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Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:
Simon optimized in hardware [BTSWSW, DAC’15]

Speck optimized in software [BTSWSW, DAC’15]

Attempt of ISO standardization...
But some experts were suspicious about:
→ the lack of clear need for standardisation of the new ciphers
→ NSA’s previous involvement in the creation and promotion of

backdoored cryptographic algorithm
More than 70 papers study Simon and Speck!

⇒ A variant of Simon and Speck: Simeck. [YZSAG, CHES’15]
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Summary of previous and new attacks

Cipher Rounds Attacked Ref Note

Simeck48/96 36 30 [QCW’16] Linear † ‡

32 New Linear
Simeck64/128 44 37 [QCW’16] Linear † ‡

42 New Linear
Simon96/96 52 37 [WWJZ’18] Differential

43 New Linear
Simon96/144 54 38 [CW’16] Linear

45 New Linear
Simon128/128 68 50 [WWJZ’18] Differential

53 New Linear
Simon128/192 69 51 [WWJZ’18] Differential

55 New Linear
Simon128/256 72 53 [CW’16] Linear

56 New Linear

†The advantage is too low to do a key-recovery.
‡Attack use the duality between linear and differential distinguishers.
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Feistel cipher

Plaintext
�n/2 �n/2

L0 R0

x (0) x (−1)

f

k (0)

⊕ k (0)

⊕

L1 R1

x (1) x (0)

f

k (1)

⊕

⊕ k (1)

L2 R2

x (2) x (1)

...
...

f

k (r−1)

⊕

⊕ k (r−1)

Lr R r

x (r) x (r−1)

Ciphertext

A Feistel network is characterized by:
its block size: n
its key size: κ
its number of round: r
its round function: f

For each round i = 0, . . . , r − 1:{
R i+1 = Li

Li+1 = R i ⊕ f (Li , k(i))

Example: Data Encryption Standard (DES).
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Simon, Speck and Simeck
→ Simon is a Feistel network with a quadratic round function:

f (x) = ((x≪ 8) ∧ (x≪ 1))⊕ (x≪ 2)

and a linear key schedule. [BTSWSW’15]

→ Speck is an Add-Rotate-XOR (ARX) cipher:

Rk(x , y) =
(
((x≪ α)� y)⊕ k , (y ≪ β)⊕ ((x≪ α)� y)⊕ k

)
which reuses its round function Rk in the key schedule.

[BTSWSW’15]

→ Simeck is a Feistel network with a quadratic round function:

f (x) = ((x≪ 5) ∧ x)⊕ (x≪ 1)

which reuses its round function f in the key schedule. [YZSAG’15]
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Simon and Simeck

x (i) x (i−1)

≪ 8

≪ 1

≪ 2

∧ ⊕

⊕
⊕

•

•

•

x (i+1) x (i)

k(i)

Simon round function

n (block size) 32 48 64 96 128

κ (key size) 64 72 96 96 128 96 144 128 192 256
r (rounds) 32 36 36 42 44 52 54 68 69 72

→ Linear key schedule.

x (i) x (i−1)

≪ 5

≪ 1

∧ ⊕

⊕
⊕

•

•

•

x (i+1) x (i)

k(i)

Simeck round function

n 32 48 64

κ 64 96 128
r 32 36 44

→ Non-linear key schedule
which reuses f .
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Differential Cryptanalysis (1)
A differential is a pair (δ, δ′) such that: [BS, CRYPTO’90]

Pr
k,x

[Ek(x)⊕ Ek(x ⊕ δ) = δ′]� 2−n

To obtain a differential with a high probability, we use differential characteristic
(or trail) to specify the intermediate state difference after each round:
(δ0, δ1, . . . , δr ).
→ for one round:

Pr[δ → δ′] = Pr
x

[R(x)⊕ R(x ⊕ δ) = δ′]

Simon and Simeck with independent round keys are Markov ciphers, so
according to Lai, Massey and Murphy [EC’91]:
→ for one trail on r rounds:

Pr[δ0 → δ1 → . . .→ δr ] =
r∏

i=1

Pr[δi−1 → δi ]

→ for all trails on r rounds:

Pr[δ0
r
 δr ] =

∑
δ1,δ2,...δr−1

r∏
i=1

Pr[δi−1 → δi ]
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Differential Cryptanalysis (2)

Plaintext

Ciphertext

δ

δ′

Pr[δ → δ′]

