Clustering Effect in Simon and Simeck

Gaëtan Leurent¹, Clara Pernot¹ and André Schrottenloher²

¹Inria, Paris ²CWI, Amsterdam

November 2021

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Attempt of ISO standardization... But some experts were suspicious about:

- $\rightarrow\,$ the absence of rationale
- $\rightarrow\,$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithms
- $\rightarrow\,$ the lack of clear need for standardisation of the new ciphers

More than 70 papers study Simon and Speck!

Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

- Simon optimized in hardware
- Speck optimized in software

[BTSWSW, DAC'15] [BTSWSW, DAC'15]

Attempt of ISO standardization... But some experts were suspicious about:

- $\rightarrow\,$ the absence of rationale
- $\rightarrow\,$ NSA's previous involvement in the creation and promotion of backdoored cryptographic algorithms
- $\rightarrow\,$ the lack of clear need for standardisation of the new ciphers

More than 70 papers study Simon and Speck!

 \Rightarrow A variant of Simon and Speck: Simeck.

[YZSAG, CHES'15]

Summary of previous and new attacks

Cipher	Rounds	Attacked	Ref	Note
Simeck48/96	36	30	[QCW'16]	Linear † ‡
		32	New	Linear
Simeck64/128	44	37	[QCW'16]	Linear † ‡
		42	New	Linear
Simon96/96	52	37	[WWJZ'18]	Differential
		43	New	Linear
Simon96/144	54	38	[CW'16]	Linear
		45	New	Linear
Simon128/128	68	50	[WWJZ'18]	Differential
		53	New	Linear
Simon128/192	69	51	[WWJZ'18]	Differential
		55	New	Linear
Simon128/256	72	53	[CW'16]	Linear
		56	New	Linear

[†]The advantage is too low to do a key recovery.

[‡]Attack use the duality between linear and differential distinguishers.

G. Leurent, C. Pernot and A. Schrottenloher

Clustering Effect in Simon and Simeck

Table of contents

Introduction

- Simon and Simeck
- Differential and Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers

- Probability of transition through f
- A class of high probability trails
- Stronger Linear distinguishers for Simon-like ciphers
- Improved Key Recovery attacks against Simeck

5 Conclusion

Table of contents

Introduction

Simon and Simeck

• Differential and Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers

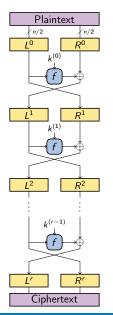
- Probability of transition through f
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key Recovery attacks against Simeck

Conclusion

Feistel cipher



A Feistel network is characterized by:

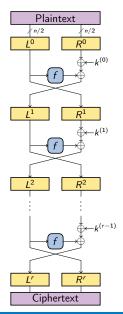
- its block size: n
- its key size: κ
- its number of round: r
- its round function: f

For each round $i = 0, \ldots, r - 1$:

$$\begin{cases} R^{i+1} = L^{i} \\ L^{i+1} = R^{i} \oplus f(L^{i}, k^{(i)}) \end{cases}$$

Example: Data Encryption Standard (DES).

Feistel cipher



A Feistel network is characterized by:

- its block size: n
- $\bullet\,$ its key size: $\kappa\,$
- its number of round: r
- its round function: f

For each round $i = 0, \ldots, r - 1$:

$$\begin{cases} R^{i+1} = L^{i} \\ L^{i+1} = R^{i} \oplus f(L^{i}, k^{(i)}) \end{cases}$$

Example: Data Encryption Standard (DES).

Simon, Speck and Simeck

 \rightarrow Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \lll 8) \land (x \lll 1)) \oplus (x \lll 2)$$

and a linear key schedule.

[BTSWSW'15]

 \rightarrow **Speck** is an Add-Rotate-XOR (ARX) cipher:

 $R_k(x,y) = \left(\left((x \lll \alpha) \boxplus y \right) \oplus k, (y \lll \beta) \oplus \left((x \lll \alpha) \boxplus y \right) \oplus k \right)$

which reuses its round function R_k in the key schedule.

