A new representation of the AES Key Schedule Application to mixFeed

Gaëtan Leurent, Clara Pernot Inria, Paris

Thursday, December 17th 2020

Table of contents

Introduction

- 2 A New Representation of the AES-128 Key Schedule
 - Invariant Subspaces
 - Alternative Representation

Opplication to mixFeed

- Short Cycles of P
- Forgery Attack against mixFeed

Other applications and conclusion

Table of contents

Introduction

- A New Representation of the AES-128 Key Schedule
 - Invariant Subspaces
 - Alternative Representation

3 Application to mixFeed

- Short Cycles of P
- Forgery Attack against mixFeed

Other applications and conclusion

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

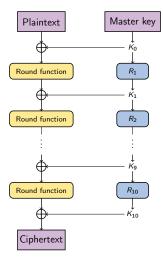
- 1997 2000: Advanced Encryption Standard (AES) [FIPS-197].
 - Rijndael is a block cipher designed by Rijmen and Daemen that had been selected by the NIST.
 - Block size: 128 bits. Key size: 128, 192, 256 bits.
 - The AES is the most widely used block cipher today.

Introduction

National Institute of Standards and Technology (NIST) initiated processes to solicit, evaluate, and standardize cryptographic algorithms:

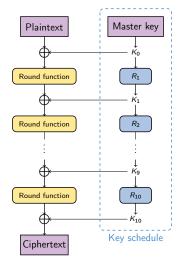
- 1997 2000: Advanced Encryption Standard (AES) [FIPS-197].
 - Rijndael is a block cipher designed by Rijmen and Daemen that had been selected by the NIST.
 - Block size: 128 bits. Key size: 128, 192, 256 bits.
 - The AES is the most widely used block cipher today.
- 2019 ... : Lightweight Cryptography.
 - 57 submissions.
 - 56 were selected as Round 1 Candidates.
 - 32 were selected as Round 2 Candidates.

AES: Advanced Encryption Standard [FIPS-197]



Description of the AES-128.

AES: Advanced Encryption Standard [FIPS-197]

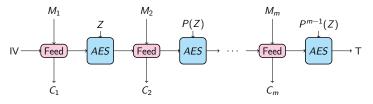


Description of the AES-128.

mixFeed [NIST LW Submission]

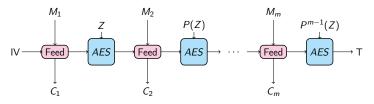
- mixFeed is a **second-round candidate** in the NIST Lightweight Standardization Process.
- It was submitted by Bishwajit Chakraborty and Mridul Nandi.
- It is an **AEAD** (Authenticated Encryption with Associated Data) algorithm.
- It is based on the AES block cipher.

mixFeed



Simplified scheme of mixFeed encryption.

mixFeed

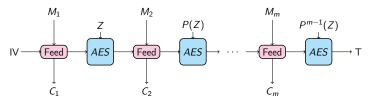


Simplified scheme of mixFeed encryption.

$$\begin{array}{c} D \\ \downarrow \\ Y \longrightarrow \overrightarrow{\mathsf{Feed}} \longrightarrow \lceil D \rceil \parallel \lfloor D \oplus Y \rfloor \\ \downarrow \\ D \oplus Y \end{array}$$

Function Feed in the case where |D| = 128.

mixFeed



Simplified scheme of mixFeed encryption.

$$\begin{array}{c} D \\ \downarrow \\ Y \longrightarrow \overbrace{\mathsf{Feed}}^{\mathsf{Feed}} \longrightarrow \lceil D \rceil \parallel \lfloor D \oplus Y \rfloor \\ \downarrow \\ D \oplus Y \end{array}$$

Function Feed in the case where |D| = 128.

P: it is the permutation corresponding to eleven rounds of AES-128 key schedule.

