New representations of the AES Key Schedule

Gaëtan Leurent, Clara Pernot
 Inria, Paris

AES: Advanced Encryption Standard [FIPS-197]

- The AES is the most widely used block cipher today.
- Winner of the AES competition.
- Subset of Rijndael block cipher.
- Designed by Rijmen and Daemen.
- Block size: 128 bits.
- Key size: 128, 192, 256 bits.

AES: Advanced Encryption Standard [FIPS-197]

- The AES is the most widely used block cipher today.
- Winner of the AES competition.
- Subset of Rijndael block cipher.
- Designed by Rijmen and Daemen.
- Block size: 128 bits.
- Key size: 128, 192, 256 bits.

Description of the AES-128.

AES: Advanced Encryption Standard [FIPS-197]

- The AES is the most widely used block cipher today.
- Winner of the AES competition.
- Subset of Rijndael block cipher.
- Designed by Rijmen and Daemen.
- Block size: 128 bits.
- Key size: 128, 192, 256 bits.

After 20 years of cryptanalysis:

- only 7 rounds out of 10 are broken.
- the key schedule is known to cause issues in the related-key setting.

Description of the AES-128.

AES: Advanced Encryption Standard [FIPS-197]

- The AES is the most widely used block cipher today.
- Winner of the AES competition.
- Subset of Rijndael block cipher.
- Designed by Rijmen and Daemen.
- Block size: 128 bits.
- Key size: 128, 192, 256 bits.

After 20 years of cryptanalysis:

- only 7 rounds out of 10 are broken.
- the key schedule is known to cause issues in the related-key setting.

Description of the AES-128.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.
\rightarrow The subkey at round i is the concatenation of the words $w_{4 i}$ to $w_{3+4 i}$.

AES Key Schedule

The AES key schedule is used to derive 11 subkeys from a master key K.

Division of the key into words and representation of the words in a matrix.
\rightarrow The subkey at round i is the concatenation of the words $w_{4 i}$ to $w_{3+4 i}$.

AES Key Schedule

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

K_{1}

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

K_{1}
$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{ord}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

K_{1}
$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{ord}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$$
\begin{aligned}
& K_{0}=K \\
& \mathrm{w}_{\mathrm{i}}=\operatorname{SubW} \operatorname{Ord}\left(\operatorname{Rot} \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}
\end{aligned}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$$
\begin{aligned}
& K_{0}=K \\
& K_{1} \\
& \mathrm{w}_{\mathrm{i}}=\operatorname{SubW} \operatorname{Word}\left(\operatorname{Rot} \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}
\end{aligned}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$\mathrm{w}_{\mathrm{i}}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{ord}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{RotWord}\left(w_{i-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus w_{i-4}$
Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES Key Schedule

The leftmost column:

$w_{i}=\operatorname{SubWord}\left(\operatorname{Rot} W \operatorname{Word}\left(\mathrm{w}_{\mathrm{i}-1}\right)\right) \oplus \operatorname{RCon}(i / 4) \oplus \mathrm{w}_{\mathrm{i}-4}$

Others columns:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}-1} \oplus \mathrm{w}_{\mathrm{i}-4}
$$

Construction of words w_{i} for $i \geq 4$.

AES key schedule

One round of the AES key schedule.

AES key schedule

Impression:
all bytes are mixed!

One round of the AES key schedule.

Our results

- Alternative representations of the AES key schedules

Even after a large number of rounds, the key schedule does not mix all the bytes!

Our results

- Alternative representations of the AES key schedules

Even after a large number of rounds, the key schedule does not mix all the bytes!

- Short length cycles when iterating an odd number of rounds of key schedule
- Attacks on mixFeed and ALE

Our results

- Alternative representations of the AES key schedules

Even after a large number of rounds, the key schedule does not mix all the bytes!

- Short length cycles when iterating an odd number of rounds of key schedule
- Attacks on mixFeed and ALE
- Efficient combination of information from subkeys
- Improvement of Impossible Differential and Square attacks against the AES

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(2) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Difference diffusion

Invariant subspaces: a subspace A and an offset u such as:

$$
\exists u, \quad F(A+u)=A+F(u)
$$

Difference diffusion

Invariant subspaces: a subspace A and an offset u such as:

$$
\exists u, \quad F(A+u)=A+F(u)
$$

Subspace trails: a subspace A and an offset u such as:

$$
\forall u, \quad F(A+u)=B+F(u)
$$

Difference diffusion

Invariant subspaces: a subspace A and an offset u such as:

$$
\exists u, \quad F(A+u)=A+F(u)
$$

Subspace trails: a subspace A and an offset u such as:

$$
\forall u, \quad F(A+u)=B+F(u)
$$

\Rightarrow [LMR, EC'15] introduced an algorithm to detect invariant subspaces

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

$\rightarrow \rightarrow$| | | | |
| :--- | :--- | :--- | :--- |
| a^{\prime}
 b^{\prime} b^{\prime} b^{\prime} b^{\prime}
 c^{\prime} c^{\prime}
 d^{\prime} d^{\prime} | | | |

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

Diffusion of a difference on the first byte after several rounds of key schedule.