[BTSWSW'15]

Simon, Speck and Simeck

 \rightarrow Simon is a Feistel network with a quadratic round function:

$$f(x) = ((x \lll 8) \land (x \lll 1)) \oplus (x \lll 2)$$

and a linear key schedule.

[BTSWSW'15]

 \rightarrow **Speck** is an Add-Rotate-XOR (ARX) cipher:

 $R_k(x,y) = \big(((x \lll \alpha) \boxplus y) \oplus k, (y \lll \beta) \oplus ((x \lll \alpha) \boxplus y) \oplus k\big)$

which reuses its round function R_k in the key schedule.

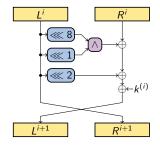
[BTSWSW'15]

 \rightarrow Simeck is a Feistel network with a quadratic round function:

$$f(x) = ((x \lll 5) \land x) \oplus (x \lll 1)$$

which reuses its round function *f* in the key schedule. [YZSAG'15]

Simon and Simeck

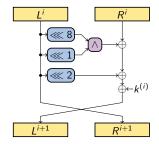


Simon round function

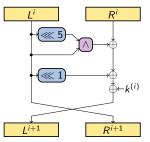
n (block size)	32	4	8	(54	Ç	96		128	
κ (key size)	64	72	96	96	128	96	144	128	192	256
r (rounds)	32	36	36	42	44	52	54	68	69	72

 \rightarrow Linear key schedule.

Simon and Simeck



Simon round function



Simeck round function

n (block size)	32	4	8	6	54	Ģ	96		128	
κ (key size)	64	72	96	96	128	96	144	128	192	256
r (rounds)	32	36	36	42	44	52	54	68	69	72

n	32	48	64
κ	64	96	128
r	32	36	44

 \rightarrow Non-linear key schedule which reuses *f*.

 \rightarrow Linear key schedule.

Table of contents

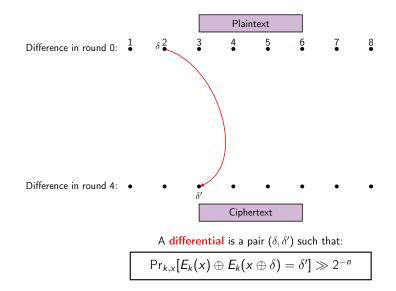
Introduction

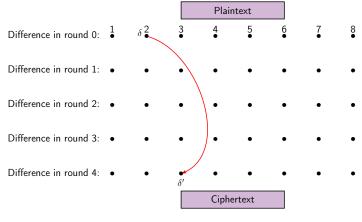
- Simon and Simeck
- Differential and Linear Cryptanalysis
- 2 Stronger Differential distinguishers for Simon-like ciphers
 - Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key Recovery attacks against Simeck

5 Conclusion

Difference in round 4: • • • • • • •

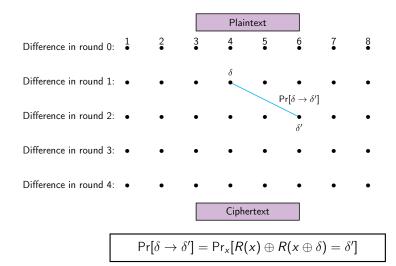
Ciphertext

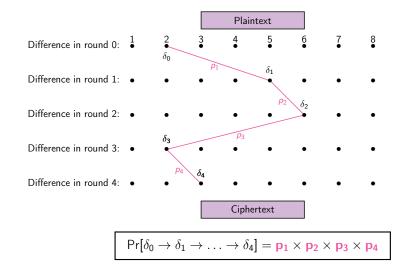


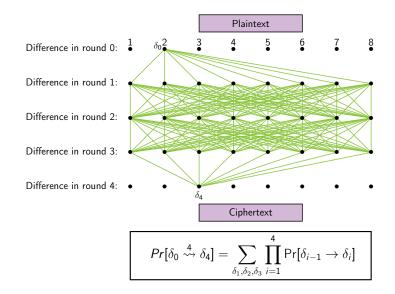


A differential is a pair (δ, δ') such that:

$$\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$$







Differential Cryptanalysis

Differential: a pair (δ, δ') such that $\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$

With independent round keys:

 \rightarrow for 1 round:

$$\Pr[\delta \to \delta'] = \Pr_{x}[R(x) \oplus R(x \oplus \delta) = \delta']$$

 \rightarrow for *r* rounds:

$$\Pr[\delta_0 \stackrel{r}{\rightsquigarrow} \delta_r] = \sum_{\delta_1, \delta_2, \dots \delta_{r-1}} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

Differential Cryptanalysis

Differential: a pair (δ, δ') such that $\Pr_{k,x}[E_k(x) \oplus E_k(x \oplus \delta) = \delta'] \gg 2^{-n}$

With independent round keys:

→ for 1 round: $\Pr[\delta \to \delta'] = \Pr_x[R(x) \oplus R(x \oplus \delta) = \delta']$

 \rightarrow for *r* rounds:

$$\Pr[\delta_0 \stackrel{r}{\rightsquigarrow} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1}} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i]$$

Linear Cryptanalysis

Linear Approx: a pair (α, α') such that $|\Pr_{x}[x \cdot \alpha = E_{k}(x) \cdot \alpha'] - 1/2| \gg 2^{-n/2}$

 $\frac{\text{With independent round keys:}}{\rightarrow \text{ for 1 round:}}$ $c(\alpha \rightarrow \alpha') = 2 \Pr_{x}[x \cdot \alpha = R(x) \cdot \alpha'] - 1$

 \rightarrow for *r* rounds:

$$\mathsf{ELP}(\alpha_0 \stackrel{r}{\rightsquigarrow} \alpha_r) = \sum_{\alpha_1, \alpha_2, \dots, \alpha_{r-1}} \prod_{i=1}^r c^2(\alpha_{i-1} \to \alpha_i)$$

Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

$$\rightarrow Q \approx D imes \Pr[\delta \rightsquigarrow \delta']$$
 for the cipher

 $ightarrow \ Q pprox D imes 2^{-n}$ for a random permutation

Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

$$ightarrow \ Q pprox D imes {\sf Pr}[\delta \leadsto \delta']$$
 for the cipher

 $ightarrow \ Q pprox D imes 2^{-n}$ for a random permutation

• Linear distinguisher: We collect $D = O(1/ \text{ELP}[\alpha \rightsquigarrow \alpha'])$ pairs (P, C) and compute: $Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})$

$$\rightarrow Q^2 \approx D \times ELP[\alpha \rightsquigarrow \alpha']$$
 for the cipher

 $ightarrow Q^2 pprox D imes 2^{-n}$ for a random permutation

Differential and Linear Distinguishers

• Differential distinguisher:

We collect $D = \mathcal{O}(1/\Pr[\delta \rightsquigarrow \delta'])$ pairs $(P, P \oplus \delta)$ and compute:

$$Q = \#\{P : E(P) \oplus E(P \oplus \delta) = \delta'\}$$

$$ightarrow \ Q pprox D imes {\sf Pr}[\delta \leadsto \delta']$$
 for the cipher

 $ightarrow \ Q pprox D imes 2^{-n}$ for a random permutation

• Linear distinguisher: We collect $D = O(1/ \text{ELP}[\alpha \rightsquigarrow \alpha'])$ pairs (P, C) and compute: $Q = (\#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 0\} - \#\{P, C : P \cdot \alpha \oplus C \cdot \alpha' = 1\})$ $\rightarrow Q^2 \approx D \times ELP[\alpha \rightsquigarrow \alpha']$ for the cipher $\rightarrow Q^2 \approx D \times 2^{-n}$ for a random permutation

How to find stronger distinguishers for Simon and Simeck?