Mustafa Khairallah's observation [ToSC'19]

000102030405060708090a0b0c0d0e0f 00020406080a0c0e10121416181a1c1e 0004080c1014181c2024282c3034383c 00081018202830384048505860687078 00102030405060708090a0b0c0d0e0f0 101112131415161718191a1b1c1d1e1f 20222426282a2c2e30323436383a3c3e 4044484c5054585c6064686c7074787c 80889098a0a8b0b8c0c8d0d8e0e8f0f8 303132333435363738393a3b3c3d3e3f 707172737475767778797a7b7c7d7e7f 000306090c0f1215181b1e2124272a2d 00050a0f14191e23282d32373c41464b 00070e151c232a31383f464d545b6269 000d1a2734414e5b6875828f9ca9b6c3 00152a3f54697e93a8bdd2e7fc11263b 00172e455c738aa1b8cfe6fd142b4259 00183048607890a8c0d8f00820385068 001c3854708ca8c4e0fc1834506c88a4 001f3e5d7c9bbad9f81736557493b2d1

Using brute-force and out of 33 tests, Khairallah found **20 cycles of length 14018661024**¹ for the permutation P.

Surprising facts:

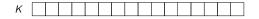
- $\rightarrow\,$ all cycles found are of the same length.
- $\rightarrow\,$ this length is much smaller than the cycle length expected for a 128-bit permutation.

Gaëtan Leurent and Clara Pernot

 $^{^1\}mathrm{Khairallah}$ actually reported the length as 1133759136, probably because of a 32-bit overflow

The AES key schedule is used to derive 11 subkeys from a master key K.

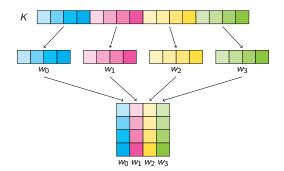
The AES key schedule is used to derive 11 subkeys from a master key K.



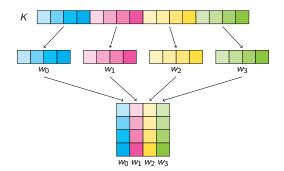
The AES key schedule is used to derive 11 subkeys from a master key K.

The AES key schedule is used to derive 11 subkeys from a master key K.

The AES key schedule is used to derive 11 subkeys from a master key K.

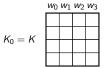


The AES key schedule is used to derive 11 subkeys from a master key K.



Division of the key into words and representation of the words in a matrix.

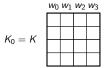
 \rightarrow The subkey at round *i* is the concatenation of the words w_{4i} to w_{3+4i} .



Construction of words $\mathbf{w_i}$ for $i \ge 4$.

Gaëtan Leurent and Clara Pernot

A new representation of the AES Key Schedule 10 / 3

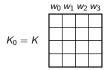


 K_1

Construction of words $\mathbf{w_i}$ for $i \ge 4$.

Gaëtan Leurent and Clara Pernot

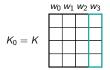
The leftmost column:



 K_1

 $w_i = \mathsf{SubWord}(\mathsf{RotWord}(w_{i-1})) \oplus \mathsf{RCon}(i/4) \oplus w_{i-4}$

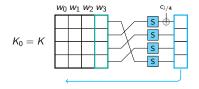
The leftmost column:



 K_1

 $w_i = \mathsf{SubWord}(\mathsf{RotWord}(w_{i-1})) \oplus \mathsf{RCon}(i/4) \oplus w_{i-4}$

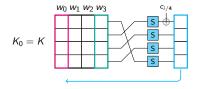
The leftmost column:



 K_1

 $w_i = \mathsf{SubWord}(\mathsf{RotWord}(w_{i-1})) \oplus \mathsf{RCon}(i/4) \oplus w_{i-4}$

The leftmost column:



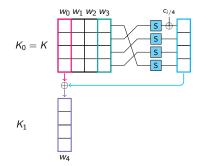
 K_1

 $w_i = \mathsf{SubWord}(\mathsf{RotWord}(w_{i-1})) \oplus \mathsf{RCon}(i/4) \oplus w_{i-4}$

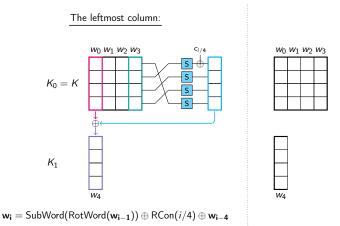
Construction of words \mathbf{w}_i for $i \geq 4$.