Pr[δ → δ′] = Prx [R(x)⊕ R(x ⊕ δ) = δ′]

δ0

δ1

δ2

δ3

δ4

p1

p2

p3

p4

δ3

δ4

Pr[δ0 → δ1 → . . .→ δ4] = p1 × p2 × p3 × p4

δ0

δ4

Pr [δ0
4
 δ4] =

∑
δ1,δ2,δ3

4∏
i=1

Pr[δi−1 → δi ]

Difference in round 0: • • • • • • • •0 1 2 3 4 5 6 7

Difference in round 1: • • • • • • • •

Difference in round 2: • • • • • • • •

Difference in round 3: • • • • • • • •

Difference in round 4: • • • • • • • •
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Differential Cryptanalysis (3)

The transition probabilities can also be written in a matrix A:

→ For one round:

A =


Pr [0→ 0] Pr [0→ 1] · · · Pr [0→ 2n − 1]
Pr [1→ 0] Pr [1→ 1] · · · Pr [1→ 2n − 1]

...
...

. . .
...

Pr [2n − 1→ 0] Pr [2n − 1→ 1] · · · Pr [2n − 1→ 2n − 1]



→ For r rounds:

Ar =


Pr [0 r

 0] Pr [0 r
 1] · · · Pr [0 r

 2n − 1]

Pr [1 r
 0] Pr [1 r

 1] · · · Pr [1 r
 2n − 1]

...
...

. . .
...

Pr [2n − 1 r
 0] Pr [2n − 1 r

 1] · · · Pr [2n − 1 r
 2n − 1]


⇒ Computing Ar is infeasible for practical ciphers.
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Differential Cryptanalysis

• Differential distinguisher:
We collect D = O(1/Pr[δ  δ′]) pairs (P,P ⊕ δ) and compute:

Q = #{P : E (P)⊕ E (P ⊕ δ) = δ′}

If Pr[δ  δ′]� 2−n, we obtain a distinguisher:
→ Q ≈ D/Pr[δ  δ′] for the cipher
→ Q ≈ D/2n for a random permutation
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Linear Cryptanalysis
A linear approximation is a a pair of masks (α, α′) such that:

|Pr
x

[x · α = Ek(x) · α′]− 1/2| � 2−n/2

for most keys k . [Matsui, EC’93]

If the cipher is a key-alternating cipher with independent round keys:

c(α→ α′) = 2Pr
x

[x · α = R(x) · α′]− 1

ck(α0
r
 αr ) =

∑
α1,α2,...αn−1

(−1)
⊕

i ki ·αi

r∏
i=1

c(αi−1 → αi )

→ When there is a single dominant trail, we can approximate the
correlation of the linear approximation as the correlation of the trail, up to
a change of sign.
→ When there are several dominant trails, they can interact
constructively or destructively depending on the key.
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Linear Cryptanalysis

Nyberg defined the Expected Linear Potential and showed: [EC’94]

ELP(α0
r
 αr ) = Expk(c2

k (α0
r
 αr ))

=
∑

α1,α2,...αr−1

r∏
i=1

c2(αi−1 → αi )

→ Similarly to the differential case, this can be seen as the computation of
the powers of a matrix C with coefficients c2(α→ α′).

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 17 / 62



Linear Cryptanalysis

• Linear distinguisher:
We collect D = O(1/ELP[α α′]) pairs (P,C ) and compute:

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})/D

If ELP[α α′]� 2−n, we obtain a distinguisher:
→ Q2 ≈ ELP[α α′] for the cipher
→ Q2 ≈ 2−n/2 for a random permutation
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Differential and Linear Distinguishers
• Differential distinguisher:
We collect D = O(1/Pr[δ  δ′]) pairs (P,P ⊕ δ) and compute:

Q = #{P : E (P)⊕ E (P ⊕ δ) = δ′}
→ Q ≈ D/Pr[δ  δ′] for the cipher
→ Q ≈ D/2n for a random permutation

• Linear distinguisher:
We collect D = O(1/ELP[α α′]) pairs (P,C ) and compute:

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})/D
→ Q2 ≈ ELP[α α′] for the cipher
→ Q2 ≈ 2−n/2 for a random permutation

How to find stronger distinguishers for Simon and Simeck?

