## Clustering Effect in Simon and Simeck

Gaëtan Leurent ${ }^{1}$, Clara Pernot ${ }^{1}$ and André Schrottenloher ${ }^{2}$

${ }^{1}$ Inria, Paris<br>${ }^{2}$ CWI, Amsterdam

Friday, October 1st 2021


## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers
44 Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## Table of contents

## (1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers

4 Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software
[BTSWSW, DAC'15]
[BTSWSW, DAC'15]


## Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software
[BTSWSW, DAC'15]
[BTSWSW, DAC'15]

Attempt of ISO standardization...
But some experts were suspicious about:
$\rightarrow$ the lack of clear need for standardisation of the new ciphers
$\rightarrow$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm
More than $\mathbf{7 0}$ papers study Simon and Speck!

## Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

Attempt of ISO standardization...
But some experts were suspicious about:
$\rightarrow$ the lack of clear need for standardisation of the new ciphers
$\rightarrow$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithm
More than 70 papers study Simon and Speck!
$\Rightarrow \mathrm{A}$ variant of Simon and Speck: Simeck.

## Summary of previous and new attacks

| Cipher | Rounds | Attacked | Ref | Note |
| :--- | :---: | :---: | :---: | :--- |
| Simeck48/96 | 36 | 30 | [QCW'16] | Linear $\dagger \ddagger$ |
|  |  | 32 | New | Linear |
| Simeck64/128 | 44 | 37 | [QCW'16] | Linear $\dagger \ddagger$ |
|  |  | 42 | New | Linear |
| Simon96/96 | 52 | 37 | [WWJZ'18] | Differential |
|  |  | 43 | New | Linear |
| Simon96/144 | 54 | 38 | [CW'16] | Linear |
|  |  | 45 | New | Linear |
| Simon128/128 | 68 | 50 | [WWJZ'18] | Differential |
|  |  | 53 | New | Linear |
| Simon128/192 | 69 | 51 | [WWJZ'18] | Differential |
|  |  | 55 | New | Linear |
| Simon128/256 | 72 | 53 | [CW'16] | Linear |
|  |  | 56 | New | Linear |

${ }^{\dagger}$ The advantage is too low to do a key-recovery.
${ }^{\ddagger}$ Attack use the duality between linear and differential distinguishers.

## Feistel cipher



A Feistel network is characterized by:

- its block size: $n$
- its key size: $\kappa$
- its number of round: $r$
- its round function: $f$

For each round $i=0, \ldots, r-1$ :

$$
\left\{\begin{array}{l}
R^{i+1}=L^{i} \\
L^{i+1}=R^{i} \oplus f\left(L^{i}, k^{(i)}\right)
\end{array}\right.
$$

Example: Data Encryption Standard (DES).

## Feistel cipher



A Feistel network is characterized by:

- its block size: $n$
- its key size: $\kappa$
- its number of round: $r$
- its round function: $f$

For each round $i=0, \ldots, r-1$ :

$$
x^{(i+1)}=x^{(i-1)} \oplus f\left(x^{(i)}\right) \oplus k^{(i)}
$$

Example: Data Encryption Standard (DES).

## Simon, Speck and Simeck

$\rightarrow$ Simon is a Feistel network with a quadratic round function:

$$
f(x)=((x \lll 8) \wedge(x \lll 1)) \oplus(x \lll 2)
$$

and a linear key schedule.
[BTSWSW'15]
$\rightarrow$ Speck is an Add-Rotate-XOR (ARX) cipher:

$$
R_{k}(x, y)=(((x \lll \alpha) \boxplus y) \oplus k,(y \lll \beta) \oplus((x \lll \alpha) \boxplus y) \oplus k)
$$

which reuses its round function $R_{k}$ in the key schedule.
[BTSWSW'15]

## Simon, Speck and Simeck

$\rightarrow$ Simon is a Feistel network with a quadratic round function:

$$
f(x)=((x \lll 8) \wedge(x \lll 1)) \oplus(x \lll 2)
$$

and a linear key schedule.
[BTSWSW'15]
$\rightarrow$ Speck is an Add-Rotate-XOR (ARX) cipher:

$$
R_{k}(x, y)=(((x \lll \alpha) \boxplus y) \oplus k,(y \lll \beta) \oplus((x \lll \alpha) \boxplus y) \oplus k)
$$

which reuses its round function $R_{k}$ in the key schedule.
[BTSWSW'15]
$\rightarrow$ Simeck is a Feistel network with a quadratic round function:

$$
f(x)=((x \lll 5) \wedge x) \oplus(x \lll 1)
$$

which reuses its round function $f$ in the key schedule. [YZSAG'15]

## Simon and Simeck



Simon round function

| $n$ (block size) | 32 | 48 |  | 64 |  | 96 |  | 128 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\kappa$ (key size) | 64 | 72 | 96 | 96 | 128 | 96 | 144 | 128 | 192 | 256 |
| $r$ (rounds) | 32 | 36 | 36 | 42 | 44 | 52 | 54 | 68 | 69 | 72 |

$\rightarrow$ Linear key schedule.

## Simon and Simeck



Simon round function

| $n$ (block size) | 32 | 48 |  | 64 |  | 96 |  | 128 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\kappa$ (key size) | 64 | 72 | 96 | 96 | 128 | 96 | 144 | 128 | 192 | 256 |
| $r$ (rounds) | 32 | 36 | 36 | 42 | 44 | 52 | 54 | 68 | 69 | 72 |

$\rightarrow$ Linear key schedule.


Simeck round function

| $n$ | 32 |  | 48 |
| :---: | :---: | :---: | :---: |
| $\kappa$ | $\frac{64}{}$ |  | 96 |
|  |  | $\frac{128}{}$ |  |
| $r$ | 32 | 36 | 44 |

$\rightarrow$ Non-linear key schedule which reuses $f$.

## Table of contents

## 1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
a Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Differential Cryptanalysis (1)

A differential is a pair $\left(\delta, \delta^{\prime}\right)$ such that:

$$
\operatorname{Pr}_{k, x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\delta^{\prime}\right] \gg 2^{-n}
$$

## Differential Cryptanalysis (1)

A differential is a pair $\left(\delta, \delta^{\prime}\right)$ such that:

$$
\operatorname{Pr}_{k, x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\delta^{\prime}\right] \gg 2^{-n}
$$

To obtain a differential with a high probability, we use differential characteristic (or trail) to specify the intermediate state difference after each round: $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{r}\right)$.
$\rightarrow$ for one round:

$$
\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]=\underset{x}{\operatorname{Pr}}\left[R(x) \oplus R(x \oplus \delta)=\delta^{\prime}\right]
$$

## Differential Cryptanalysis (1)

A differential is a pair $\left(\delta, \delta^{\prime}\right)$ such that:

$$
\operatorname{Pr}_{k, x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\delta^{\prime}\right] \gg 2^{-n}
$$

To obtain a differential with a high probability, we use differential characteristic (or trail) to specify the intermediate state difference after each round: $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{r}\right)$.
$\rightarrow$ for one round:

$$
\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]=\underset{x}{\operatorname{Pr}}\left[R(x) \oplus R(x \oplus \delta)=\delta^{\prime}\right]
$$

Simon and Simeck with independent round keys are Markov ciphers, so according to Lai, Massey and Murphy [EC'91]:
$\rightarrow$ for one trail on $r$ rounds:

$$
\operatorname{Pr}\left[\delta_{0} \rightarrow \delta_{1} \rightarrow \ldots \rightarrow \delta_{r}\right]=\prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right]
$$

## Differential Cryptanalysis (1)

A differential is a pair $\left(\delta, \delta^{\prime}\right)$ such that:

$$
\operatorname{Pr}_{k, x}\left[E_{k}(x) \oplus E_{k}(x \oplus \delta)=\delta^{\prime}\right] \gg 2^{-n}
$$

To obtain a differential with a high probability, we use differential characteristic (or trail) to specify the intermediate state difference after each round: $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{r}\right)$.
$\rightarrow$ for one round:

$$
\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]=\underset{x}{\operatorname{Pr}}\left[R(x) \oplus R(x \oplus \delta)=\delta^{\prime}\right]
$$