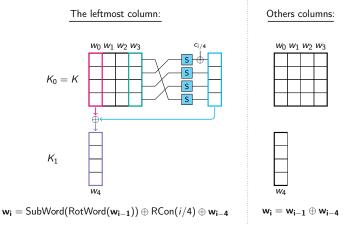
Gaëtan Leurent and Clara Pernot

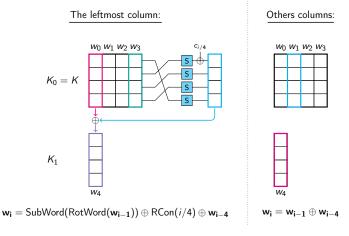
The leftmost column:

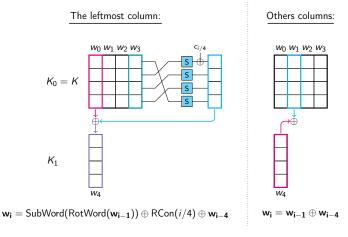


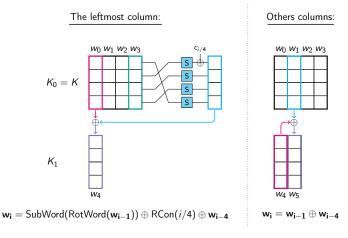
 $w_i = \mathsf{SubWord}(\mathsf{RotWord}(w_{i-1})) \oplus \mathsf{RCon}(i/4) \oplus w_{i-4}$



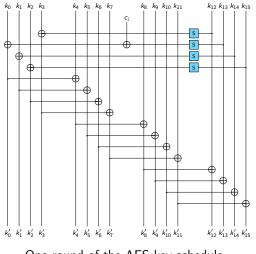








One round of key schedule at byte level



One round of the AES key schedule.

Table of contents

Introduction

- A New Representation of the AES-128 Key Schedule
 - Invariant Subspaces
 - Alternative Representation

Application to mixFeed

- Short Cycles of P
- Forgery Attack against mixFeed

Other applications and conclusion

Difference diffusion

Leander, Minaud and Rønjom ([EC'15]) introduced an algorithm in order to **detect invariant subspaces for a permutation**, *i.e.* a subspace A and an offset u such as:

$$F(A+u) = A + F(u)$$

Let's recall how the generic algorithm works for a permutation $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$:

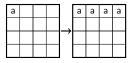
- 1) Guess an offset $u' \in \mathbb{F}_2^n$ and a one-dimensional subspace A_0 .
- 2) Compute $A_{i+1} = span\{(F(u' + A_i) F(u')) \cup A_i\}$
- 3) If the dimension of A_{i+1} equals the dimension of A_i , we found an invariant subspace and exit.
- 4) Else, we go on step 2.

Difference diffusion

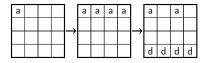
а		

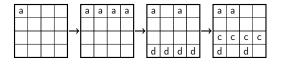
Diffusion of a difference on the first byte after several rounds of key schedule.

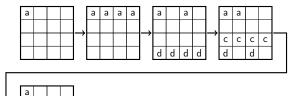
Difference diffusion



Diffusion of a difference on the first byte after several rounds of key schedule.



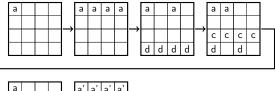


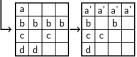


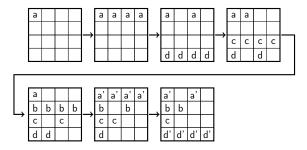
Diffusion of a difference on the first byte after several rounds of key schedule.