12 / 36

Table of contents

Introduction

- Simon and Simeck
- Differential and Linear Cryptanalysis

2 Stronger Differential distinguishers for Simon-like ciphers

- Probability of transition through f
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key Recovery attacks against Simeck

5 Conclusion

Table of contents

Introduction

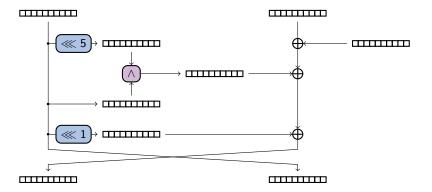
- Simon and Simeck
- Differential and Linear Cryptanalysis

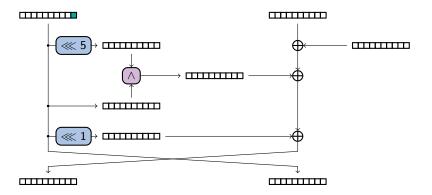
Stronger Differential distinguishers for Simon-like ciphers
 Probability of transition through *f* A class of high probability trails

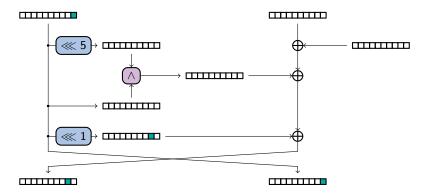
3 Stronger Linear distinguishers for Simon-like ciphers

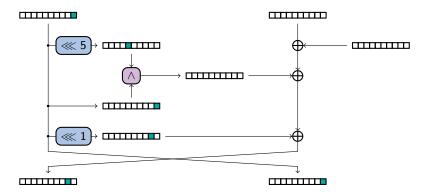
Improved Key Recovery attacks against Simeck

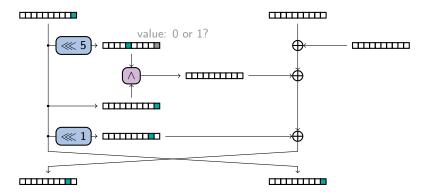
Conclusion

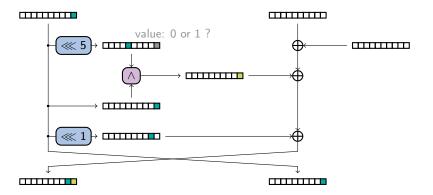


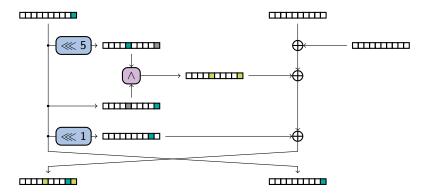


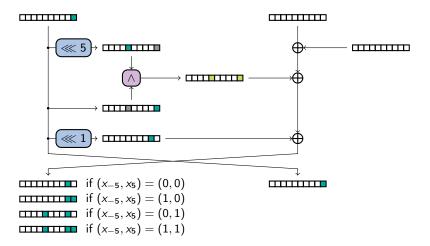


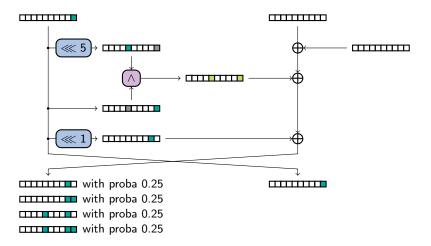












Probability of transition through f

Since *f* is **quadratic**, the **exact probability of transitions** can be computed efficiently for **Simon** and **Simeck**: [KLT, CRYPTO'15]

$$\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)] = \begin{cases} 2^{-\dim(U_{\delta_L})} & \text{if } \delta_L = \delta'_R \text{ and } \delta_R \oplus \delta'_L \in U_{\delta_L} \\ 0 & \text{otherwise} \end{cases}$$
$$U_{\delta} = \operatorname{Img} \left(x \mapsto f(x) \oplus f(x \oplus \delta) \oplus f(\delta) \right) \oplus f(\delta)$$

Table of contents

Introductio

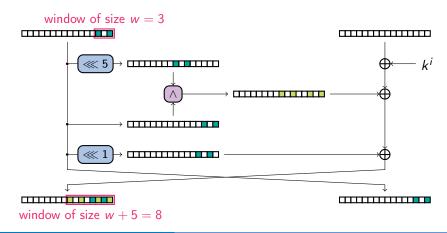
- Simon and Simeck
- Differential and Linear Cryptanalysis
- Stronger Differential distinguishers for Simon-like ciphers
 Probability of transition through f
 - A class of high probability trails
- 3 Stronger Linear distinguishers for Simon-like ciphers
- Improved Key Recovery attacks against Simeck

We know how to compute $\Pr[(\delta_L, \delta_R) \rightarrow (\delta'_L, \delta'_R)]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