Difference diffusion

We obtain 4 families of subspace trails whose linear parts are:

- $E_{0}=\left\{(a, b, c, d, 0, b, 0, d, a, 0,0, d, 0,0,0, d)\right.$ with $\left.a, b, c, d \in \mathbb{F}_{2^{8}}\right\}$
- $E_{1}=\left\{(a, b, c, d, a, 0, c, 0,0,0, c, d, 0,0, c, 0)\right.$ with $\left.a, b, c, d \in \mathbb{F}_{2^{8}}\right\}$
- $E_{2}=\left\{(a, b, c, d, 0, b, 0, d, 0, b, c, 0,0, b, 0,0)\right.$ with $\left.a, b, c, d \in \mathbb{F}_{2^{8}}\right\}$
- $E_{3}=\left\{(a, b, c, d, a, 0, c, 0, a, b, 0,0, a, 0,0,0)\right.$ with $\left.a, b, c, d \in \mathbb{F}_{2^{8}}\right\}$

$$
\forall u \in\left(\mathbb{F}_{2^{8}}\right)^{16}, R\left(E_{i}+u\right)=E_{i+1}+R(u)
$$

The full space is the direct sum of those four vector spaces:

$$
\left(\mathbb{F}_{2^{8}}\right)^{16}=E_{0} \oplus E_{1} \oplus E_{2} \oplus E_{3}
$$

New representation of the AES Key Schedule

We perform a linear transformation $A=C_{0}^{-1}$, which corresponds to a change of basis:

Basis of E_{0} :

$$
s_{0}=k_{15} \quad s_{1}=k_{14} \oplus k_{10} \oplus k_{6} \oplus k_{2} \quad s_{2}=k_{13} \oplus k_{5} \quad s_{3}=k_{12} \oplus k_{8}
$$

Basis of E_{1} :

$$
s_{4}=k_{14} \quad s_{5}=k_{13} \oplus k_{9} \oplus k_{5} \oplus k_{1} \quad s_{6}=k_{12} \oplus k_{4} \quad s_{7}=k_{15} \oplus k_{11}
$$

Basis of E_{2} :

$$
s_{8}=k_{13} \quad s_{9}=k_{12} \oplus k_{8} \oplus k_{4} \oplus k_{0} \quad s_{10}=k_{15} \oplus k_{7} \quad s_{11}=k_{14} \oplus k_{10}
$$

Basis of E_{3} :
$s_{12}=k_{12} \quad s_{13}=k_{15} \oplus k_{11} \oplus k_{7} \oplus k_{3} \quad s_{14}=k_{14} \oplus k_{6} \quad s_{15}=k_{13} \oplus k_{9}$
\Rightarrow The 4 subspaces appear more clearly!

New representation of the AES Key Schedule

- 4 subspace trails
- 4 independent functions

The key schedule does not mix all the bytes!

One round of the AES key schedule (alternative representation).

New representation of the AES Key Schedule

- B_{i} is similar to B but the round constant c_{i} is XORed to the output of the S-box.
- $C_{i}=A^{-1} \times \mathrm{SR}^{i}$, with SR the matrix corresponding to rotation of 4 bytes to the right.
r rounds of the key schedule in the new representation.

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(2) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(2) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(7) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(3) Conclusion

mixFeed [Chakraborty and Nandi, NIST LW Submission]

- mixFeed was a second-round candidate in the NIST Lightweight Standardization Process which was not selected as a finalist
- Submitted by Bishwajit Chakraborty and Mridul Nandi
- AEAD (Authenticated Encryption with Associated Data) algorithm
- Based on the AES block cipher

mixFeed

Simplified scheme of mixFeed encryption.

mixFeed

Simplified scheme of mixFeed encryption.

Function Feed in the case where

$$
|D|=128
$$

mixFeed

Simplified scheme of mixFeed encryption.

$P: 11$ rounds of key schedule
P is iterated \rightarrow we study its cycles!
Function Feed in the case where

$$
|D|=128
$$

Mustafa Khairallah's observation [ToSC'19]

Using brute-force and out of 33 tests,
Khairallah found 20 cycles of length
$14018661024 \approx 2^{33.7}$
for the P permutation.

Surprising facts:

\rightarrow all cycles found are of the same length
\rightarrow this length is much smaller than the cycle length expected for a 128-bit permutation

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(2) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Cycle analysis of 11-round AES key schedule

Two iterations of 11 rounds of the key schedule in the new representation.