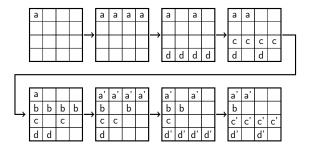
b b b

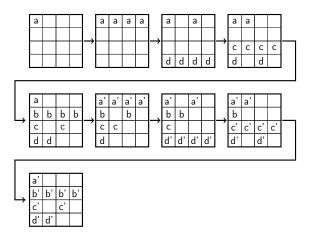
c c

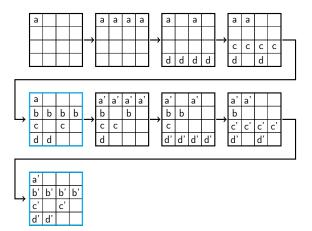


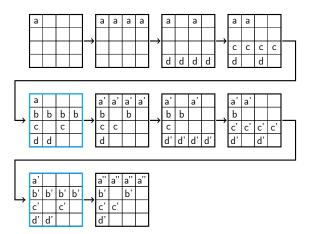


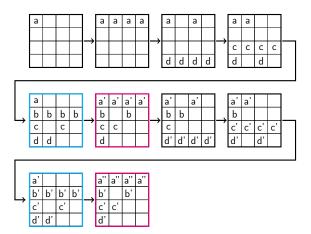


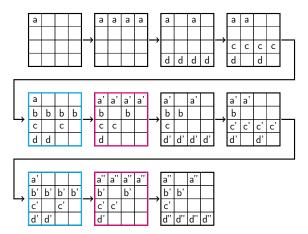


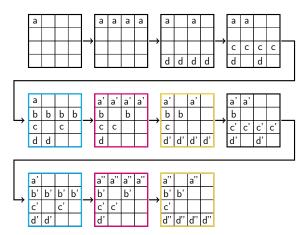


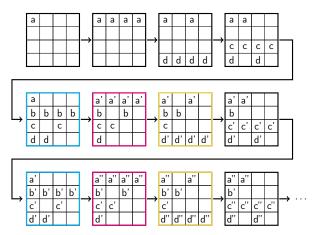


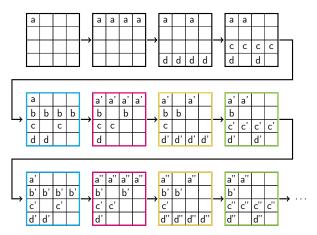












We obtain 4 invariant affine subspaces whose linear parts are:

$$\begin{split} E_0 &= \{(a, b, c, d, 0, b, 0, d, a, 0, 0, d, 0, 0, 0, d) \text{ with } a, b, c, d \in \mathbb{F}_{2^8}\}\\ E_1 &= \{(a, b, c, d, a, 0, c, 0, 0, 0, c, d, 0, 0, c, 0) \text{ with } a, b, c, d \in \mathbb{F}_{2^8}\}\\ E_2 &= \{(a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0) \text{ with } a, b, c, d \in \mathbb{F}_{2^8}\}\\ E_3 &= \{(a, b, c, d, a, 0, c, 0, a, b, 0, 0, a, 0, 0, 0) \text{ with } a, b, c, d \in \mathbb{F}_{2^8}\} \end{split}$$

$$\forall u \in (\mathbb{F}_{2^8})^{16}, R(E_i + u) = E_{i+1} + R(u)$$

The full space is the direct sum of those four vector spaces:

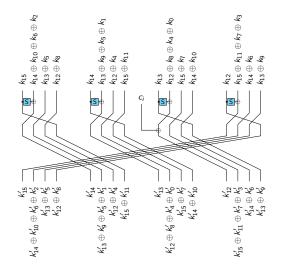
$$(\mathbb{F}_{2^8})^{16} = E_0 \oplus E_1 \oplus E_2 \oplus E_3$$

New representation of the AES Key Schedule

To describe a representation that makes the 4 subspaces appear more clearly, we will perform a linear transformation $A=C_0^{-1}$, which corresponds to a base change:

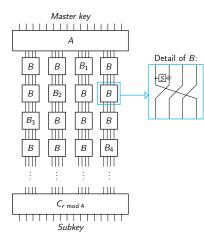
$$\begin{array}{lll} s_0 = k_{15} & s_1 = k_{14} \oplus k_{10} \oplus k_6 \oplus k_2 & s_2 = k_{13} \oplus k_5 & s_3 = k_{12} \oplus k_8 \\ s_4 = k_{14} & s_5 = k_{13} \oplus k_9 \oplus k_5 \oplus k_1 & s_6 = k_{12} \oplus k_4 & s_7 = k_{15} \oplus k_{11} \\ s_8 = k_{13} & s_9 = k_{12} \oplus k_8 \oplus k_4 \oplus k_0 & s_{10} = k_{15} \oplus k_7 & s_{11} = k_{14} \oplus k_{10} \\ s_{12} = k_{12} & s_{13} = k_{15} \oplus k_{11} \oplus k_7 \oplus k_3 & s_{14} = k_{14} \oplus k_6 & s_{15} = k_{13} \oplus k_9 \end{array}$$

New representation of the AES Key Schedule



One round of the AES key schedule (alternative representation).

New representation of the AES Key Schedule



r rounds of the key schedule in the new representation.

- *B_i* is similar to *B* but the round constant *c_i* is XORed to the output of the S-box.
- C_i = A⁻¹ × SRⁱ, with SR the matrix corresponding to rotation of 4 bytes to the right.

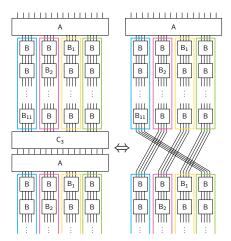
Table of contents

Introduction

- 2 A New Representation of the AES-128 Key Schedule
 - Invariant Subspaces
 - Alternative Representation

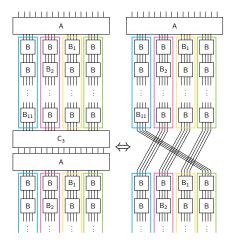
O Application to mixFeed

- Short Cycles of P
- Forgery Attack against mixFeed



Two iterations of 11 rounds of the key schedule in the new representation.

Gaëtan Leurent and Clara Pernot



We define:

$$\begin{array}{c} f_1 \\ = B_{11} \circ B \circ B \circ B \circ B_7 \circ \\ B \circ B \circ B \circ B \circ B_3 \circ B \circ B \end{array}$$

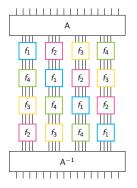
$$\begin{array}{c} f_2 \end{array} = B \circ B_{10} \circ B \circ B \circ B \circ \\ B_6 \circ B \circ B \circ B \circ B \circ B_2 \circ B \end{array}$$

$$\begin{array}{c} f_{3} \end{array} = B \circ B \circ B_{9} \circ B \circ B \circ \\ B \circ B_{5} \circ B \circ B \circ B \circ B_{1} \end{array}$$

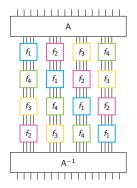
$$\begin{array}{c} f_4 \end{array} = B \circ B \circ B \circ B \circ B_8 \circ B \circ \\ B \circ B \circ B_4 \circ B \circ B \circ B \end{array}$$

Two iterations of 11 rounds of the key schedule in the new representation.

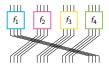
Gaëtan Leurent and Clara Pernot



4 iterations of P in the new model.



4 iterations of P in the new model.



 $\widetilde{P} = A \circ P \circ A^{-1}$

$$\stackrel{\widetilde{P}}{=}:(a,b,c,d)\mapsto (f_2(b),f_3(c),f_4(d),f_1(a))$$

 $\stackrel{\widetilde{P}^4}{=}:(a,b,c,d)\mapsto (\phi_1(a),\phi_2(b),\phi_3(c),\phi_4(d))$
 $\phi_1(a)=f_2\circ f_3\circ f_4\circ f_1(a)$
 $\phi_2(b)=f_3\circ f_4\circ f_1\circ f_2(b)$
 $\phi_3(c)=f_4\circ f_1\circ f_2\circ f_3(c)$
 $\phi_4(d)=f_1\circ f_2\circ f_3\circ f_4(d)$

• If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^4 , we have:

$$\phi_1^\ell(a)=a \qquad \phi_2^\ell(b)=b \qquad \phi_3^\ell(c)=c \qquad \phi_4^\ell(d)=d$$

In particular, *a*, *b*, *c* and *d* must be in cycles of ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 (respectively) of **length dividing** ℓ .