Simon and Simeck with independent round keys are Markov ciphers, so according to Lai, Massey and Murphy [EC'91]:
$\rightarrow$ for one trail on $r$ rounds:

$$
\operatorname{Pr}\left[\delta_{0} \rightarrow \delta_{1} \rightarrow \ldots \rightarrow \delta_{r}\right]=\prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right]
$$

$\rightarrow$ for all trails on $r$ rounds:

$$
\operatorname{Pr}\left[\delta_{0} \stackrel{r}{\rightsquigarrow} \delta_{r}\right]=\sum_{\delta_{1}, \delta_{2}, \ldots \delta_{r-1}} \prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right]
$$

## Differential Cryptanalysis (2)



$$
\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]=\operatorname{Pr}_{x}\left[R(x) \oplus R(x \oplus \delta)=\delta^{\prime}\right]
$$

## Differential Cryptanalysis (2)



$$
\operatorname{Pr}\left[\delta_{0} \rightarrow \delta_{1} \rightarrow \ldots \rightarrow \delta_{4}\right]=\mathrm{p}_{1} \times \mathrm{p}_{2} \times \mathrm{p}_{3} \times \mathrm{p}_{4}
$$

## Differential Cryptanalysis (2)



## Differential Cryptanalysis (3)

The transition probabilities can also be written in a matrix $A$ :
$\rightarrow$ For one round:

$$
A=\left(\begin{array}{cccc}
\operatorname{Pr}[0 \rightarrow 0] & \operatorname{Pr}[0 \rightarrow 1] & \cdots & \operatorname{Pr}\left[0 \rightarrow 2^{n}-1\right] \\
\operatorname{Pr}[1 \rightarrow 0] & \operatorname{Pr}[1 \rightarrow 1] & \cdots & \operatorname{Pr}\left[1 \rightarrow 2^{n}-1\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Pr}\left[2^{n}-1 \rightarrow 0\right] & \operatorname{Pr}\left[2^{n}-1 \rightarrow 1\right] & \cdots & \operatorname{Pr}\left[2^{n}-1 \rightarrow 2^{n}-1\right]
\end{array}\right)
$$

$\rightarrow$ For $r$ rounds:

$$
A^{r}=\left(\begin{array}{cccc}
\operatorname{Pr}[0 \stackrel{r}{\rightsquigarrow} 0] & \operatorname{Pr}[0 \stackrel{r}{\rightsquigarrow} 1] & \cdots & \operatorname{Pr}\left[0 \stackrel{r}{\rightsquigarrow} 2^{n}-1\right] \\
\operatorname{Pr}[1 \stackrel{r}{\rightsquigarrow} 0] & \operatorname{Pr}[1 \stackrel{r}{\rightsquigarrow} 1] & \ldots & \operatorname{Pr}\left[1 \stackrel{r}{\rightsquigarrow} 2^{n}-1\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Pr}\left[2^{n}-1 \stackrel{r}{\rightsquigarrow} 0\right] & \operatorname{Pr}\left[2^{n}-1 \stackrel{r}{\rightsquigarrow} 1\right] & \cdots & \operatorname{Pr}\left[2^{n}-1 \stackrel{r}{\rightsquigarrow} 2^{n}-1\right]
\end{array}\right)
$$

$\Rightarrow$ Computing $A^{r}$ is infeasible for practical ciphers.

## Differential Cryptanalysis

- Differential distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]\right)$ pairs $(P, P \oplus \delta)$ and compute:

$$
Q=\#\left\{P: E(P) \oplus E(P \oplus \delta)=\delta^{\prime}\right\}
$$

If $\operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right] \gg 2^{-n}$, we obtain a distinguisher:
$\rightarrow Q \approx D / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]$ for the cipher
$\rightarrow Q \approx D / 2^{n}$ for a random permutation

## Table of contents

## (1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## Linear Cryptanalysis

A linear approximation is a a pair of masks $\left(\alpha, \alpha^{\prime}\right)$ such that:

$$
\left|\operatorname{Pr}_{x}\left[x \cdot \alpha=E_{k}(x) \cdot \alpha^{\prime}\right]-1 / 2\right| \gg 2^{-n / 2}
$$

for most keys $k$.

## Linear Cryptanalysis

A linear approximation is a a pair of masks $\left(\alpha, \alpha^{\prime}\right)$ such that:

$$
\left|\underset{x}{\operatorname{Pr}}\left[x \cdot \alpha=E_{k}(x) \cdot \alpha^{\prime}\right]-1 / 2\right| \gg 2^{-n / 2}
$$

for most keys $k$.
[Matsui, EC'93]
If the cipher is a key-alternating cipher with independent round keys:

$$
\begin{aligned}
c\left(\alpha \rightarrow \alpha^{\prime}\right) & =2 \underset{x}{\operatorname{Pr}}\left[x \cdot \alpha=R(x) \cdot \alpha^{\prime}\right]-1 \\
c_{k}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right) & =\sum_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n-1}}(-1)^{\oplus_{i} k_{i} \cdot \alpha_{i}} \prod_{i=1}^{r} c\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
\end{aligned}
$$

## Linear Cryptanalysis

A linear approximation is a a pair of masks $\left(\alpha, \alpha^{\prime}\right)$ such that:

$$
\left|\underset{x}{\operatorname{Pr}}\left[x \cdot \alpha=E_{k}(x) \cdot \alpha^{\prime}\right]-1 / 2\right| \gg 2^{-n / 2}
$$

for most keys $k$.
[Matsui, EC'93]
If the cipher is a key-alternating cipher with independent round keys:

$$
\begin{aligned}
c\left(\alpha \rightarrow \alpha^{\prime}\right) & =2 \underset{x}{\operatorname{Pr}}\left[x \cdot \alpha=R(x) \cdot \alpha^{\prime}\right]-1 \\
c_{k}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right) & =\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}}(-1)^{\oplus_{i} k_{i} \cdot \alpha_{i}} \prod_{i=1}^{r} c\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
\end{aligned}
$$

$\rightarrow$ When there is a single dominant trail, we can approximate the correlation of the linear approximation as the correlation of the trail, up to a change of sign.
$\rightarrow$ When there are several dominant trails, they can interact constructively or destructively depending on the key.

## Linear Cryptanalysis

Nyberg defined the Expected Linear Potential and showed:

$$
\begin{aligned}
\operatorname{ELP}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right) & =\operatorname{Exp}_{k}\left(c_{k}^{2}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right)\right) \\
& =\sum_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{r-1}} \prod_{i=1}^{r} c^{2}\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
\end{aligned}
$$

$\rightarrow$ Similarly to the differential case, this can be seen as the computation of the powers of a matrix $C$ with coefficients $c^{2}\left(\alpha \rightarrow \alpha^{\prime}\right)$.

## Linear Cryptanalysis

- Linear distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{ELP}\left[\alpha \rightsquigarrow \alpha^{\prime}\right]\right)$ pairs $(P, C)$ and compute:
$Q=\left(\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=0\right\}-\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=1\right\}\right) / D$
If $E L P\left[\alpha \rightsquigarrow \alpha^{\prime}\right] \gg 2^{-n}$, we obtain a distinguisher:
$\rightarrow Q^{2} \approx E L P\left[\alpha \rightsquigarrow \alpha^{\prime}\right]$ for the cipher
$\rightarrow Q^{2} \approx 2^{-n / 2}$ for a random permutation

## Differential and Linear Distinguishers

- Differential distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]\right)$ pairs $(P, P \oplus \delta)$ and compute:

$$
Q=\#\left\{P: E(P) \oplus E(P \oplus \delta)=\delta^{\prime}\right\}
$$

$\rightarrow Q \approx D / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]$ for the cipher
$\rightarrow Q \approx D / 2^{n}$ for a random permutation

- Linear distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{ELP}\left[\alpha \rightsquigarrow \alpha^{\prime}\right]\right)$ pairs $(P, C)$ and compute:

$$
Q=\left(\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=0\right\}-\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=1\right\}\right) / D
$$