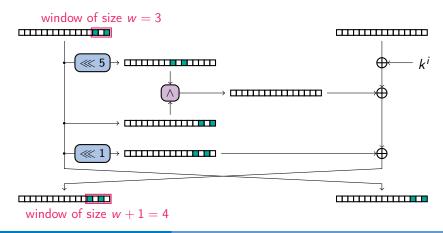
We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now... \to But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

Observation: Simeck diffusion in the worst case



We know how to compute $\Pr[(\delta_L, \delta_R) \to (\delta'_L, \delta'_R)]$ easily now... \to But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

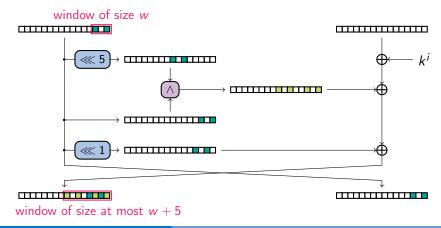
Observation: Simeck diffusion in the best case



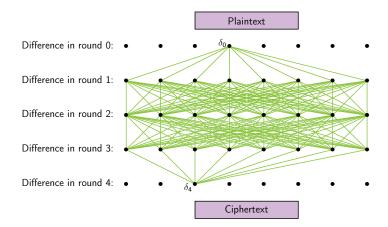
We know how to compute $\Pr[(\delta_L, \delta_R) \rightarrow (\delta'_L, \delta'_R)]$ easily now...

 \rightarrow But computing $\Pr[(\delta_L, \delta_R) \xrightarrow{r} (\delta'_L, \delta'_R)]$ remains hard!

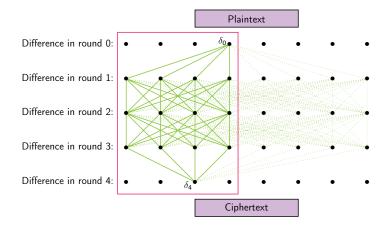
Conclusion: Simeck has a relatively slow diffusion!



Our idea is to focus on trails that are only active in a window of w bits:



Our idea is to focus on trails that are only active in a window of w bits:



- w: the size of the window ($w \le n/2$).
- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

• w: the size of the window ($w \le n/2$).

- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A lower bound of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \le \Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r]$$

• w: the size of the window ($w \le n/2$).

- Δ_w : the vector space of differences active only in the *w* LSBs.
- Δ_w^2 : the product $\Delta_w \times \Delta_w$ where the two words are considered.

A lower bound of the probability of the differential (δ_0, δ_r) is computed by summing over all characteristics with intermediate differences in Δ_w^2 :

$$\Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r] = \sum_{\delta_1, \delta_2, \dots, \delta_{r-1} \in \Delta_w^2} \prod_{i=1}^r \Pr[\delta_{i-1} \to \delta_i] \le \Pr[\delta_0 \underset{w}{\overset{r}{\rightsquigarrow}} \delta_r]$$

For w = 18 and r = 30: a week on a 48-core machine using 1TB of RAM

Our results

 \rightarrow Tighter lower bound for existing differentials (with w = 18):

Rounds	Differential	Proba (previous)	Reference	Proba (new)
26	(0,11) ightarrow (22,1)	$2^{-60.02}$	[Kölbl, Roy, 16]	2 ^{-54.16}
26	(0,11) ightarrow (2,1)	$2^{-60.09}$	[Qin, Chen, Wang, 16]	$2^{-54.16}$
27	(0,11) ightarrow(5,2)	$2^{-61.49}$	[Liu, Li, Wang, 17]	$2^{-56.06}$
27	(0,11) ightarrow (5,2)	$2^{-60.75}$	[Huang, Wang, Zhang, 18]	П
28	$(0,11) \rightarrow (A8,5)$	$2^{-63.91}$	[Huang, Wang, Zhang, 18]	$2^{-59.16}$

Our results

 \rightarrow Tighter lower bound for existing differentials (with w = 18):