• If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^4 , we have:

$$\phi_1^\ell(\mathsf{a}) = \mathsf{a} \qquad \phi_2^\ell(b) = b \qquad \phi_3^\ell(c) = c \qquad \phi_4^\ell(d) = d$$

In particular, *a*, *b*, *c* and *d* must be in cycles of ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 (respectively) of **length dividing** ℓ .

Conversely, if a, b, c, d are in small cycles of the corresponding φ_i, then (a, b, c, d) is in a cycle of *P*⁴ of length the lowest common multiple of the small cycle lengths.

• If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^4 , we have:

$$\phi_1^\ell(\mathsf{a}) = \mathsf{a} \qquad \phi_2^\ell(b) = b \qquad \phi_3^\ell(c) = c \qquad \phi_4^\ell(d) = d$$

In particular, *a*, *b*, *c* and *d* must be in cycles of ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 (respectively) of **length dividing** ℓ .

- Conversely, if a, b, c, d are in small cycles of the corresponding φ_i, then (a, b, c, d) is in a cycle of P⁴ of length the lowest common multiple of the small cycle lengths.
- Due to the structure of the φ_i functions, all of them have the same cycle structure:

$$\phi_2 = f_2^{-1} \circ \phi_1 \circ f_2; \qquad \phi_3 = f_3^{-1} \circ \phi_2 \circ f_3; \qquad \phi_4 = f_4^{-1} \circ \phi_3 \circ f_4$$

Length	# cycles	Proba	Smallest element
3504665256	1	0.82	00 00 00 01
255703222	1	0.05	00 00 00 Ob
219107352	1	0.05	00 00 00 1d
174977807	1	0.04	00 00 00 00
99678312	1	0.02	00 00 00 21
13792740	1	0.003	00 00 00 75
8820469	1	$2^{-8,93}$	00 00 00 24
7619847	1	2 ^{-9,14}	00 00 00 c1
5442633	1	$2^{-9,63}$	00 00 02 78
4214934	1	2^{-10}	00 00 05 77
459548	1	$2^{-13,2}$	00 00 38 fe
444656	1	$2^{-13,24}$	00 00 0Ъ 68
14977	1	$2^{-18,13}$	00 06 82 5c
14559	1	$2^{-18,18}$	00 04 fa b1
5165	1	$2^{-19,67}$	00 0a d4 4e
4347	1	$2^{-19,92}$	00 04 94 3a
1091	1	$2^{-21.91}$	00 21 4b 3b
317	1	$2^{-23,7}$	00 28 41 36
27	1	$2^{-27,25}$	01 3a 0d 0c
6	1	$2^{-29,42}$	06 23 25 51
5	3	$3 \cdot 2^{-29,68}$	06 1a ea 18
4	2	$2 \cdot 2^{-30}$	23 c6 6f 2b
2	3	$3 \cdot 2^{-31}$	69 ea 63 75
1	2	$2\cdot 2^{-32}$	7e be d1 92

Table: Cycle structure of ϕ_1 for 11-round AES-128 key schedule.