$\rightarrow Q^{2} \approx E L P\left[\alpha \rightsquigarrow \alpha^{\prime}\right]$ for the cipher
$\rightarrow Q^{2} \approx 2^{-n / 2}$ for a random permutation

## Differential and Linear Distinguishers

- Differential distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]\right)$ pairs $(P, P \oplus \delta)$ and compute:

$$
Q=\#\left\{P: E(P) \oplus E(P \oplus \delta)=\delta^{\prime}\right\}
$$

$\rightarrow Q \approx D / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]$ for the cipher
$\rightarrow Q \approx D / 2^{n}$ for a random permutation

- Linear distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{ELP}\left[\alpha \rightsquigarrow \alpha^{\prime}\right]\right)$ pairs $(P, C)$ and compute:

$$
Q=\left(\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=0\right\}-\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=1\right\}\right) / D
$$

$\rightarrow Q^{2} \approx E L P\left[\alpha \rightsquigarrow \alpha^{\prime}\right]$ for the cipher
$\rightarrow Q^{2} \approx 2^{-n / 2}$ for a random permutation

## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers

44 Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(3) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
a Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Probability of transition through $f$



## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:


## Probability of transition through $f$

## Consider a difference $\alpha=1$ on the left part:



## Probability of transition through $f$

Consider a difference $\alpha=1$ on the left part:

with proba 0.25
ㅁ.
的 with proba 0.25

## Probability of transition through $f$

Since $f$ is quadratic...
$\Rightarrow f^{\prime}$ is affine.
$\Rightarrow$ all the possible outputs of $f^{\prime}$ are equally probable.
$\Rightarrow$ all the possible outputs of $f^{\prime}$ form a vector space that can be build efficiently.
$\Rightarrow$ the exact probability of transitions can be computed efficiently for Simon and Simeck!

## Probability of transition through $f$

Kölbl, Leander and Tiessen demonstrated that:

- For a given $\alpha$, there is an affine space $U_{\alpha}$ such that

$$
\operatorname{P}_{x}[f(\alpha \oplus x) \oplus f(x)=\beta]= \begin{cases}2^{-\operatorname{dim}\left(U_{\alpha}\right)} & \text { if } \beta \in U_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

$U_{\alpha}$ is a coset of the image of a linear function:

$$
U_{\alpha}=\operatorname{Img}(x \mapsto f(x) \oplus f(x \oplus \alpha) \oplus f(\alpha)) \oplus f(\alpha)
$$

## Probability of transition through $f$

Kölbl, Leander and Tiessen demonstrated that:

- For a given $\alpha$, there is an affine space $U_{\alpha}$ such that

$$
\operatorname{Pr}_{x}[f(\alpha \oplus x) \oplus f(x)=\beta]= \begin{cases}2^{-\operatorname{dim}\left(U_{\alpha}\right)} & \text { if } \beta \in U_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

$U_{\alpha}$ is a coset of the image of a linear function:

$$
U_{\alpha}=\operatorname{lmg}(x \mapsto f(x) \oplus f(x \oplus \alpha) \oplus f(\alpha)) \oplus f(\alpha)
$$

Given the Feistel structure of the round function, we deduce:

$$
\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \rightarrow\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]= \begin{cases}2^{-\operatorname{dim}\left(U_{\delta_{L}}\right)} & \text { if } \delta_{L}=\delta_{R}^{\prime} \text { and } \delta_{R} \oplus \delta_{L}^{\prime} \in U_{\delta_{L}} \\ 0 & \text { otherwise }\end{cases}
$$

## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## A class of high probability trails

We know how to compute $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \rightarrow\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ easily now... $\rightarrow$ But computing $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \stackrel{r}{\rightsquigarrow}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ remains hard!

## A class of high probability trails

We know how to compute $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \rightarrow\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ easily now...
$\rightarrow$ But computing $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \stackrel{r}{\rightsquigarrow}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ remains hard!
Observation: Simeck diffusion in the worst case


## A class of high probability trails

We know how to compute $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \rightarrow\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ easily now...
$\rightarrow$ But computing $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \stackrel{r}{\rightsquigarrow}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ remains hard!
Observation: Simeck diffusion in the best case


## A class of high probability trails

We know how to compute $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \rightarrow\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ easily now...
$\rightarrow$ But computing $\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \stackrel{r}{\rightsquigarrow}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]$ remains hard!

## Conclusion: Simeck has a relatively slow diffusion!



## A class of high probability trails

Our idea is to focus on trails that are only active in a window of $w$ bits:


## A class of high probability trails

Our idea is to focus on trails that are only active in a window of $w$ bits:


## A class of high probability trails

- $w$ : the size of the window $(w \leq n / 2)$.
- $\Delta_{w}$ : the vector space of differences active only in the $w$ LSBs.
- $\Delta_{w}^{2}$ : the product $\Delta_{w} \times \Delta_{w}$ where the two words are considered.


## A class of high probability trails

- $w$ : the size of the window $(w \leq n / 2)$.
- $\Delta_{w}$ : the vector space of differences active only in the $w$ LSBs.
- $\Delta_{w}^{2}$ : the product $\Delta_{w} \times \Delta_{w}$ where the two words are considered.

A lower bound of the probability of the differential $\left(\delta_{0}, \delta_{r}\right)$ is computed by summing over all characteristics with intermediate differences in $\Delta_{w}^{2}$ :

$$
\operatorname{Pr}\left[\delta_{0} \underset{w}{\stackrel{r}{w}} \delta_{r}\right]=\sum_{\delta_{1}, \delta_{2}, \ldots \delta_{r-1} \in \Delta_{w}^{2}} \prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right] \leq \operatorname{Pr}\left[\delta_{0} \stackrel{r}{\rightsquigarrow} \delta_{r}\right]
$$

## A class of high probability trails

- $w$ : the size of the window $(w \leq n / 2)$.
- $\Delta_{w}$ : the vector space of differences active only in the $w$ LSBs.
- $\Delta_{w}^{2}$ : the product $\Delta_{w} \times \Delta_{w}$ where the two words are considered.

A lower bound of the probability of the differential $\left(\delta_{0}, \delta_{r}\right)$ is computed by summing over all characteristics with intermediate differences in $\Delta_{w}^{2}$ :

$$
\operatorname{Pr}\left[\delta_{0} \underset{w}{\stackrel{r}{w}} \delta_{r}\right]=\sum_{\delta_{1}, \delta_{2}, \ldots \delta_{r-1} \in \Delta_{w}^{2}} \prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right] \leq \operatorname{Pr}\left[\delta_{0} \stackrel{r}{\rightsquigarrow} \delta_{r}\right]
$$

$\Rightarrow$ This can be done by computing $A_{w}^{r}$, with $A_{w}$ the matrix of transitions $\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]$ for all $\delta, \delta^{\prime} \in \Delta_{w}^{2}$.

## A class of high probability trails

- $w$ : the size of the window $(w \leq n / 2)$.
- $\Delta_{w}$ : the vector space of differences active only in the $w$ LSBs.
- $\Delta_{w}^{2}$ : the product $\Delta_{w} \times \Delta_{w}$ where the two words are considered.

A lower bound of the probability of the differential $\left(\delta_{0}, \delta_{r}\right)$ is computed by summing over all characteristics with intermediate differences in $\Delta_{w}^{2}$ :

$$
\operatorname{Pr}\left[\delta_{0} \underset{w}{\stackrel{r}{w}} \delta_{r}\right]=\sum_{\delta_{1}, \delta_{2}, \ldots \delta_{r-1} \in \Delta_{w}^{2}} \prod_{i=1}^{r} \operatorname{Pr}\left[\delta_{i-1} \rightarrow \delta_{i}\right] \leq \operatorname{Pr}\left[\delta_{0} \stackrel{r}{\rightsquigarrow} \delta_{r}\right]
$$

$\Rightarrow$ This can be done by computing $A_{w}^{r}$, with $A_{w}$ the matrix of transitions $\operatorname{Pr}\left[\delta \rightarrow \delta^{\prime}\right]$ for all $\delta, \delta^{\prime} \in \Delta_{w}^{2}$.
$\Rightarrow$ To reduce the memory requirement, we compute it on the fly!