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 19 / 62



Differential and Linear Distinguishers
• Differential distinguisher:
We collect D = O(1/Pr[δ  δ′]) pairs (P,P ⊕ δ) and compute:

Q = #{P : E (P)⊕ E (P ⊕ δ) = δ′}
→ Q ≈ D/Pr[δ  δ′] for the cipher
→ Q ≈ D/2n for a random permutation

• Linear distinguisher:
We collect D = O(1/ELP[α α′]) pairs (P,C ) and compute:

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})/D
→ Q2 ≈ ELP[α α′] for the cipher
→ Q2 ≈ 2−n/2 for a random permutation

How to find stronger distinguishers for Simon and Simeck?

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 19 / 62



Table of contents

1 Introduction
Simon and Simeck
Differential Cryptanalysis
Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers
Probability of transition through f
A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

4 Improved Key-recovery attacks against Simeck
Generalities
Using Differential Cryptanalysis
Using Linear Cryptanalysis

5 Conclusion

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 20 / 62



Table of contents

1 Introduction
Simon and Simeck
Differential Cryptanalysis
Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers
Probability of transition through f
A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

4 Improved Key-recovery attacks against Simeck
Generalities
Using Differential Cryptanalysis
Using Linear Cryptanalysis

5 Conclusion

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 21 / 62



Probability of transition through f

∧

≪ 5

≪ 1

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

value: 0 or 1 ?

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

value: 0 or 1 ?

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 22 / 62



Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

if (x−5, x5) = (0, 0)
if (x−5, x5) = (1, 0)
if (x−5, x5) = (0, 1)
if (x−5, x5) = (1, 1)
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Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

with proba 0.25
with proba 0.25
with proba 0.25
with proba 0.25
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Probability of transition through f

Since f is quadratic...
⇒ f ′ is affine.
⇒ all the possible outputs of f ′ are equally probable.
⇒ all the possible outputs of f ′ form a vector space that can be build

efficiently.
⇒ the exact probability of transitions can be computed efficiently for

Simon and Simeck! [KLT, CRYPTO’15]
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Probability of transition through f

Kölbl, Leander and Tiessen demonstrated that:
• For a given α, there is an affine space Uα such that

Pr
x

[f (α⊕ x)⊕ f (x) = β] =

{
2− dim(Uα) if β ∈ Uα

0 otherwise

Uα is a coset of the image of a linear function:

Uα = Img
(
x 7→ f (x)⊕ f (x ⊕ α)⊕ f (α)

)
⊕ f (α)

Given the Feistel structure of the round function, we deduce:

Pr[(δL, δR)→ (δ′L, δ
′
R)] =

{
2− dim(UδL ) if δL = δ′R and δR ⊕ δ′L ∈ UδL
0 otherwise
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A class of high probability trails

We know how to compute Pr[(δL, δR)→ (δ′L, δ
′
R)] easily now...

→ But computing Pr[(δL, δR)
r
 (δ′L, δ

′
R)] remains hard!
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→ But computing Pr[(δL, δR)
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R)] remains hard!

Observation: Simeck diffusion in the worst case

window of size w = 3

window of size w + 5 = 8

∧

k i≪ 5

≪ 1
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Observation: Simeck diffusion in the best case

window of size w = 3

window of size w + 1 = 4

∧

k i≪ 5

≪ 1
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A class of high probability trails
We know how to compute Pr[(δL, δR)→ (δ′L, δ

′
R)] easily now...

→ But computing Pr[(δL, δR)
r
 (δ′L, δ

′
R)] remains hard!

Conclusion: Simeck has a relatively slow diffusion!

window of size w

window of size at most w + 5

∧

k i≪ 5

≪ 1
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A class of high probability trails

Our idea is to focus on trails that are only active in a window of w bits:

Plaintext

Ciphertext

δ0

δ4

δ0

δ4

Difference in round 0: • • • • • • • •0 1 2 3 4 5 6 7

Difference in round 1: • • • • • • • •

Difference in round 2: • • • • • • • •

Difference in round 3: • • • • • • • •

Difference in round 4: • • • • • • • •
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A class of high probability trails

• w : the size of the window (w ≤ n/2).
• ∆w : the vector space of differences active only in the w LSBs.
• ∆2

w : the product ∆w ×∆w where the two words are considered.

A lower bound of the probability of the differential (δ0, δr ) is computed by
summing over all characteristics with intermediate differences in ∆2

w :

Pr[δ0
r
 
w
δr ] =

∑
δ1,δ2,...δr−1∈∆2

w

r∏
i=1

Pr[δi−1 → δi ] ≤ Pr[δ0
r
 δr ]

⇒ This can be done by computing Ar
w , with Aw the matrix of transitions

Pr[δ → δ′] for all δ, δ′ ∈ ∆2
w .