Length	# cycles	Proba	Smallest element
			5manest element
3504665256	1	0.82	00 00 00 01
255703222	1	0.05	00 00 00 0Ъ
219107352	1	0.05	00 00 00 1d
174977807	1	0.04	00 00 00 00
99678312	1	0.02	00 00 00 21
13792740	1	0.003	00 00 00 75
8820469	1	$2^{-8,93}$	00 00 00 24
7619847	1	$2^{-9,14}$	00 00 00 c1
5442633	1	$2^{-9,63}$	00 00 02 78
4214934	1	2-10	00 00 05 77
459548	1	$2^{-13,2}$	00 00 38 fe
444656	1	$2^{-13,24}$	00 00 0Ъ 68
14977	1	$2^{-18,13}$	00 06 82 5c
14559	1	$2^{-18,18}$	00 04 fa b1
5165	1	2-19,67	00 0a d4 4e
4347	1	2-19,92	00 04 94 3a
1091	1	$2^{-21.91}$	00 21 4b 3b
317	1	$2^{-23,7}$	00 28 41 36
27	1	2-27,25	01 3a 0d 0c
6	1	2-29,42	06 23 25 51
5	3	$3 \cdot 2^{-29,68}$	06 1a ea 18
4	2	$2 \cdot 2^{-30}$	23 c6 6f 2b
2	3	$3 \cdot 2^{-31}$	69 ea 63 75
1	2	$2\cdot 2^{-32}$	7e be d1 92

Table: Cycle structure of ϕ_1 for 11-round AES-128 key schedule.

With probability $0.82^4 \simeq 0.45$, we have *a*, *b*, *c* and *d* in a cycle of length $\ell = 3504665256$, resulting in: \rightarrow a cycle of length ℓ for \widetilde{P}^4 , \rightarrow a cycle of length at most

 $4\ell=14018661024$ for \widetilde{P} and P.

Summary: 45% of keys belong to cycles of length 14018661024 $\approx 2^{33.7}$.

Summary: 45% of keys belong to cycles of length 14018661024 $\approx 2^{33.7}$.

 \rightarrow This explains the observation of Khairallah [ToSC'19].

Summary: 45% of keys belong to cycles of length 14018661024 $\approx 2^{33.7}$.

- \rightarrow This explains the observation of Khairallah [ToSC'19].
- $\rightarrow\,$ This contradicts the assumption made in a security proof of mixFeed:

Assumption [NIST LW Workshop]

For any $K \in \{0,1\}^n$ chosen uniformly at random, probability that K has a period at most ℓ is at most $\ell/2^{n/2}$.

Forgery attack against mixFeed [ToSC'19]

The goal of a **forgery attack** is to forge a valid tag T' for a new ciphertext C' using (M, C, T).

Forgery attack against mixFeed [ToSC'19]

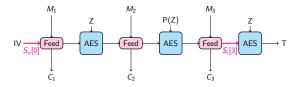
The goal of a **forgery attack** is to forge a valid tag T' for a new ciphertext C' using (M, C, T).

Assuming that Z belongs to a cycle of length ℓ , we have the following attack considering a message M made of m blocks, with $m > \ell$:

- 1) Encrypt the message M, and obtain the corresponding ciphertext C and tag T.
- 2) Calculate $S_o[0] = IV$ and $S_i[\ell + 1]$ using M_r and C_r for r = 1 and $r = \ell + 1$.
- 3) Choose M_x and C_x such that $(S_i[\ell+1], C_x) = \text{Feed } (S_o[0], M_x)$.
- 4) The T tag will also authenticate the new ciphertext $C' = C_x \|C_{\ell+2}\| \cdots \|C_m$.

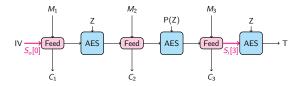
Forgery attack against mixFeed

- 1) Encrypt a message M, and obtain the corresponding ciphertext C and tag T.
- 2) Calculate $S_o[0] = IV$ and $S_i[\ell + 1]$ using M_r and C_r for r = 1 and $r = \ell + 1$.

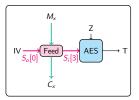


Forgery attack against mixFeed

- 1) Encrypt a message M, and obtain the corresponding ciphertext C and tag T.
- 2) Calculate $S_o[0] = IV$ and $S_i[\ell + 1]$ using M_r and C_r for r = 1 and $r = \ell + 1$.