## A class of high probability trails

```
Algorithm Computation of \(\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \underset{w}{r}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]\)
Require: Pre-computation of \(U_{\alpha}\) for all \(\alpha \in \Delta_{W}\).
    \(X \leftarrow\left[0\right.\) for \(\left.i \in \Delta_{w}^{2}\right]\)
    \(X\left[\delta_{L}, \delta_{R}\right] \leftarrow 1\)
    for \(0 \leq i<r\) do
        \(Y \leftarrow\left[0\right.\) for \(\left.i \in \Delta_{w}^{2}\right]\)
        for \(\alpha \in \Delta_{w}\) do
        for \(\beta \in \Delta_{w}\) do
            for \(\gamma \in U_{\alpha}\) do
                        \(Y[\beta \oplus \gamma, \alpha]=Y[\beta \oplus \gamma, \alpha]+2^{-\operatorname{dim}\left(U_{\alpha}\right)} X[\alpha, \beta]\)
        \(X \leftarrow Y\)
    return \(X\left[\delta_{L}^{\prime}, \delta_{R}^{\prime}\right]\)
```



## A class of high probability trails

```
Algorithm Computation of \(\operatorname{Pr}\left[\left(\delta_{L}, \delta_{R}\right) \underset{w}{r}\left(\delta_{L}^{\prime}, \delta_{R}^{\prime}\right)\right]\)
Require: Pre-computation of \(U_{\alpha}\) for all \(\alpha \in \Delta_{W}\).
    \(X \leftarrow\left[0\right.\) for \(\left.i \in \Delta_{w}^{2}\right]\)
    \(X\left[\delta_{L}, \delta_{R}\right] \leftarrow 1\)
    for \(0 \leq i<r\) do
        \(Y \leftarrow\left[0\right.\) for \(\left.i \in \Delta_{w}^{2}\right]\)
        for \(\alpha \in \Delta_{w}\) do
        for \(\beta \in \Delta_{w}\) do
            for \(\gamma \in U_{\alpha}\) do
                \(Y[\beta \oplus \gamma, \alpha]=Y[\beta \oplus \gamma, \alpha]+2^{-\operatorname{dim}\left(U_{\alpha}\right)} X[\alpha, \beta]\)
        \(X \leftarrow Y\)
    return \(X\left[\delta_{L}^{\prime}, \delta_{R}^{\prime}\right]\)
```


$\Rightarrow$ This requires $r \times 2^{2 w} \times \max _{\alpha \in \Delta_{w}}\left|U_{\alpha}\right|$ operations, and to store $2^{2 w+1}$ probabilities.
$\Rightarrow$ In practice, for $w=18$ and $r=30$, it takes a week on a 48-core machine using 1 TB of RAM.

## Tighter lower bound for the probability of differentials

| Rounds | Differential | Proba (previous) | Reference | Proba (new) |
| :---: | :---: | :---: | :---: | :---: |
| 26 | $(0,11) \rightarrow(22,1)$ | $2^{-60.02}$ | [Kölbl, Roy, 16] | $2^{-54.16}$ |
| 26 | $(0,11) \rightarrow(2,1)$ | $2^{-60.09}$ | [Qin, Chen, Wang, 16] | $2^{-54.16}$ |
| 27 | $(0,11) \rightarrow(5,2)$ | $2^{-61.49}$ | [Liu, Li, Wang, 17] | $2^{-56.06}$ |
| 27 | $(0,11) \rightarrow(5,2)$ | $2^{-60.75}$ | [Huang, Wang, Zhang, 18] | " |
| 28 | $(0,11) \rightarrow(A 8,5)$ | $2^{-63.91}$ | [Huang, Wang, Zhang, 18] | $2^{-59.16}$ |

Comparison of our lower bound on the differential probability for Simeck (with $w=18$ ), and estimates used in previous attacks.

## Differentials with high probabilities

The best characteristics we have identified are a set of 64 characteristics:

$$
\begin{gathered}
\{(1,2),(1,3),(1,22),(1,23),(2,5),(2,7),(2,45),(2,47)\} \\
\rightarrow
\end{gathered}
$$

$\Rightarrow$ However, $(0,1) \rightarrow(1,0)$ is almost as good and will lead to a more efficient key-recovery because it has fewer active bits!

## Differentials with high probabilities

Computation of the $\log _{2}$ of the probability of differentials for Simeck, and the total number of trails (using $w=18$ ):

|  | Differential |  |  |
| :---: | :---: | :---: | :---: |
| Rounds | $(0,1) \rightarrow(1,0)$ | $(1,2) \rightarrow(2,1)$ |  |
| 10 | $-\infty$ |  | $-\infty$ |
| 11 | -23.25 | $(28.0)$ | -27.25 |
| 12 | -26.40 | $(36.2)$ | -26.17 |
| 13 | -28.02 | $(47.2)$ | -26.90 |
| 14 | -30.06 | $(58.2)$ | -29.59 |
| 15 | -31.93 | $(70.8)$ | -31.37 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 20 | -41.75 | $(131.9)$ | -41.26 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 25 | -51.01 | $(192.9)$ | -50.54 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 30 | -60.41 | $(254.0)$ | -59.92 |
| 31 | -62.29 | $(266.2)$ | -61.81 |
| 32 | -64.17 | $(278.4)$ | -63.69 |

## Differentials with high probabilities

How does our lower bound vary depending on the size of the window $w$ ?


## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion

Stronger Linear distinguishers for Simon-like ciphers We want to compute a lower bound of:

$$
\operatorname{ELP}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right)=\sum_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{r-1}} \prod_{i=1}^{r} c^{2}\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
$$

## Stronger Linear distinguishers for Simon-like ciphers

We want to compute a lower bound of:

$$
\operatorname{ELP}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right)=\sum_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{r-1}} \prod_{i=1}^{r} c^{2}\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
$$

(1) Since $f$ is quadratic, the exact probability through one round is:

$$
\begin{array}{r}
c\left(\left(\alpha_{L}, \alpha_{R}\right) \rightarrow\left(\alpha_{L}^{\prime}, \alpha_{R}^{\prime}\right)\right)^{2}= \begin{cases}2^{-\operatorname{dim}\left(V_{\alpha_{R}}\right)} & \text { if } \alpha_{R}=\alpha_{L}^{\prime} \text { and } \alpha_{L} \oplus \alpha_{R}^{\prime} \in V_{\alpha_{R}} \\
0 & \text { otherwise }\end{cases} \\
V_{\alpha}=\operatorname{Img}(x \mapsto((\alpha \wedge(x \lll a-b)) \oplus((\alpha \wedge x) \ggg a-b)) \ggg b) \oplus(\alpha \ggg c) \\
\text { [KLT, CRYPTO'15] }
\end{array}
$$

## Stronger Linear distinguishers for Simon-like ciphers

We want to compute a lower bound of:

$$
\operatorname{ELP}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right)=\sum_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{r-1}} \prod_{i=1}^{r} c^{2}\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
$$

(1) Since $f$ is quadratic, the exact probability through one round is:

$$
\begin{array}{r}
c\left(\left(\alpha_{L}, \alpha_{R}\right) \rightarrow\left(\alpha_{L}^{\prime}, \alpha_{R}^{\prime}\right)\right)^{2}= \begin{cases}2^{-\operatorname{dim}\left(V_{\alpha_{R}}\right)} & \text { if } \alpha_{R}=\alpha_{L}^{\prime} \text { and } \alpha_{L} \oplus \alpha_{R}^{\prime} \in V_{\alpha_{R}} \\
0 & \text { otherwise }\end{cases} \\
V_{\alpha}=\operatorname{Img}(x \mapsto((\alpha \wedge(x \lll a-b)) \oplus((\alpha \wedge x) \ggg a-b)) \ggg b) \oplus(\alpha \ggg c) \\
\text { [KLT, CRYPTO'15] }
\end{array}
$$

(2) Approximation of the ELP using windows of $w$ bits:

$$
\operatorname{ELP}\left(\alpha_{0} \stackrel{r}{\rightsquigarrow} \alpha_{r}\right) \approx \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r-1} \in \Delta_{w}^{2}} \prod_{i=1}^{r} c^{2}\left(\alpha_{i-1} \rightarrow \alpha_{i}\right)
$$

## Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

```
{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)}
    {(40, 20),(40, 22),(40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)}
```


## Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

$$
\begin{gathered}
\{(20,40),(22,40),(60,40),(62,40),(50,20),(51,20),(70,20),(71,20)\} \\
\rightarrow
\end{gathered}
$$

$\rightarrow$ They are bit-reversed versions of the optimal differential characteristics.