Rounds	Differential	Proba (previous)	Reference	Proba (new)
26	(0,11) ightarrow (22,1)	$2^{-60.02}$	[Kölbl, Roy, 16]	$2^{-54.16}$
26	(0,11) ightarrow (2,1)	$2^{-60.09}$	[Qin, Chen, Wang, 16]	$2^{-54.16}$
27	(0,11) ightarrow(5,2)	$2^{-61.49}$	[Liu, Li, Wang, 17]	$2^{-56.06}$
27	(0,11) ightarrow (5,2)	$2^{-60.75}$	[Huang, Wang, Zhang, 18]	н
28	$(0,11) \rightarrow (A8,5)$	$2^{-63.91}$	[Huang, Wang, Zhang, 18]	$2^{-59.16}$

→ The **best characteristics** we identified are a set of 64 characteristics: $\{(1,2), (1,3), (1,22), (1,23), (2,5), (2,7), (2,45), (2,47)\}$ \rightarrow $\{(2,1), (3,1), (22,1), (23,1), (5,2), (7,2), (45,2), (47,2)\}$

 \Rightarrow However, $(0, 1) \rightarrow (1, 0)$ is almost as good and will lead to a more efficient key recovery because it has fewer active bits!

Differentials with high probabilities

log_2 of the probability of differentials for Simeck (using w = 18):

	Differential				
Rounds	(0,1) ightarrow (1,0)	$(1,2) \rightarrow (2,1)$			
10	$-\infty$	$-\infty$			
11	-23.25	-27.25			
12	-26.40	-26.17			
13	-28.02	-26.90			
14	-30.06	-29.59			
15	-31.93	-31.37			
:	:	:			
20	-41.75	-41.26			
:	:	:			
25	-51.01	-50.54			
30	-60.41	-59.92			
31	-62.29	-61.81			
32	-64.17	-63.69			
	0 4.17	55.05			

Differentials with high probabilities

How does our lower bound vary depending on the size of the window w?

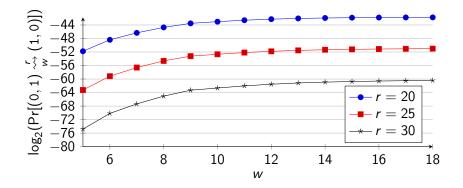


Table of contents

Introductio

- Simon and Simeck
- Differential and Linear Cryptanalysis

Stronger Differential distinguishers for Simon-like ciphers

- Probability of transition through f
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key Recovery attacks against Simeck

Stronger Linear distinguishers for Simon-like ciphers

By applying the same reasoning to linear cryptanalysis, a set of 64 (almost) **optimal trails** is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \\ \rightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\}\}$

Stronger Linear distinguishers for Simon-like ciphers

By applying the same reasoning to linear cryptanalysis, a set of 64 (almost) **optimal trails** is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \\ \rightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\}\}$

 \rightarrow They are bit-reversed versions of the optimal differential characteristics.

Stronger Linear distinguishers for Simon-like ciphers

By applying the same reasoning to linear cryptanalysis, a set of 64 (almost) **optimal trails** is obtained:

 $\{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)\} \\ \rightarrow \\ \{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)\} \}$

 \rightarrow They are bit-reversed versions of the optimal differential characteristics.

 \rightarrow For key recovery attack, the preference is given to $(1,0)\rightarrow(0,1).$

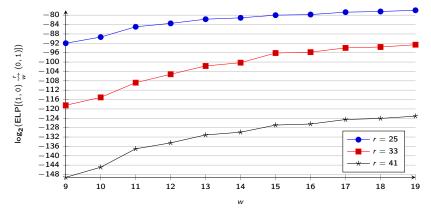
Lower bound of linear and differential distinguishers

Comparison of the **probability** of differentials and the linear potential of linear approximations for Simeck (\log_2 , using w = 18). We also give the total number of trails included in the bound in parenthesis (\log_2):

