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Overview

Introduction of two lightweight block ciphers by NSA researchers in 2013:

Simon optimized in hardware [BTSWSW, DAC’15]

Speck optimized in software [BTSWSW, DAC’15]

Attempt of ISO standardization...
But some experts were suspicious about:

→ the absence of rationale
→ NSA’s previous involvement in the creation and promotion of

backdoored cryptographic algorithms
→ the lack of clear need for standardisation of the new ciphers

More than 70 papers study Simon and Speck!

⇒ A variant of Simon and Speck: Simeck. [YZSAG, CHES’15]
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Summary of previous and new attacks

Cipher Rounds Attacked Ref Note

Simeck48/96 36 30 [QCW’16] Linear † ‡

32 New Linear
Simeck64/128 44 37 [QCW’16] Linear † ‡

42 New Linear
Simon96/96 52 37 [WWJZ’18] Differential

43 New Linear
Simon96/144 54 38 [CW’16] Linear

45 New Linear
Simon128/128 68 50 [WWJZ’18] Differential

53 New Linear
Simon128/192 69 51 [WWJZ’18] Differential

55 New Linear
Simon128/256 72 53 [CW’16] Linear

56 New Linear

†The advantage is too low to do a key recovery.
‡Attack use the duality between linear and differential distinguishers.
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Feistel cipher

Plaintext
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Ciphertext

A Feistel network is characterized by:
its block size: n
its key size: κ
its number of round: r
its round function: f

For each round i = 0, . . . , r − 1:{
R i+1 = Li

Li+1 = R i ⊕ f (Li , k(i))

Example: Data Encryption Standard (DES).
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Simon, Speck and Simeck
→ Simon is a Feistel network with a quadratic round function:

f (x) = ((x≪ 8) ∧ (x≪ 1))⊕ (x≪ 2)

and a linear key schedule. [BTSWSW’15]

→ Speck is an Add-Rotate-XOR (ARX) cipher:

Rk(x , y) =
(
((x≪ α)� y)⊕ k , (y ≪ β)⊕ ((x≪ α)� y)⊕ k

)
which reuses its round function Rk in the key schedule.

[BTSWSW’15]

→ Simeck is a Feistel network with a quadratic round function:

f (x) = ((x≪ 5) ∧ x)⊕ (x≪ 1)

which reuses its round function f in the key schedule. [YZSAG’15]
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Simon and Simeck

Li R i

≪ 8

≪ 1

≪ 2

∧ ⊕

⊕
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•

•

•

Li+1 R i+1

k(i)

Simon round function

n (block size) 32 48 64 96 128

κ (key size) 64 72 96 96 128 96 144 128 192 256
r (rounds) 32 36 36 42 44 52 54 68 69 72

→ Linear key schedule.

Li R i

≪ 5

≪ 1

∧ ⊕

⊕
⊕
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•

•

Li+1 R i+1

k(i)

Simeck round function

n 32 48 64

κ 64 96 128
r 32 36 44

→ Non-linear key schedule
which reuses f .
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Differential Cryptanalysis [BS, CRYPTO’90]
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Ciphertext

δ

δ′

A differential is a pair (δ, δ′) such that:

Prk,x [Ek(x)⊕ Ek(x ⊕ δ) = δ′]� 2−n
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Differential Cryptanalysis

Differential: a pair (δ, δ′) such that

Pr
k,x

[Ek(x)⊕ Ek(x ⊕ δ) = δ′]� 2−n

With independent round keys:

→ for 1 round:
Pr[δ → δ′] = Pr

x
[R(x)⊕ R(x ⊕ δ) = δ′]

→ for r rounds:

Pr[δ0
r
 δr ] =∑

δ1,δ2,...δr−1

r∏
i=1

Pr[δi−1 → δi ]

Linear Cryptanalysis

Linear Approx: a pair (α, α′) such that

|Pr
x

[x · α = Ek(x) · α′]− 1/2| � 2−n/2

With independent round keys:

→ for 1 round:
c(α→ α′) = 2Pr

x
[x · α = R(x) · α′]− 1

→ for r rounds:

ELP(α0
r
 αr ) =∑

α1,α2,...αr−1

r∏
i=1

c2(αi−1 → αi )
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Differential and Linear Distinguishers
• Differential distinguisher:
We collect D = O(1/Pr[δ  δ′]) pairs (P,P ⊕ δ) and compute:

Q = #{P : E (P)⊕ E (P ⊕ δ) = δ′}

→ Q ≈ D × Pr[δ  δ′] for the cipher
→ Q ≈ D × 2−n for a random permutation

• Linear distinguisher:
We collect D = O(1/ELP[α α′]) pairs (P,C ) and compute:

Q = (#{P,C : P · α⊕ C · α′ = 0} −#{P,C : P · α⊕ C · α′ = 1})

→ Q2 ≈ D × ELP[α α′] for the cipher
→ Q2 ≈ D × 2−n for a random permutation

How to find stronger distinguishers for Simon and Simeck?
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Probability of transition through f
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Probability of transition through f

Consider a difference α = 1 on the left part:

∧

≪ 5

≪ 1

if (x−5, x5) = (0, 0)
if (x−5, x5) = (1, 0)
if (x−5, x5) = (0, 1)
if (x−5, x5) = (1, 1)
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Probability of transition through f

Consider a difference α = 1 on the left part:
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≪ 1

with proba 0.25
with proba 0.25
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Probability of transition through f

Since f is quadratic, the exact probability of transitions can be
computed efficiently for Simon and Simeck: [KLT, CRYPTO’15]

Pr[(δL, δR)→ (δ′L, δ
′
R)] =

{
2− dim(UδL ) if δL = δ′R and δR ⊕ δ′L ∈ UδL
0 otherwise

Uδ = Img
(
x 7→ f (x)⊕ f (x ⊕ δ)⊕ f (δ)

)
⊕ f (δ)
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A class of high probability trails
We know how to compute Pr[(δL, δR)→ (δ′L, δ

′
R)] easily now...

→ But computing Pr[(δL, δR)
r
 (δ′L, δ

′
R)] remains hard!
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A class of high probability trails
We know how to compute Pr[(δL, δR)→ (δ′L, δ

′
R)] easily now...

→ But computing Pr[(δL, δR)
r
 (δ′L, δ

′
R)] remains hard!

Conclusion: Simeck has a relatively slow diffusion!

window of size w

window of size at most w + 5

∧

k i≪ 5

≪ 1
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A class of high probability trails

Our idea is to focus on trails that are only active in a window of w bits:

Plaintext

Ciphertext

δ0

δ4

δ0

δ4

Difference in round 0: • • • • • • • •

Difference in round 1: • • • • • • • •

Difference in round 2: • • • • • • • •

Difference in round 3: • • • • • • • •

Difference in round 4: • • • • • • • •
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A class of high probability trails

• w : the size of the window (w ≤ n/2).
• ∆w : the vector space of differences active only in the w LSBs.
• ∆2

w : the product ∆w ×∆w where the two words are considered.

A lower bound of the probability of the differential (δ0, δr ) is computed by
summing over all characteristics with intermediate differences in ∆2

w :

Pr[δ0
r
 
w
δr ] =

∑
δ1,δ2,...δr−1∈∆2

w

r∏
i=1

Pr[δi−1 → δi ] ≤ Pr[δ0
r
 δr ]

For w = 18 and r = 30: a week on a 48-core machine using 1TB of RAM
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Our results
→ Tighter lower bound for existing differentials (with w = 18):

Rounds Differential Proba (previous) Reference Proba (new)

26 (0, 11)→ (22, 1) 2−60.02 [Kölbl, Roy, 16] 2−54.16

26 (0, 11)→ (2, 1) 2−60.09 [Qin, Chen, Wang, 16] 2−54.16

27 (0, 11)→ (5, 2) 2−61.49 [Liu, Li, Wang, 17] 2−56.06

27 (0, 11)→ (5, 2) 2−60.75 [Huang, Wang, Zhang, 18] "
28 (0, 11)→ (A8, 5) 2−63.91 [Huang, Wang, Zhang, 18] 2−59.16

→ The best characteristics we identified are a set of 64 characteristics:

{(1, 2), (1, 3), (1, 22), (1, 23), (2, 5), (2, 7), (2, 45), (2, 47)}
→

{(2, 1), (3, 1), (22, 1), (23, 1), (5, 2), (7, 2), (45, 2), (47, 2)}

⇒ However, (0, 1)→ (1, 0) is almost as good and will lead to a
more efficient key recovery because it has fewer active bits!
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Differentials with high probabilities

log2 of the probability of differentials for Simeck (using w = 18):

Differential

Rounds (0, 1)→ (1, 0) (1, 2)→ (2, 1)

10 −∞ −∞
11 −23.25 −27.25
12 −26.40 −26.17
13 −28.02 −26.90
14 −30.06 −29.59
15 −31.93 −31.37
.
.
.