## Stronger Linear distinguishers for Simon-like ciphers

A set of 64 (almost) optimal trails is obtained:

$$
\begin{gathered}
\{(20,40),(22,40),(60,40),(62,40),(50,20),(51,20),(70,20),(71,20)\} \\
\rightarrow
\end{gathered}
$$

$\rightarrow$ They are bit-reversed versions of the optimal differential characteristics.
$\rightarrow$ For key-recovery attack, the preference is given to $(1,0) \rightarrow(0,1)$.

## Lower bound of linear and differential distinguishers

Comparison of the probability of differentials and the linear potential of linear approximations for Simeck $\left(\log _{2}\right.$, using $\left.w=18\right)$. We also give the total number of trails included in the bound in parenthesis $\left(\log _{2}\right)$ :

|  | Differential |  |  |  | Linear |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rounds | $(0,1) \rightarrow(1,0)$ | $(1,2) \rightarrow(2,1)$ |  | $(1,0) \rightarrow(0,1)$ | $(1,2) \rightarrow(2,1)$ |  |  |
| 10 | $-\infty$ |  | $-\infty$ |  | $-\infty$ |  | $-\infty$ |
| 11 | -23.25 | $(28.0)$ | -27.25 |  | -23.81 | $(23.9)$ | -27.81 |
| 12 | -26.40 | $(36.2)$ | -26.17 |  | -26.39 | $(31.7)$ | -26.68 |
| 13 | -28.02 | $(47.2)$ | -26.90 |  | -27.98 | $(42.0)$ | -27.31 |
| 14 | -30.06 | $(58.2)$ | -29.59 |  | -29.95 | $(52.5)$ | -29.56 |
| 15 | -31.93 | $(70.8)$ | -31.37 | -31.86 | $(64.9)$ | -31.29 |  |
| $\vdots$ |  |
| 20 | -41.75 | $(131.9)$ | -41.26 | -41.74 | $(124.5)$ | -41.25 |  |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  | $\vdots$ | $\vdots$ | $\vdots$ |
| 25 | -51.01 | $(192.9)$ | -50.54 | -51.00 | $(184.1)$ | -50.56 |  |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  | $\vdots$ | $\vdots$ | $\vdots$ |
| 30 | -60.41 | $(254.0)$ | -59.92 | -60.36 | $(243.6)$ | -59.86 |  |
| 31 | -62.29 | $(266.2)$ | -61.81 |  | -62.24 | $(255.5)$ | -61.75 |
| 32 | -64.17 | $(278.4)$ | -63.69 | -64.12 | $(267.4)$ | -63.63 |  |
| 33 | -66.05 | $(290.6)$ | -65.57 | -66.00 | $(279.3)$ | -65.51 |  |

## Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability $p$ :

$$
\left(\alpha_{0}, \beta_{0}\right) \rightarrow\left(\alpha_{1}, \beta_{1}\right) \rightarrow \ldots \rightarrow\left(\alpha_{r}, \beta_{r}\right)
$$

we can convert it into a linear trail:

$$
\left(\overleftarrow{\beta}_{0}, \overleftarrow{\alpha}_{0}\right) \rightarrow\left(\overleftarrow{\beta}_{1}, \overleftarrow{\alpha}_{1}\right) \rightarrow \ldots \rightarrow\left(\overleftarrow{\beta}_{r}, \overleftarrow{\alpha}_{r}\right)
$$

where $\overleftarrow{x}$ denotes bit-reversed $x$

## Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability $p$ :

$$
\left(\alpha_{0}, \beta_{0}\right) \rightarrow\left(\alpha_{1}, \beta_{1}\right) \rightarrow \ldots \rightarrow\left(\alpha_{r}, \beta_{r}\right)
$$

we can convert it into a linear trail:

$$
\left(\overleftarrow{\beta}_{0}, \overleftarrow{\alpha}_{0}\right) \rightarrow\left(\overleftarrow{\beta}_{1}, \overleftarrow{\alpha}_{1}\right) \rightarrow \ldots \rightarrow\left(\overleftarrow{\beta}_{r}, \overleftarrow{\alpha}_{r}\right)
$$

where $\overleftarrow{x}$ denotes bit-reversed $x$.
$\rightarrow$ if all the non-linear gates are independent: the linear trail has squared correlation $p$.

## Links between Linear and Differential Trails

Alizadeh et al. shown that given a differential trail with probability $p$ :

$$
\left(\alpha_{0}, \beta_{0}\right) \rightarrow\left(\alpha_{1}, \beta_{1}\right) \rightarrow \ldots \rightarrow\left(\alpha_{r}, \beta_{r}\right)
$$

we can convert it into a linear trail:

$$
\left(\overleftarrow{\beta}_{0}, \overleftarrow{\alpha}_{0}\right) \rightarrow\left(\overleftarrow{\beta}_{1}, \overleftarrow{\alpha}_{1}\right) \rightarrow \ldots \rightarrow\left(\overleftarrow{\beta}_{r}, \overleftarrow{\alpha}_{r}\right)
$$

where $\overleftarrow{x}$ denotes bit-reversed $x$
$\rightarrow$ if all the non-linear gates are independent: the linear trail has squared correlation $p$.
$\rightarrow$ else: the probabilities of the linear and differential trails are not the same, but very similar.

## What about Simon?

We also apply the same strategy against Simon, but the bound we obtain is not as tight as for Simeck: the linear potential still increases significantly with the window size $w$.


Effect of $w$ on the probability of Simon linear hulls.

## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Table of contents

## (1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(9) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(3) Conclusion


## Reminder: Differential and Linear Distinguishers

- Differential distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]\right)$ pairs $(P, P \oplus \delta)$ and compute:

$$
Q=\#\left\{P: E(P) \oplus E(P \oplus \delta)=\delta^{\prime}\right\}
$$

$\rightarrow Q \approx D / \operatorname{Pr}\left[\delta \rightsquigarrow \delta^{\prime}\right]$ for the cipher
$\rightarrow Q \approx D / 2^{n}$ for a random permutation

- Linear distinguisher:

We collect $D=\mathcal{O}\left(1 / \operatorname{ELP}\left[\alpha \rightsquigarrow \alpha^{\prime}\right]\right)$ pairs $(P, C)$ and compute:

$$
Q=\left(\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=0\right\}-\#\left\{P, C: P \cdot \alpha \oplus C \cdot \alpha^{\prime}=1\right\}\right) / D
$$

$\rightarrow Q^{2} \approx E L P\left[\alpha \rightsquigarrow \alpha^{\prime}\right]$ for the cipher
$\rightarrow Q^{2} \approx 2^{-n / 2}$ for a random permutation

## Key Recovery

## Key Recovery



- Some rounds are added before and/or after the distinguisher.

General description of a cipher.

## Key Recovery



- Some rounds are added before and/or after the distinguisher.
- The statistic used by the distinguisher is $Q$, and it can be evaluated using a subset of the key: $\left(k_{p}, k_{t}, k_{b}, k_{c}\right)$.
- The total number of guessed bits is $\kappa_{g}$ with $\kappa_{g}<\kappa$.

General description of a cipher.

## Key-recovery

Algorithm Naive key-recovery
for all $k=\left(k_{p}, k_{t}, k_{b}, k_{c}\right)$ do
for all pairs in $D$ do
compute $Q(k)$
if $Q(k)>s$ then
$k$ is a possible candidate

Complexity: $D \times 2^{\kappa_{g}}$ with $\kappa_{g}$ the number of key bits of $k$.