	Differential			Linear			
Rounds	(0, 1) -	→ (1, 0)	$(1,2) \rightarrow (2,1)$	(1,0) -	→ (0, 1)	(1,2) ightarrow (2,1)	
10	$-\infty$	(00.0)	$-\infty$	$-\infty$	(00.0)	$-\infty$	
11 12	-23.25 -26.40	(28.0) (36.2)	-27.25 -26.17	-23.81 -26.39	(23.9) (31.7)	-27.81 -26.68	
13	-28.02	(47.2)	-26.90	-27.98	(42.0)	-27.31	
14	-30.06	(58.2)	-29.59	-29.95	(52.5)	-29.56	
15	-31.93	(70.8)	-31.37	-31.86	(64.9)	-31.29	
:							
20	-41.75	(131.9)	-41.26	-41.74	(124.5)	-41.25	
:	:	:	:		:	:	
25	-51.01	(192.9)	-50.54	-51.00	(184.1)	-50.56	
÷	:	:	:		÷	:	
30	-60.41	(254.0)	-59.92	-60.36	(243.6)	-59.86	
31	-62.29	(266.2)	-61.81	-62.24	(255.5)	-61.75	
32	-64.17	(278.4)	-63.69	-64.12	(267.4)	-63.63	
33	-66.05	(290.6)	-65.57	-66.00	(279.3)	-65.51	

What about Simon?

We also apply the same strategy against Simon, but the bound we obtain is not as tight as for Simeck: the linear potential still increases significantly with the window size w.



Effect of *w* on the probability of Simon linear hulls.

Table of contents

Introductio

- Simon and Simeck
- Differential and Linear Cryptanalysis

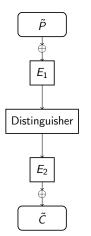
2 Stronger Differential distinguishers for Simon-like ciphers

- Probability of transition through f
- A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

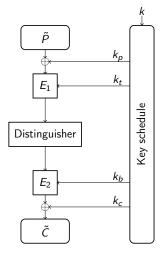
Improved Key Recovery attacks against Simeck

Distinguisher



• Some rounds are added **before** and/or **after** the distinguisher.

General description of a cipher.



General description of a cipher.

• Some rounds are added **before** and/or **after** the distinguisher.

• The statistic used by the distinguisher is Q, and it can be evaluated using a subset of the key: (k_p, k_t, k_b, k_c) .

• The total number of guessed bits is κ_g with $\kappa_g < \kappa$.

AlgorithmNaive key recoveryfor all $k = (k_p, k_t, k_b, k_c)$ dofor all pairs in D docompute Q(k)if Q(k) > s thenk is a possible candidate

Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

AlgorithmNaive key recoveryfor all $k = (k_p, k_t, k_b, k_c)$ dofor all pairs in D docompute Q(k)if Q(k) > s thenk is a possible candidate

Complexity: $D \times 2^{\kappa_g}$ with κ_g the number of key bits of k.

This can be reduced to approximately $D + 2^{\kappa_g}$ using algorithm tricks:

• Dynamic key guessing for Differential Cryptanalysis

[QHS'16, WWJZ'18]

• Fast Walsh Transform for Linear Cryptanalysis

[CSQ'07, FN'20]

Overview of the attack

(0) Find an efficient distinguisher Q

(1) Find the subset of the key that need to be guessed to evaluate Q

(2) Rearrange operations to reduce the time complexity from $D \times 2^{\kappa_g}$ to approximately $D + 2^{\kappa_g}$

Overview of the attack

Example: distinguisher over 30 rounds – Simeck64/128 Differential cryptanalysis Linear cryptanalysis

(0) Find an efficient distinguisher Q(0,1) \rightarrow (1,0) p = 2^{-60.41} (1,0) \rightarrow (0,1) p = 2^{-60.36}

(1) Find the subset of the key that need to be guessed to evaluate Q3+7 rounds added with $\kappa_g = 123$ 4+8 rounds added with $\kappa_g = 118$

(2) Rearrange operations to reduce the time complexity from $D \times 2^{\kappa_g}$ to approximately $D + 2^{\kappa_g}$ Dynamic key guessing Fast Walsh Transform Overview of the attack

Example: distinguisher over 30 rounds – Simeck64/128 Differential cryptanalysis Linear cryptanalysis

(0) Find an efficient distinguisher Q(0,1) \rightarrow (1,0) p = 2^{-60.41} (1,0) \rightarrow (0,1) p = 2^{-60.36}

(1) Find the subset of the key that need to be guessed to evaluate Q3+7 rounds added with $\kappa_g = 123$ 4+8 rounds added with $\kappa_g = 118$ \Rightarrow main difference between differential and linear cryptanalysis!