⇒ To reduce the memory requirement, we compute it on the fly!
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A class of high probability trails

Algorithm Computation of Pr[(δL, δR)
r
 
w

(δ′L, δ
′
R)]

Require: Pre-computation of Uα for all α ∈ ∆W .
X ← [0 for i ∈ ∆2

w ]
X [δL, δR ]← 1
for 0 ≤ i < r do

Y ← [0 for i ∈ ∆2
w ]

for α ∈ ∆w do
for β ∈ ∆w do

for γ ∈ Uα do
Y [β⊕γ, α] = Y [β⊕γ, α] +2− dim(Uα)X [α, β]

X ← Y
return X [δ′L, δ

′
R ]

⇒ This requires r × 22w ×maxα∈∆w |Uα| operations,
and to store 22w+1 probabilities.

⇒ In practice, for w = 18 and r = 30, it takes a week
on a 48-core machine using 1TB of RAM.

x (i)x (i) x (i−1)

f ⊕
⊕

x (i+1) x (i)

k(i)

α βγ

β ⊕ γ α
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Tighter lower bound for the probability of differentials

Rounds Differential Proba (previous) Reference Proba (new)

26 (0, 11)→ (22, 1) 2−60.02 [Kölbl, Roy, 16] 2−54.16

26 (0, 11)→ (2, 1) 2−60.09 [Qin, Chen, Wang, 16] 2−54.16

27 (0, 11)→ (5, 2) 2−61.49 [Liu, Li, Wang, 17] 2−56.06

27 (0, 11)→ (5, 2) 2−60.75 [Huang, Wang, Zhang, 18] "
28 (0, 11)→ (A8, 5) 2−63.91 [Huang, Wang, Zhang, 18] 2−59.16

Comparison of our lower bound on the differential probability for Simeck
(with w = 18), and estimates used in previous attacks.
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Differentials with high probabilities

The best characteristics we have identified are a set of 64 characteristics:

{(1, 2), (1, 3), (1, 22), (1, 23), (2, 5), (2, 7), (2, 45), (2, 47)}
→

{(2, 1), (3, 1), (22, 1), (23, 1), (5, 2), (7, 2), (45, 2), (47, 2)}

⇒ However, (0, 1)→ (1, 0) is almost as good and will lead to a more
efficient key-recovery because it has fewer active bits!
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Differentials with high probabilities

Computation of the log2 of the probability of differentials for Simeck,
and the total number of trails (using w = 18):

Differential

Rounds (0, 1)→ (1, 0) (1, 2)→ (2, 1)

10 −∞ −∞
11 −23.25 (28.0) −27.25
12 −26.40 (36.2) −26.17
13 −28.02 (47.2) −26.90
14 −30.06 (58.2) −29.59
15 −31.93 (70.8) −31.37
.
.
.

.

.

.
.
.
.

.

.

.
20 −41.75 (131.9) −41.26
.
.
.

.

.

.
.
.
.

.

.

.
25 −51.01 (192.9) −50.54
.
.
.

.

.

.
.
.
.

.

.

.
30 −60.41 (254.0) −59.92
31 −62.29 (266.2) −61.81
32 −64.17 (278.4) −63.69
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Differentials with high probabilities

How does our lower bound vary depending on the size of the window w?

6 8 10 12 14 16 18

−44
−48
−52
−56
−60
−64
−68
−72
−76
−80

w

lo
g
2(

P
r[

(0
,1

)
r  w

(1
,0

)]
)

r = 20
r = 25
r = 30
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Stronger Linear distinguishers for Simon-like ciphers
We want to compute a lower bound of:

ELP(α0
r
 αr ) =

∑
α1,α2,...αr−1

r∏
i=1

c2(αi−1 → αi )

(1) Since f is quadratic, the exact probability through one round is:

c((αL, αR)→ (α′L, α
′
R))2 =

{
2− dim(VαR ) if αR = α′L and αL ⊕ α′R ∈ VαR

0 otherwise

Vα = Img
(
x 7→

(
(α∧(x≪ a−b))⊕((α∧x)≫ a−b)

)
≫ b

)
⊕(α≫ c)

[KLT, CRYPTO’15]

(2) Approximation of the ELP using windows of w bits:

ELP(α0
r
 αr ) ≈

∑
α1,α2,...αr−1∈∆2

w

r∏
i=1

c2(αi−1 → αi )
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Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)}
→

{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)}

→ They are bit-reversed versions of the optimal differential characteristics.