## Key-recovery

Algorithm Naive key-recovery
for all $k=\left(k_{p}, k_{t}, k_{b}, k_{c}\right)$ do
for all pairs in $D$ do
compute $Q(k)$
if $Q(k)>s$ then
$k$ is a possible candidate

Complexity: $D \times 2^{\kappa_{g}}$ with $\kappa_{g}$ the number of key bits of $k$.

This can be reduced to approximately $D+2^{\kappa_{g}}$ using algorithm tricks:

- Dynamic key guessing for Differential Cryptanalysis
[QHS'16, WWJZ'18]
- Fast Walsh Transform for Linear Cryptanalysis
[CSQ'07, FN'20]


## Key-recovery

$F_{R}$ : the probability distribution of $Q$ for the right key.
$F_{W}$ : the probability distribution of $Q$ for a wrong key.


## Key-recovery

$F_{R}$ : the probability distribution of $Q$ for the right key.
$F_{W}$ : the probability distribution of $Q$ for a wrong key.


We aim to keep a proportion $2^{-a}$ of key candidates, so we set a threshold s:

$$
2^{-a}=1-F_{W}(s) \quad \Leftrightarrow \quad s=F_{w}^{-1}\left(1-2^{-a}\right)
$$

## Key-recovery

$F_{R}$ : the probability distribution of $Q$ for the right key.
$F_{W}$ : the probability distribution of $Q$ for a wrong key.


Then, the success probability is given by:

$$
P_{S}=1-F_{R}(s)
$$

## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis

5 Conclusion

## Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.
(1) Which key bits need to be guessed?
(2) How to rearrange operations to reduce time complexity?

## Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.
(1) Which key bits need to be guessed?

Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.
(2) How to rearrange operations to reduce time complexity?

## Key Recovery Using Differential Cryptanalysis

We reuse the dynamic key-guessing attack.
(1) Which key bits need to be guessed?

Offline part: determining the extended path associated to a differential, and then deducing the subkey bits that need to be guessed.
(2) How to rearrange operations to reduce time complexity?

Online part: guess subkey bits and filter data round by round, in order to compute $Q(k)$.

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 2 3 | 00000000000000000000000000000001 00000000000000000000000000000000 | 00000000000000000000000000 *0001 * 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 34 | 00000000000000000000000000000001 00000000000000000000000000 * 0001 * | 00000000000000000000000000000000 00000000000000000000000000000001 |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 0 | $000000000000000000000 * 000 * * 001 * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 1 | 00000000000000000000000000 *0001 * | $000000000000000000000 * 000 * * 001 * *$ |
| 2 | 00000000000000000000000000000001 | 00000000000000000000000000 *0001 * |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |
| 34 | 00000000000000000000000000 * 0001 * | 00000000000000000000000000000001 |
| 35 | 000000000000000000000 * 000 **001** | 00000000000000000000000000 * 0001 * |
| 36 | $0000000000000000 * 000 * * 00 * * * 01 * * *$ | $000000000000000000000 * 000 * * 001 * *$ |
| 37 | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 38 | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ |
| 39 | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ |
| 40 | $* * 00 * * * 0 * * * * * * * * * * * * * * * * * * * * * * *$ | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * *$ |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 0 | $000000000000000000000 * 000 * * 001 * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 1 | 00000000000000000000000000 * 0001 * | 000000000000000000000 *000 * * 001 ** |
| 2 | 00000000000000000000000000000001 | 00000000000000000000000000 *0001 * |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |
| 34 | 00000000000000000000000000 * 0001 * | 00000000000000000000000000000001 |
| 35 | $000000000000000000000 * 000$ **001** | 00000000000000000000000000 * 0001 * |
| 36 | $0000000000000000 * 000 * * 00 * * * 01 * * *$ | 000000000000000000000 *000**001*** |
| 37 | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 38 | $000000 * 000 * * 00 * * * 0 * * * * * *$ | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ |
| 39 | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ |
| 40 | $* * 00 * * * 0 * * * * * * * * * * * * * * * * * * * * * * *$ | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.
(2) Determining the sufficient bit conditions (in red).

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 0 | $000000000000000000000 * 000 * * 001 * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 1 | 00000000000000000000000000 *0001 * | 000000000000000000000 * 000 * * 001 ** |
| 2 | 00000000000000000000000000000001 | 00000000000000000000000000 * 0001 * |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |
| 34 | 00000000000000000000000000 * 0001 * | 00000000000000000000000000000001 |
| 35 | $000000000000000000000 * 000$ **001** | 00000000000000000000000000 * 0001 * |
| 36 | $0000000000000000 * 000 * * 00 * * * 01 * * *$ | 000000000000000000000 * 000 **001** |
| 37 | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 38 | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ |
| 39 | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ |
| 40 | $* * 00 * * * 0 * * * * * * * * * * * * * * * * * * * * * * * *$ | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.
(2) Determining the sufficient bit conditions (in red).

## Dynamic key guessing: Offline Part

| $r$ | Differential path |  |
| :---: | :---: | :---: |
| 0 | $000000000000000000000 * 000 * * 001 * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 1 | 00000000000000000000000000 *0001 * | 000000000000000000000 *000 * * 001 ** |
| 2 | 00000000000000000000000000000001 | 00000000000000000000000000 *0001 * |
| 3 | 00000000000000000000000000000000 | 00000000000000000000000000000001 |
|  | 30-round differential (3 $\rightarrow 33$ ) |  |
| 33 | 00000000000000000000000000000001 | 00000000000000000000000000000000 |
| 34 | 00000000000000000000000000 *0001 * | 00000000000000000000000000000001 |
| 35 | $000000000000000000000 * 000$ **001** | 00000000000000000000000000 * 0001 * |
| 36 | $0000000000000000 * 000$ **00***01* | 000000000000000000000 * 000 ** 001 ** |
| 37 | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ | $0000000000000000 * 000 * * 00 * * * 01 * * *$ |
| 38 | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ | $00000000000 * 000 * * 00 * * * 0 * * * * 1 * * * *$ |
| 39 | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ | $000000 * 000 * * 00 * * * 0 * * * * * * * * * * * * * *$ |
| 40 | ** $00 * * * 0$ | $0 * 000 * * 00 * * * 0 * * * * * * * * * * * * * * * * * * *$ |

Starting from the differential $(0,1) \rightarrow(1,0)$ covering 30 rounds, we add 3 rounds before, and 7 rounds after:
(1) Tracking the propagation of differences in the additional rounds.
(2) Determining the sufficient bit conditions (in red).
(3) Deducing the necessary bits to check the sufficient bit conditions:

$$
\left(k_{p}, k_{t}, k_{b}, k_{c}\right)
$$

## Dynamic key guessing: Online Part (1)

Round by round, we guess subkey bits and filter the pairs that do not check the sufficient bit conditions.

At the end, for each key guess $\left(k_{p}, k_{t}, k_{b}, k_{c}\right)$, we compute $Q(k)$ the number of pairs satisfying the differential:
$\rightarrow$ for the right key guess, the expected value is $\lambda_{R}=p \times D / 2$.
$\rightarrow$ for the wrong key guess, the expected value is $\lambda_{W}=D / 2^{n-1}$.
$\Rightarrow F_{R}$ and $F_{W}$ are Poisson law with parameter $\lambda_{R}$ and $\lambda_{W}$.

## Dynamic key guessing: Online Part (2)

Then, for all key guess $k$ such that $Q(k)>s$, the corresponding master keys are reconstructed:

- If the key schedule is linear: this can be done using linear algebra and an exhaustive search of the $\kappa-\kappa_{g}$ missing bits of the key.
- If the key schedule is non-linear: combining information from the top and the bottom part of the key is not immediate. Starting from the $\kappa_{\text {max }}=\max \left(\kappa_{p}+\kappa_{t}, \kappa_{b}+\kappa_{c}\right)$ bits, we do an exhaustive search of the $\kappa-\kappa_{\text {max }}$ missing bits.