.

.

.
.
.
.

20 −41.75 −41.26
.
.
.

.

.

.
.
.
.

25 −51.01 −50.54
.
.
.

.

.

.
.
.
.

30 −60.41 −59.92
31 −62.29 −61.81
32 −64.17 −63.69
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Differentials with high probabilities

How does our lower bound vary depending on the size of the window w?

6 8 10 12 14 16 18

−44
−48
−52
−56
−60
−64
−68
−72
−76
−80

w

lo
g 2

(P
r[

(0
,1

)
r  w

(1
,0

)]
)

r = 20
r = 25
r = 30
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Stronger Linear distinguishers for Simon-like ciphers

By applying the same reasoning to linear cryptanalysis, a set of 64 (almost)
optimal trails is obtained:

{(20, 40), (22, 40), (60, 40), (62, 40), (50, 20), (51, 20), (70, 20), (71, 20)}
→

{(40, 20), (40, 22), (40, 60), (40, 62), (20, 50), (20, 51), (20, 70), (20, 71)}

→ They are bit-reversed versions of the optimal differential characteristics.

→ For key recovery attack, the preference is given to (1, 0)→ (0, 1).
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Lower bound of linear and differential distinguishers
Comparison of the probability of differentials and the linear potential of
linear approximations for Simeck (log2, using w = 18). We also give the
total number of trails included in the bound in parenthesis (log2):

Differential Linear

Rounds (0, 1)→ (1, 0) (1, 2)→ (2, 1) (1, 0)→ (0, 1) (1, 2)→ (2, 1)

10 −∞ −∞ −∞ −∞
11 −23.25 (28.0) −27.25 −23.81 (23.9) −27.81
12 −26.40 (36.2) −26.17 −26.39 (31.7) −26.68
13 −28.02 (47.2) −26.90 −27.98 (42.0) −27.31
14 −30.06 (58.2) −29.59 −29.95 (52.5) −29.56
15 −31.93 (70.8) −31.37 −31.86 (64.9) −31.29
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

20 −41.75 (131.9) −41.26 −41.74 (124.5) −41.25
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

25 −51.01 (192.9) −50.54 −51.00 (184.1) −50.56
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

30 −60.41 (254.0) −59.92 −60.36 (243.6) −59.86
31 −62.29 (266.2) −61.81 −62.24 (255.5) −61.75
32 −64.17 (278.4) −63.69 −64.12 (267.4) −63.63
33 −66.05 (290.6) −65.57 −66.00 (279.3) −65.51
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What about Simon?

We also apply the same strategy against Simon, but the bound we obtain
is not as tight as for Simeck: the linear potential still increases
significantly with the window size w .

9 10 11 12 13 14 15 16 17 18 19

−80
−84
−88
−92
−96
−100
−104
−108
−112
−116
−120
−124
−128
−132
−136
−140
−144
−148

w

lo
g 2

(E
L
P

[(
1,

0)
r  w

(0
,
1)

])

r = 25
r = 33
r = 41

Effect of w on the probability of Simon linear hulls.
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Key Recovery

Distinguisher

C̃

⊕

E2

E1

⊕

P̃

K
ey

sc
he
du

le

kc

kb

kt

kp

k

General description of a cipher.

• Some rounds are added before
and/or after the distinguisher.

• The statistic used by the
distinguisher is Q, and it can be
evaluated using a subset of the key:
(kp, kt , kb, kc).

• The total number of guessed bits is
κg with κg < κ.
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Key Recovery

Algorithm Naive key recovery
for all k = (kp, kt , kb, kc) do

for all pairs in D do
compute Q(k)

if Q(k) > s then
k is a possible candidate

Complexity: D × 2κg with κg the number of key bits of k .