- 3) Choose M_x and C_x such that $(S_i[\ell+1], C_x) = \text{Feed} (S_o[0], M_x)$.
- 4) The T tag will also authenticate the new ciphertext $C' = C_x \|C_{\ell+2}\| \cdots \|C_m$.



Forgery attack against mixFeed

Summary of the forgery attack:

- $\rightarrow\,$ Data complexity: a known plaintext of length higher than $2^{37.7}$ bytes
- $\rightarrow\,$ Memory complexity: negligible
- $\rightarrow\,$ Time complexity: negligible
- \rightarrow Success rate: 45%
- \Rightarrow Verified using the mixFeed reference implementation

Table of contents

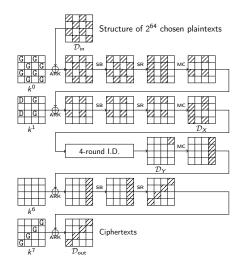
Introduction

- 2 A New Representation of the AES-128 Key Schedule
 - Invariant Subspaces
 - Alternative Representation

3 Application to mixFeed

- Short Cycles of P
- Forgery Attack against mixFeed

Impossible Differential - AES



The attack is in 2 parts:

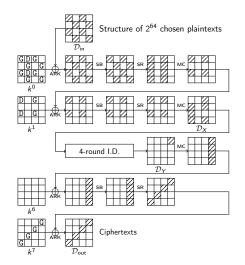
- (1) find the possible candidates for the bytes marked G.
- (2) find the master keys corresponding to these bytes.

7-round impossible differential attack ([MDRM, IC'10]). Figure adapted from Tikz for Cryptographers [Jean].

Gaëtan Leurent and Clara Pernot

29 / 30

Impossible Differential - AES



The attack is in 2 parts:

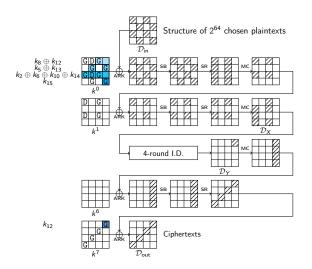
- (1) find the possible candidates for the bytes marked G.
- (2) find the master keys corresponding to these bytes.

7-round impossible differential attack ([MDRM, IC'10]). Figure adapted from Tikz for Cryptographers [Jean].

Gaëtan Leurent and Clara Pernot

29 / 30

Impossible Differential - AES



The attack is in 2 parts:

- (1) find the possible candidates for the bytes marked G.
- (2) find the master keys corresponding to these bytes.

We improve (2) by combining information from k^0 and k^7 more efficiently thanks to properties related to our new representation.

7-round impossible differential attack ([MDRM, IC'10]). Figure adapted from Tikz for Cryptographers [Jean].

Gaëtan Leurent and Clara Pernot

29 / 30

 $\rightarrow\,$ Alternatives representations of AES 128, 192 and 256 key schedule.

- $\rightarrow\,$ Alternatives representations of AES 128, 192 and 256 key schedule.
- → Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.

- $\rightarrow\,$ Alternatives representations of AES 128, 192 and 256 key schedule.
- → Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
- \rightarrow Properties on the AES key schedule and improvement of the key recovery in AES Impossible differentiel cryptanalysis.

- $\rightarrow\,$ Alternatives representations of AES 128, 192 and 256 key schedule.
- → Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
- \rightarrow Properties on the AES key schedule and improvement of the key recovery in AES Impossible differentiel cryptanalysis.
- $\rightarrow\,$ It confirms that the key schedule is probably the least safe part of AES, and should not be considered as a random permutation.

- $\rightarrow\,$ Alternatives representations of AES 128, 192 and 256 key schedule.
- → Attacks on mixFeed and ALE: they exploit the presence of short length cycles when we iterate an odd number of rounds of key schedule.
- \rightarrow Properties on the AES key schedule and improvement of the key recovery in AES Impossible differentiel cryptanalysis.
- $\rightarrow\,$ It confirms that the key schedule is probably the least safe part of AES, and should not be considered as a random permutation.

For more details:

https://eprint.iacr.org/2020/1253