## Dynamic key guessing - Complexity

In total, the complexity and the probability of success are:

$$
\begin{gathered}
C_{1}=D+2^{\kappa_{g}} \cdot \lambda_{W}+2^{\kappa+\kappa_{\text {min }}} \cdot\left(1-F_{W}(s)\right) \\
P_{S}=1-F_{R}(s)
\end{gathered}
$$

with $\kappa_{\text {min }}=\min \left(\kappa_{p}+\kappa_{t}, \kappa_{b}+\kappa_{c}\right)$.

## Dynamic key guessing - Complexity

In total, the complexity and the probability of success are:

$$
\begin{gathered}
C_{1}=D+2^{\kappa_{g}} \cdot \lambda_{W}+2^{\kappa+\kappa_{\text {min }}} \cdot\left(1-F_{W}(s)\right) \\
P_{S}=1-F_{R}(s)
\end{gathered}
$$

with $\kappa_{\text {min }}=\min \left(\kappa_{p}+\kappa_{t}, \kappa_{b}+\kappa_{c}\right)$.
$\Rightarrow$ The attack is repeated until it succeeds, using rotations of the initial differential: $C=C_{1} / P_{S}$.


## Dynamic key guessing - Complexity

In total, the complexity and the probability of success are:

$$
\begin{gathered}
C_{1}=D+2^{\kappa_{g}} \cdot \lambda_{W}+2^{\kappa+\kappa_{\text {min }}} \cdot\left(1-F_{W}(s)\right) \\
P_{S}=1-F_{R}(s)
\end{gathered}
$$

with $\kappa_{\text {min }}=\min \left(\kappa_{p}+\kappa_{t}, \kappa_{b}+\kappa_{c}\right)$.
$\Rightarrow$ The attack is repeated until it succeeds, using rotations of the initial differential: $C=C_{1} / P_{S}$.


## Dynamic key guessing - Complexity

In total, the complexity and the probability of success are:

$$
\begin{gathered}
C_{1}=D+2^{\kappa_{g}} \cdot \lambda_{W}+2^{\kappa+\kappa_{\text {min }}} \cdot\left(1-F_{W}(s)\right) \\
P_{S}=1-F_{R}(s)
\end{gathered}
$$

with $\kappa_{\text {min }}=\min \left(\kappa_{p}+\kappa_{t}, \kappa_{b}+\kappa_{c}\right)$.
$\Rightarrow$ The attack is repeated until it succeeds, using rotations of the initial differential: $C=C_{1} / P_{S}$.


## Table of contents

## 1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers
(4) Improved Key-recovery attacks against Simeck
- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Key-recovery using Linear Cryptanalysis - FWT

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$
\begin{aligned}
q\left(k_{p}, k_{t}, k_{c}, k_{b}\right) & =\frac{1}{D}\left(\#\left\{P, C: P^{\prime} \cdot \alpha=C^{\prime} \cdot \beta\right\}-\#\left\{P, C: P^{\prime} \cdot \alpha \neq C^{\prime} \cdot \beta\right\}\right) \\
& =\frac{1}{D} \sum_{P, C}(-1)^{P^{\prime} \cdot \alpha \oplus C^{\prime} \cdot \beta}
\end{aligned}
$$

## Key-recovery using Linear Cryptanalysis - FWT

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$
\begin{aligned}
q\left(k_{p}, k_{t}, k_{c}, k_{b}\right) & =\frac{1}{D}\left(\#\left\{P, C: P^{\prime} \cdot \alpha=C^{\prime} \cdot \beta\right\}-\#\left\{P, C: P^{\prime} \cdot \alpha \neq C^{\prime} \cdot \beta\right\}\right) \\
& =\frac{1}{D} \sum_{P, C}(-1)^{P^{\prime} \cdot \alpha \oplus C^{\prime} \cdot \beta}
\end{aligned}
$$

Let define $P^{\prime} \cdot \alpha=f\left(k_{t}, k_{p} \oplus \chi_{p}(P)\right)$ and $C^{\prime} \cdot \beta=g\left(k_{b}, k_{c} \oplus \chi_{c}(C)\right)$

$$
\begin{aligned}
& =\frac{1}{D} \sum_{P, C}(-1)^{f\left(k_{t}, k_{p} \oplus \chi_{\rho}(P)\right) \oplus g\left(k_{b}, k_{c} \oplus \chi_{c}(C)\right)} \\
& =\frac{1}{D} \sum_{i \in \mathbb{F}_{2}^{\kappa_{p}}} \sum_{j \in \mathbb{F}_{2}^{\kappa_{c}}} \#\left\{P, C: \chi_{p}(P)=i, \chi_{c}(C)=j\right\} \times(-1)^{f\left(k_{t}, k_{p} \oplus i\right) \oplus g\left(k_{b}, k_{c} \oplus j\right)}
\end{aligned}
$$

## Key-recovery using Linear Cryptanalysis - FWT

We apply the Fast Walsh Transform approach proposed by [CSQ'07]:

$$
\begin{aligned}
q\left(k_{p}, k_{t}, k_{C}, k_{b}\right) & =\frac{1}{D}\left(\#\left\{P, C: P^{\prime} \cdot \alpha=C^{\prime} \cdot \beta\right\}-\#\left\{P, C: P^{\prime} \cdot \alpha \neq C^{\prime} \cdot \beta\right\}\right) \\
& =\frac{1}{D} \sum_{P, C}(-1)^{P^{\prime} \cdot \alpha \oplus C^{\prime} \cdot \beta}
\end{aligned}
$$

Let define $P^{\prime} \cdot \alpha=f\left(k_{t}, k_{p} \oplus \chi_{p}(P)\right)$ and $C^{\prime} \cdot \beta=g\left(k_{b}, k_{c} \oplus \chi_{c}(C)\right)$

$$
\begin{aligned}
& =\frac{1}{D} \sum_{P, C}(-1)^{f\left(k_{t}, k_{\rho} \oplus \chi_{\rho}(P)\right) \oplus g\left(k_{b}, k_{c} \oplus \chi_{c}(C)\right)} \\
& =\frac{1}{D} \sum_{i \in \mathbb{F}_{2}^{\kappa_{p}}} \sum_{j \in \mathbb{F}_{2}^{\kappa_{c}}} \#\left\{P, C: \chi_{\rho}(P)=i, \chi_{c}(C)=j\right\} \times(-1)^{f\left(k_{t}, k_{\rho} \oplus i\right) \oplus g\left(k_{b}, k_{c} \oplus j\right)}
\end{aligned}
$$

We remark that the previous expression is actually a convolution:

$$
=\frac{1}{D} \sum_{i, j} \phi(i, j) \times \psi_{k_{t}, k_{b}}\left(k_{p} \oplus i, k_{c} \oplus j\right)=\frac{1}{D}\left(\phi * \psi_{k_{t}, k_{b}}\right)\left(k_{p}, k_{c}\right),
$$

$$
\text { with } \quad\left\{\begin{array}{cl}
\phi(x, y) & =\#\left\{P, C: \chi_{p}(P)=x, \chi_{c}(C)=y\right\} \\
\psi_{k_{t}, k_{b}}(x, y) & =(-1)^{f\left(k_{t}, x\right) \oplus g\left(k_{b}, y\right)}
\end{array}\right.
$$

## Key-recovery using Linear Cryptanalysis - FWT

We apply the Fast Walsh Transform approach proposed in [CSQ'07] and improved in [FN'20] to Simeck and Simon.
The attack is decomposed in three phases:

Distillation phase. Compute $\phi(x, y)=\#\left\{P, C: \chi_{p}(P)=x, \chi_{c}(C)=y\right\}$ for $0 \leq x<2^{\kappa_{p}}, 0 \leq y<2^{\kappa_{c}}$.

Analysis phase. For each guess of $k_{t}, k_{b}$, for all $0 \leq x<2^{\kappa_{p}}, 0 \leq y<2^{\kappa_{c}}$, compute $\psi_{k_{t}, k_{b}}(x, y)=(-1)^{f\left(k_{t}, x\right) \oplus g\left(k_{b}, y\right)}$, then evaluate the convolution $\phi * \psi_{k_{t}, k_{b}}$ using the Fast Walsh Transform.