This can be reduced to approximately D + 2κg using algorithm tricks:
• Dynamic key guessing for Differential Cryptanalysis

[QHS’16, WWJZ’18]

• Fast Walsh Transform for Linear Cryptanalysis [CSQ’07, FN’20]
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Overview of the attack

Example: distinguisher over 30 rounds – Simeck64/128
Differential cryptanalysis Linear cryptanalysis

(0) Find an efficient distinguisher Q

(0, 1)→ (1, 0) p = 2−60.41 (1, 0)→ (0, 1) p = 2−60.36

(1) Find the subset of the key that need to be guessed to evaluate Q

3+7 rounds added with κg = 123 4+8 rounds added with κg = 118
⇒ main difference between differential and linear cryptanalysis!

(2) Rearrange operations to reduce the time complexity
from D × 2κg to approximately D + 2κg

Dynamic key guessing Fast Walsh Transform

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 31 / 36



Overview of the attack

Example: distinguisher over 30 rounds – Simeck64/128
Differential cryptanalysis Linear cryptanalysis

(0) Find an efficient distinguisher Q
(0, 1)→ (1, 0) p = 2−60.41 (1, 0)→ (0, 1) p = 2−60.36

(1) Find the subset of the key that need to be guessed to evaluate Q
3+7 rounds added with κg = 123 4+8 rounds added with κg = 118

⇒ main difference between differential and linear cryptanalysis!

(2) Rearrange operations to reduce the time complexity
from D × 2κg to approximately D + 2κg

Dynamic key guessing Fast Walsh Transform

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 31 / 36



Overview of the attack

Example: distinguisher over 30 rounds – Simeck64/128
Differential cryptanalysis Linear cryptanalysis

(0) Find an efficient distinguisher Q
(0, 1)→ (1, 0) p = 2−60.41 (1, 0)→ (0, 1) p = 2−60.36

(1) Find the subset of the key that need to be guessed to evaluate Q
3+7 rounds added with κg = 123 4+8 rounds added with κg = 118
⇒ main difference between differential and linear cryptanalysis!

(2) Rearrange operations to reduce the time complexity
from D × 2κg to approximately D + 2κg

Dynamic key guessing Fast Walsh Transform

G. Leurent, C. Pernot and A. Schrottenloher Clustering Effect in Simon and Simeck 31 / 36



Linear VS Differential Key Recovery

Key bits Differential Linear

Rounds total independent total independent

1 0 0 0 0
2 2 2 2 2
3 9 9 7 7
4 27 27 16 16
5 56 56 30 30
6 88 88 50 48
7 120 114 75 68
8 104 88

Comparison of the number of bits that have to be guessed for differential and
linear attacks against Simeck64/128.
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Results on Simeck

Cipher Rounds Attacked Data Time Ref Note

Simeck48/96 36 30 247.66 288.04 [QCW’16] Linear † ‡

32 247 290.9 New Linear
Simeck64/128 44 37 263.09 2121.25 [QCW’16] Linear † ‡

42 263.5 2123.9 New Linear

Summary of previous and new attacks against Simeck.

†The advantage is too low to do a key recovery.
‡Attack use the duality between linear and differential distinguishers.
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Results on Simon

Cipher Rounds Attacked Data Time Ref Note

Simon96/96 52 37 295 287.2 [WWJZ’18] Diff.
43 294 289.6 New Linear

Simon96/144 54 38 295.2 2136 [CW’16] Linear
45 295 2136.5 New Linear

Simon128/128 68 50 2127 2119.2 [WWJZ’18] Diff.
53 2127 2121 New Linear

Simon128/192 69 51 2127 2183.2 [WWJZ’18] Diff.
55 2127 2185.2 New Linear

Simon128/256 72 53 2127.6 2249 [CW’16] Linear
56 2126 2249 New Linear

Summary of previous and new attacks against Simon.
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Conclusion

Better probabilities for existing differential and linear distinguishers
using trails with all intermediate states in a window of w bits.

New distinguishers with the minimum number of active bits,
implying cheaper key-recovery.

Attacks on 42 out of 44 rounds for Simeck64/128 and 43 out of 52
rounds of Simon96/96 using advanced existing techniques.

Further work can probably improve our results concerning Simon...

For more details:
https://eprint.iacr.org/2021/1198
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