(2) Rearrange operations to reduce the time complexity from $D \times 2^{\kappa_g}$ to approximately $D + 2^{\kappa_g}$ Dynamic key guessing Fast Walsh Transform

Linear VS Differential Key Recovery

Key bits	Differential			Linear
Rounds	total	independent	total	independent
1	0	0	0	0
2	2	2	2	2
3	9	9	7	7
4	27	27	16	16
5	56	56	30	30
6	88	88	50	48
7	120	114	75	68
8			104	88

Comparison of the **number of bits** that have to be **guessed** for differential and linear attacks against Simeck64/128.

Results on Simeck

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simeck48/96	36	30 32	2 ^{47.66} 2 ⁴⁷	2 ^{88.04} 2 ^{90.9}	[QCW'16] New	Linear ^{†‡}
Simeck64/128	44	37 42	2 ^{63.09} 2 ^{63.5}	2 2 ^{121.25} 2 ^{123.9}		Linear † ‡ Linear

Summary of previous and new attacks against Simeck.

[‡]Attack use the duality between linear and differential distinguishers.

G. Leurent, C. Pernot and A. Schrottenloher

Clustering Effect in Simon and Simeck

[†]The advantage is too low to do a key recovery.

Results on Simon

.

Cipher	Rounds	Attacked	Data	Time	Ref	Note
Simon96/96	52	37	2 ⁹⁵	2 ^{87.2}	[WWJZ'18]	Diff.
		43	2 ⁹⁴	2 ^{89.6}	New	Linear
Simon96/144	54	38	2 ^{95.2}	2 ¹³⁶	[CW'16]	Linear
		45	2 ⁹⁵	$2^{136.5}$	New	Linear
Simon128/128	68	50	2^{127}	$2^{119.2}$	[WWJZ'18]	Diff.
		53	2 ¹²⁷	2^{121}	New	Linear
Simon128/192	69	51	2^{127}	$2^{183.2}$	[WWJZ'18]	Diff.
		55	2^{127}	$2^{185.2}$	New	Linear
Simon128/256	72	53	$2^{127.6}$	2 ²⁴⁹	[CW'16]	Linear
· ·		56	2 ¹²⁶	2 ²⁴⁹	New	Linear

Summary of previous and new attacks against Simon.

Table of contents

Introductio

- Simon and Simeck
- Differential and Linear Cryptanalysis

Stronger Differential distinguishers for Simon-like ciphers
 Probability of transition through f

• A class of high probability trails

3 Stronger Linear distinguishers for Simon-like ciphers

Improved Key Recovery attacks against Simeck

• Better probabilities for existing differential and linear distinguishers using trails with all intermediate states in a window of w bits.

- Better probabilities for existing differential and linear distinguishers using trails with all intermediate states in a window of w bits.
- New distinguishers with the minimum number of active bits, implying cheaper key-recovery.

- Better probabilities for existing differential and linear distinguishers using trails with all intermediate states in a window of w bits.
- New distinguishers with the minimum number of active bits, implying cheaper key-recovery.
- Attacks on 42 out of 44 rounds for Simeck64/128 and 43 out of 52 rounds of Simon96/96 using advanced existing techniques.

- Better probabilities for existing differential and linear distinguishers using trails with all intermediate states in a window of w bits.
- New distinguishers with the minimum number of active bits, implying cheaper key-recovery.
- Attacks on 42 out of 44 rounds for Simeck64/128 and 43 out of 52 rounds of Simon96/96 using advanced existing techniques.
- Further work can probably improve our results concerning Simon...

- Better probabilities for existing differential and linear distinguishers using trails with all intermediate states in a window of w bits.
- New distinguishers with the minimum number of active bits, implying cheaper key-recovery.
- Attacks on 42 out of 44 rounds for Simeck64/128 and 43 out of 52 rounds of Simon96/96 using advanced existing techniques.
- Further work can probably improve our results concerning Simon...

For more details:

https://eprint.iacr.org/2021/1198