Search phase. For all keys with $q\left(k_{p}, k_{t}, k_{c}, k_{b}\right) \geq s$, exhaustively try all master keys corresponding to $k_{p}, k_{t}, k_{c}, k_{b}$.

## Key-recovery using Linear Cryptanalysis - FWT

How to estimate the Success Probability when they are

## several dominant trails?

As seen previously, they can interact constructively, or destructively... But the correlation for the right and the wrong key follow normal distribution with parameters:
[BN, ToSC'16]

$$
\begin{aligned}
\mu_{R}=0 & \sigma_{R}^{2}=B / D+\mathrm{ELP} \\
\mu_{W}=0 & \sigma_{W}^{2}=B / D+2^{-n}
\end{aligned}
$$



## Key-recovery using Linear Cryptanalysis - FWT

How to estimate the Success Probability when they are

## several dominant trails?

As seen previously, they can interact constructively, or destructively... But the correlation for the right and the wrong key follow normal distribution with parameters:
[BN, ToSC'16]

$$
\begin{array}{rlr}
\mu_{R}=0 & \sigma_{R}^{2}=B / D+\mathrm{ELP} \\
\mu_{W}=0 & \sigma_{W}^{2}=B / D+2^{-n}
\end{array}
$$



## Key-recovery using Linear Cryptanalysis - FWT

How to estimate the Success Probability when they are

## several dominant trails?

As seen previously, they can interact constructively, or destructively... But the correlation for the right and the wrong key follow normal distribution with parameters:
[BN, ToSC'16]

$$
\begin{array}{rlr}
\mu_{R}=0 & \sigma_{R}^{2}=B / D+\mathrm{ELP} \\
\mu_{W}=0 & \sigma_{W}^{2}=B / D+2^{-n}
\end{array}
$$



## Linear VS Differential Key-recovery

We have seen previously that linear and differential distinguishers are very close...

## Linear VS Differential Key-recovery

We have seen previously that linear and differential distinguishers are very close...
But what about the key-recovery part?

## Linear VS Differential Key-recovery

We have seen previously that linear and differential distinguishers are very close...
But what about the key-recovery part?
The main difference come from the number of bits that have to be guessed:

| Key bits <br> Rounds | Differential |  |  | Linear |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | total | independent |  | total | independent |
|  | 0 | 0 |  | 0 | 0 |
| 2 | 2 | 2 |  | 2 | 2 |
| 3 | 9 | 9 |  | 7 | 7 |
| 4 | 27 | 27 |  | 16 | 16 |
| 5 | 56 | 56 |  | 30 | 30 |
| 6 | 88 | 88 |  | 50 | 48 |
| 7 | 120 | 114 |  | 75 | 68 |
| 8 |  |  |  | 104 | 88 |

Comparison of key recovery rounds for differential and linear attacks against Simeck64/128.

## Key-Recovery Parameters

Examples of set of parameters for Simeck64/128:

- Differential cryptanalysis:

$$
\begin{aligned}
& \text { Rounds }=40=3+30+7 \quad D=2^{64} \\
& \kappa_{\text {min }}=9 \quad \kappa_{\text {max }}=114 \quad \lambda_{R}=2^{2.59} \quad \lambda_{W}=2^{-1} \quad s=6 \\
& \Rightarrow C_{1}=2^{122} \quad P_{S}=0.4 \quad C=2^{123.4}
\end{aligned}
$$

- Linear cryptanalysis:

$$
\begin{aligned}
& \text { Rounds }=42=8+30+4 \quad D=2^{64} \\
& \kappa_{\text {min }}=16 \quad \kappa_{\text {max }}=88 \quad a=29 \\
& \Rightarrow C_{1}=2^{118} \quad P_{S}=0.1 \quad C=2^{121.5}
\end{aligned}
$$

## Table of contents

(1) Introduction

- Simon and Simeck
- Differential Cryptanalysis
- Linear Cryptanalysis
(2) Stronger Differential distinguishers for Simon-like ciphers
- Probability of transition through $f$
- A class of high probability trails
(3) Stronger Linear distinguishers for Simon-like ciphers

4 Improved Key-recovery attacks against Simeck

- Generalities
- Using Differential Cryptanalysis
- Using Linear Cryptanalysis
(5) Conclusion


## Results on Simeck

| Cipher | Rounds | Attacked | Data | Time | Ref | Note |
| :--- | :---: | :---: | :--- | :--- | :---: | :--- |
| Simeck48/96 | 36 | 30 | $2^{47.66}$ | $2^{88.04}$ | [QCW'16] | Linear $\dagger \ddagger$ |
|  |  | 32 | $2^{47}$ | $2^{90.9}$ | New | Linear |
| Simeck64/128 | 44 | 37 | $2^{63.09}$ | $2^{121.25}$ | [QCW'16] | Linear $\dagger \ddagger$ |
|  |  | 42 | $2^{63.5}$ | $2^{123.9}$ | New | Linear |

Summary of previous and new attacks against Simeck.
${ }^{\dagger}$ The advantage is too low to do a key-recovery.
${ }^{\ddagger}$ Attack use the duality between linear and differential distinguishers.

## Results on Simon

| Cipher | Rounds | Attacked | Data | Time | Ref | Note |
| :--- | :---: | :---: | :--- | :--- | :---: | :--- |
| Simon96/96 | 52 | 37 | $2^{95}$ | $2^{87.2}$ | [WWJZ'18] | Diff. |
|  |  | 43 | $2^{94}$ | $2^{89.6}$ | New | Linear |
| Simon96/144 | 54 | 38 | $2^{95.2}$ | $2^{136}$ | [CW'16] | Linear |
|  |  | 45 | $2^{95}$ | $2^{136.5}$ | [CW'16] | Linear |
| Simon128/128 | 68 | 50 | $2^{127}$ | $2^{119.2}$ | [WWJZ'18] | Diff. |
|  |  | 53 | $2^{127}$ | $2^{121}$ | New | Linear |
| Simon128/192 | 69 | 51 | $2^{127}$ | $2^{183.2}$ | [WWJZ'18] | Diff. |
|  |  | 55 | $2^{127}$ | $2^{185.2}$ | New | Linear |
| Simon128/256 | 72 | 53 | $2^{127.6}$ | $2^{249}$ | [CW'16] | Linear |
|  |  | 56 | $2^{126}$ | $2^{249}$ | New | Linear |

Summary of previous and new attacks against Simon.

## Results on Simon

We show that Simon96/96 and Simon96/144 only have 17\% of the rounds as security margin, which contradicts what the designers wrote:

## Assumption [Simon designers, ePrint2017/560]

"After almost 4 years of concerted effort by academic researchers, the various versions of Simon and Speck retain a margin averaging around $30 \%$, and in every case over $25 \%$. The design team's analysis when making stepping decisions was consistent with these numbers."

## Conclusion

- Using differential and linear paths with all intermediate states in a fixed window of w bits, we obtain better probabilities for existing differential and linear distinguishers.


## Conclusion

- Using differential and linear paths with all intermediate states in a fixed window of w bits, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the minimum number of active bits, so that the key-recovery part is also improved.


## Conclusion

- Using differential and linear paths with all intermediate states in a fixed window of $w$ bits, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the minimum number of active bits, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...


## Conclusion

- Using differential and linear paths with all intermediate states in a fixed window of $w$ bits, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the minimum number of active bits, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Concerning Simon, the lower bound of the probability of the linear approximation seems not as tight as for Simeck: further work can probably improve our results...


## Conclusion

- Using differential and linear paths with all intermediate states in a fixed window of $w$ bits, we obtain better probabilities for existing differential and linear distinguishers.
- We also obtain good differential and linear approximation with the minimum number of active bits, so that the key-recovery part is also improved.
- By applying this to advanced existing linear and differential attacks, we improved previous results and obtain an attack on 42 out of 44 rounds for Simeck64/128, and 43 out of 52 rounds of Simon96/96...
- Concerning Simon, the lower bound of the probability of the linear approximation seems not as tight as for Simeck: further work can probably improve our results...


## For more details:

https://eprint.iacr.org/2021/1198