→ For key-recovery attack, the preference is given to (1, 0)→ (0, 1).
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Lower bound of linear and differential distinguishers
Comparison of the probability of differentials and the linear potential of
linear approximations for Simeck (log2, using w = 18). We also give the
total number of trails included in the bound in parenthesis (log2):

Differential Linear

Rounds (0, 1)→ (1, 0) (1, 2)→ (2, 1) (1, 0)→ (0, 1) (1, 2)→ (2, 1)

10 −∞ −∞ −∞ −∞
11 −23.25 (28.0) −27.25 −23.81 (23.9) −27.81
12 −26.40 (36.2) −26.17 −26.39 (31.7) −26.68
13 −28.02 (47.2) −26.90 −27.98 (42.0) −27.31
14 −30.06 (58.2) −29.59 −29.95 (52.5) −29.56
15 −31.93 (70.8) −31.37 −31.86 (64.9) −31.29
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 −41.75 (131.9) −41.26 −41.74 (124.5) −41.25
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

25 −51.01 (192.9) −50.54 −51.00 (184.1) −50.56
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

30 −60.41 (254.0) −59.92 −60.36 (243.6) −59.86
31 −62.29 (266.2) −61.81 −62.24 (255.5) −61.75
32 −64.17 (278.4) −63.69 −64.12 (267.4) −63.63
33 −66.05 (290.6) −65.57 −66.00 (279.3) −65.51

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 37 / 62



Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability p:

(α0, β0)→ (α1, β1)→ . . .→ (αr , βr )

we can convert it into a linear trail:

(
←−
β 0,
←−α 0)→ (

←−
β 1,
←−α 1)→ . . .→ (

←−
β r ,
←−α r )

where ←−x denotes bit-reversed x .

→ if all the non-linear gates are independent: the linear trail has squared
correlation p.

→ else: the probabilities of the linear and differential trails are not the
same, but very similar.
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What about Simon?

We also apply the same strategy against Simon, but the bound we obtain
is not as tight as for Simeck: the linear potential still increases
significantly with the window size w .

9 10 11 12 13 14 15 16 17 18 19

−80
−84
−88
−92
−96
−100
−104
−108
−112
−116
−120
−124
−128
−132
−136
−140
−144
−148

w

lo
g
2

(E
L

P
[(
1,

0)
r  w

(0
,
1)

])

r = 25
r = 33
r = 41
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Reminder: Differential and Linear Distinguishers

• Differential distinguisher:
We collect D = O(1/Pr[δ  δ′]) pairs (P,P ⊕ δ) and compute:

Q = #{P : E (P)⊕ E (P ⊕ δ) = δ′}

→ Q ≈ D/Pr[δ  δ′] for the cipher
→ Q ≈ D/2n for a random permutation

• Linear distinguisher:
We collect D = O(1/ELP[α α′]) pairs (P,C ) and compute:

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})/D

→ Q2 ≈ ELP[α α′] for the cipher
→ Q2 ≈ 2−n/2 for a random permutation
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Key Recovery

Distinguisher

C̃

⊕

E2

E1

⊕

P̃

K
ey
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du

le

kc

kb

kt

kp

k

General description of a cipher.

• Some rounds are added before
and/or after the distinguisher.

• The statistic used by the
distinguisher is Q, and it can be
evaluated using a subset of the key:
(kp, kt , kb, kc).

• The total number of guessed bits is
κg with κg < κ.
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Key-recovery

Algorithm Naive key-recovery
for all k = (kp, kt , kb, kc) do

for all pairs in D do
compute Q(k)

if Q(k) > s then
k is a possible candidate

Complexity: D × 2κg with κg the number of key bits of k .

This can be reduced to approximately D + 2κg using algorithm tricks:
• Dynamic key guessing for Differential Cryptanalysis

[QHS’16, WWJZ’18]

• Fast Walsh Transform for Linear Cryptanalysis [CSQ’07, FN’20]
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Key-recovery

FR : the probability distribution of Q for the right key.
FW : the probability distribution of Q for a wrong key.

Wrong key

Right key

s

Q(k)
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Key-recovery

FR : the probability distribution of Q for the right key.
FW : the probability distribution of Q for a wrong key.

