & \textit{Rounds} = 40 = 3 + 30 + 7 \quad D = 2^{64} \\ & \kappa_{min} = 9 \quad \kappa_{max} = 114 \quad \lambda_R = 2^{2.59} \quad \lambda_W = 2^{-1} \quad s = 6 \\ & \Rightarrow C_1 = 2^{122} \quad P_S = 0.4 \quad C = 2^{123.4} \end{aligned}$$

• Linear cryptanalysis:

Rounds =
$$42 = 8 + 30 + 4$$
 $D = 2^{64}$
 $\kappa_{min} = 16$ $\kappa_{max} = 88$ $a = 29$
 $\Rightarrow C_1 = 2^{118}$ $P_S = 0.1$ $C = 2^{121.5}$

Table of contents

Introductio

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key-recovery attacks against Simeck
 - Generalities
 - Using Differential Cryptanalysis
 - Using Linear Cryptanalysis

Results on Simeck

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simeck48/96	36	30 32	2 ^{47.66} 2 ⁴⁷	2 ^{88.04} 2 ^{90.9}	[QCW'16] New	Linear ^{†‡}
Simeck64/128	44	37 42	2 ^{63.09} 2 ^{63.5}	2 ^{121.25} 2 ^{123.9}		Linear † ‡ Linear

Summary of previous and new attacks against Simeck.

[‡]Attack use the duality between linear and differential distinguishers.

G. Leurent, C. Pernot and A. Schrottenloher

Clustering Effect in Simon and Simeck

[†]The advantage is too low to do a key-recovery.

Results on Simon

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simon96/96	52	37	2 ⁹⁵	2 ^{87.2}	[WWJZ'18]	Diff.
		43	2 ⁹⁴	2 ^{89.6}	New	Linear
Simon96/144	54	38	2 ^{95.2}	2 ¹³⁶	[CW'16]	Linear
		45	2 ⁹⁵	$2^{136.5}$	[CW'16]	Linear
Simon128/128	68	50	2 ¹²⁷	$2^{119.2}$	[WWJZ'18]	Diff.
		53	2 ¹²⁷	2 ¹²¹	New	Linear
Simon128/192	69	51	2 ¹²⁷	2 ^{183.2}	[WWJZ'18]	Diff.
		55	2 ¹²⁷	2 ^{185.2}	New	Linear
Simon128/256	72	53	$2^{127.6}$	2 ²⁴⁹	[CW'16]	Linear
		56	2 ¹²⁶	2 ²⁴⁹	New	Linear

Summary of previous and new attacks against Simon.

Results on Simon

We show that Simon96/96 and Simon96/144 only have 17% of the rounds as security margin, which contradicts what the designers wrote:

Assumption [Simon designers, ePrint2017/560]

"After almost 4 years of concerted effort by academic researchers, the various versions of Simon and Speck retain a margin averaging around 30%, and **in every case over 25%**. The design team's analysis when making stepping decisions was consistent with these numbers."

• Using differential and linear paths with all intermediate states in a fixed window of w bits, we obtain better probabilities for existing differential and linear distinguishers.

- Using differential and linear paths with **all intermediate states in a fixed window of** w **bits**, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the **minimum number of active bits**, so that the key-recovery part is also improved.

- Using differential and linear paths with **all intermediate states in a fixed window of** w **bits**, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the **minimum number of active bits**, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...

- Using differential and linear paths with **all intermediate states in a fixed window of** w **bits**, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the **minimum number of active bits**, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Concerning Simon, the lower bound of the probability of the linear approximation seems not as tight as for Simeck: **further work** can probably improve our results...

- Using differential and linear paths with **all intermediate states in a fixed window of** w **bits**, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the **minimum number of active bits**, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Concerning Simon, the lower bound of the probability of the linear approximation seems not as tight as for Simeck: **further work** can probably improve our results...

For more details:

https://eprint.iacr.org/2021/1198