Wrong key

Right key

s Q(k)

We aim to keep a proportion 2−a of key candidates, so we set a threshold s:

2−a = 1− FW (s) ⇔ s = F−1
w (1− 2−a)
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Key-recovery

FR : the probability distribution of Q for the right key.
FW : the probability distribution of Q for a wrong key.

Wrong key

Right key

s Q(k)

Then, the success probability is given by:

PS = 1− FR(s)
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Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack. [QHS’16,WWJZ’18]

(1) Which key bits need to be guessed?

Offline part: determining the extended path associated to a
differential, and then deducing the subkey bits that need to be guessed.

(2) How to rearrange operations to reduce time complexity?

Online part: guess subkey bits and filter data round by round, in
order to compute Q(k).
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Dynamic key guessing: Offline Part

r Differential path

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
30-round differential (3 → 33)

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Starting from the differential (0, 1)→ (1, 0) covering 30 rounds,
we add 3 rounds before, and 7 rounds after:

(1)

Tracking the propagation of differences in the additional rounds.
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Starting from the differential (0, 1)→ (1, 0) covering 30 rounds,
we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.
(2) Determining the sufficient bit conditions (in red).
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(3)

Deducing the necessary bits to check the sufficient bit conditions:

(kp, kt , kb, kc)
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Dynamic key guessing: Online Part (1)

Round by round, we guess subkey bits and filter the pairs that do not
check the sufficient bit conditions.

At the end, for each key guess (kp, kt , kb, kc), we compute Q(k) the
number of pairs satisfying the differential:
→ for the right key guess, the expected value is λR = p × D/2.
→ for the wrong key guess, the expected value is λW = D/2n−1.

⇒ FR and FW are Poisson law with parameter λR and λW .
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Dynamic key guessing: Online Part (2)

Then, for all key guess k such that Q(k) > s, the corresponding master
keys are reconstructed:

• If the key schedule is linear: this can be done using linear algebra and
an exhaustive search of the κ− κg missing bits of the key.

• If the key schedule is non-linear: combining information from the top
and the bottom part of the key is not immediate. Starting from the
κmax = max (κp + κt , κb + κc) bits, we do an exhaustive search of
the κ− κmax missing bits.
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Dynamic key guessing – Complexity

In total, the complexity and the probability of success are:

C1 = D + 2κg · λW + 2κ+κmin · (1− FW (s))

PS = 1− FR(s)

with κmin = min (κp + κt , κb + κc).

⇒ The attack is repeated until it succeeds, using rotations of the initial
differential: C = C1/PS .

Wrong key

Right key

s

Q(k)
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Key-recovery using Linear Cryptanalysis – FWT
We apply the Fast Walsh Transform approach proposed by [CSQ’07]:

q(kp, kt , kc , kb) =
1
D

(
#{P,C : P ′ · α = C ′ · β} −#{P,C : P ′ · α 6= C ′ · β}

)
=

1
D

∑
P,C

(−1)P
′·α⊕C ′·β

Let define P ′ · α = f (kt , kp ⊕ χp(P)) and C ′ · β = g(kb, kc ⊕ χc(C ))

=
1
D

∑
P,C

(−1)f (kt ,kp⊕χp(P))⊕g(kb,kc⊕χc (C))

=
1
D

∑
i∈Fκp

2

∑
j∈Fκc

2

#{P,C : χp(P) = i , χc(C ) = j} × (−1)f (kt ,kp⊕i)⊕g(kb,kc⊕j)

We remark that the previous expression is actually a convolution:

=
1
D

∑
i,j

φ(i , j)× ψkt ,kb(kp ⊕ i , kc ⊕ j) =
1
D

(φ ∗ ψkt ,kb)(kp, kc),

{
φ(x , y) = #{P,C : χp(P) = x , χc(C ) = y}

ψkt ,kb(x , y) = (−1)f (kt ,x)⊕g(kb,y)
with
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Key-recovery using Linear Cryptanalysis – FWT

We apply the Fast Walsh Transform approach proposed in [CSQ’07] and
improved in [FN’20] to Simeck and Simon.
The attack is decomposed in three phases:

Distillation phase. Compute φ(x , y) = #{P,C : χp(P) = x , χc(C ) = y}
for 0 ≤ x < 2κp , 0 ≤ y < 2κc .

Analysis phase. For each guess of kt , kb, for all 0 ≤ x < 2κp , 0 ≤ y < 2κc ,
compute ψkt ,kb(x , y) = (−1)f (kt ,x)⊕g(kb,y), then evaluate the
convolution φ ∗ ψkt ,kb using the Fast Walsh Transform.

Search phase. For all keys with q(kp, kt , kc , kb) ≥ s, exhaustively try all
master keys corresponding to kp, kt , kc , kb.
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Key-recovery using Linear Cryptanalysis – FWT
How to estimate the Success Probability when they are

several dominant trails?

As seen previously, they can interact constructively, or destructively...
But the correlation for the right and the wrong key follow normal
distribution with parameters: [BN, ToSC’16]

µR = 0 σ2
R = B/D + ELP

µW = 0 σ2
W = B/D + 2−n

Right key

Wrong key

ss

Q(k)
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Linear VS Differential Key-recovery
We have seen previously that linear and differential distinguishers are very
close...

But what about the key-recovery part?
The main difference come from the number of bits that have to be guessed:

Key bits Differential Linear

Rounds total independent total independent

1 0 0 0 0
2 2 2 2 2
3 9 9 7 7
4 27 27 16 16
5 56 56 30 30
6 88 88 50 48
7 120 114 75 68
8 104 88

Comparison of key recovery rounds for differential and linear attacks against
Simeck64/128.
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Key-Recovery Parameters

Examples of set of parameters for Simeck64/128:
Differential cryptanalysis:

Rounds = 40 = 3 + 30 + 7 D = 264

κmin = 9 κmax = 114 λR = 22.59 λW = 2−1 s = 6

⇒ C1 = 2122 PS = 0.4 C = 2123.4

Linear cryptanalysis:

Rounds = 42 = 8 + 30 + 4 D = 264

κmin = 16 κmax = 88 a = 29

⇒ C1 = 2118 PS = 0.1 C = 2121.5

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 57 / 62



Table of contents

1 Introduction
Simon and Simeck
Differential Cryptanalysis
Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers
Probability of transition through f
A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

4 Improved Key-recovery attacks against Simeck
Generalities
Using Differential Cryptanalysis
Using Linear Cryptanalysis

5 Conclusion

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 58 / 62



Results on Simeck

Cipher Rounds Attacked Data Time Ref Note

Simeck48/96 36 30 247.66 288.04 [QCW’16] Linear † ‡

32 247 290.9 New Linear
Simeck64/128 44 37 263.09 2121.25 [QCW’16] Linear † ‡

42 263.5 2123.9 New Linear

Summary of previous and new attacks against Simeck.

†The advantage is too low to do a key-recovery.
‡Attack use the duality between linear and differential distinguishers.
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Results on Simon

Cipher Rounds Attacked Data Time Ref Note

Simon96/96 52 37 295 287.2 [WWJZ’18] Diff.
43 294 289.6 New Linear

Simon96/144 54 38 295.2 2136 [CW’16] Linear
45 295 2136.5 [CW’16] Linear

Simon128/128 68 50 2127 2119.2 [WWJZ’18] Diff.
53 2127 2121 New Linear

Simon128/192 69 51 2127 2183.2 [WWJZ’18] Diff.
55 2127 2185.2 New Linear

Simon128/256 72 53 2127.6 2249 [CW’16] Linear
56 2126 2249 New Linear

Summary of previous and new attacks against Simon.
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Results on Simon

We show that Simon96/96 and Simon96/144 only have 17% of the
rounds as security margin, which contradicts what the designers wrote:

Assumption [Simon designers, ePrint2017/560]
“After almost 4 years of concerted effort by academic researchers, the
various versions of Simon and Speck retain a margin averaging around
30%, and in every case over 25%. The design team’s analysis when

making stepping decisions was consistent with these numbers.”
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Conclusion
Using differential and linear paths with all intermediate states in a
fixed window of w bits, we obtain better probabilities for existing
differential and linear distinguishers.

We also obtain good differential and linear approximation with the
minimum number of active bits, so that the key-recovery part is
also improved.
By applying this to advanced existing linear and differential attacks,
we improved previous results and obtain an attack on 42 out of 44
rounds for Simeck64/128, and 43 out of 52 rounds of
Simon96/96...
Concerning Simon, the lower bound of the probability of the linear
approximation seems not as tight as for Simeck: further work can
probably improve our results...

For more details:
https://eprint.iacr.org/2021/1198
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