Cycle analysis of 11-round AES key schedule

We define:

$$
\begin{aligned}
f_{1}= & B_{11} \circ B \circ B \circ B \circ B_{7} \circ \\
& B \circ B \circ B \circ B_{3} \circ B \circ B \\
f_{2}= & B \circ B_{10} \circ B \circ B \circ B \circ \\
& B_{6} \circ B \circ B \circ B \circ B_{2} \circ B \\
f_{3}= & B \circ B \circ B_{9} \circ B \circ B \circ \\
& B \circ B_{5} \circ B \circ B \circ B \circ B_{1} \\
f_{4}= & B \circ B \circ B \circ B_{8} \circ B \circ \\
& B \circ B \circ B_{4} \circ B \circ B \circ B
\end{aligned}
$$

Two iterations of 11 rounds of the key schedule in the new representation.

Cycle analysis of 11-round AES key schedule

4 iterations of P in the new model.

Cycle analysis of 11-round AES key schedule

4 iterations of P in the new model.

$$
\widetilde{P}=A \circ P \circ A^{-1}
$$

$\widetilde{P}:(a, b, c, d) \mapsto\left(f_{2}(b), f_{3}(c), f_{4}(d), f_{1}(a)\right)$ $\widetilde{P}^{4}:(a, b, c, d) \mapsto\left(\phi_{1}(a), \phi_{2}(b), \phi_{3}(c), \phi_{4}(d)\right)$

$$
\phi_{1}(a)=f_{2} \circ f_{3} \circ f_{4} \circ f_{1}(a)
$$

$$
\phi_{2}(b)=f_{3} \circ f_{4} \circ f_{1} \circ f_{2}(b)
$$

$$
\phi_{3}(c)=f_{4} \circ f_{1} \circ f_{2} \circ f_{3}(c)
$$

$$
\phi_{4}(d)=f_{1} \circ f_{2} \circ f_{3} \circ f_{4}(d)
$$

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

- Conversely, if a, b, c, d are in cycles of the corresponding ϕ_{i}, then (a, b, c, d) is in a cycle of \widetilde{P}^{4} of length the lowest common multiple of the small cycle lengths.

Cycle analysis of 11-round AES key schedule

- If (a, b, c, d) is in a cycle of length ℓ of \widetilde{P}^{4}, we have:

$$
\phi_{1}^{\ell}(a)=a \quad \phi_{2}^{\ell}(b)=b \quad \phi_{3}^{\ell}(c)=c \quad \phi_{4}^{\ell}(d)=d
$$

In particular, a, b, c and d must be in cycles of $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ (respectively) of length dividing ℓ.

- Conversely, if a, b, c, d are in cycles of the corresponding ϕ_{i}, then (a, b, c, d) is in a cycle of \widetilde{P}^{4} of length the lowest common multiple of the small cycle lengths.
- Due to the structure of the ϕ_{i} functions, all of them have the same cycle structure:

$$
\phi_{2}=f_{2}^{-1} \circ \phi_{1} \circ f_{2} ; \quad \phi_{3}=f_{3}^{-1} \circ \phi_{2} \circ f_{3} ; \quad \phi_{4}=f_{4}^{-1} \circ \phi_{3} \circ f_{4}
$$

Cycle analysis of 11-round AES key schedule

Length	\# cycles	Proba	Smallest element			
3504665256	1	0.82	00	00	00	01
255703222	1	0.05	00	00	00	$0 b$
219107352	1	0.05	00	00	00	1 d
174977807	1	0.04	00	00	00	00
99678312	1	0.02	00	00	00	21
13792740	1	0.003	00	00	00	75
8820469	1	$2^{-8,93}$	00	00	00	24
7619847	1	$2^{-9,14}$	00	00	00	c1
5442633	1	$2^{-9,63}$	00	00	02	78
4214934	1	2^{-10}	00	00	05	77
459548	1	$2^{-13,2}$	00	00	38	fe
444656	1	$2^{-13,24}$	00	00	$0 b$	68
14977	1	$2^{-18,13}$	00	06	82	$5 c$
14559	1	$2^{-18,18}$	00	04	fa	b1
5165	1	$2^{-19,67}$	00	$0 a$	d4	4 e
4347	1	$2^{-19,92}$	00	04	94	$3 a$
1091	1	$2^{-21.91}$	00	21	$4 b$	$3 b$
317	1	$2^{-23,7}$	00	28	41	36
27	1	$2^{-27,25}$	01	$3 a$	$0 d$	$0 c$
6	1	$2^{-29,42}$	06	23	25	51
5	3	$3 \cdot 2^{-29,68}$	06	$1 a$	ea	18
4	2	$2 \cdot 2^{-30}$	23	c6	$6 f$	$2 b$
2	3	$3 \cdot 2^{-31}$	69	ea	63	75
1	2	$2 \cdot 2^{-32}$	$7 e$	be	d1	92

Cycle structure of ϕ_{1} for 11-round AES-128 key schedule.

Cycle analysis of 11-round AES key schedule

Length	\# cycles	Proba	Smallest element
3504665256	1	0.82	00000001
255703222	1	0.05	000000 Ob
219107352	1	0.05	0000001 d
174977807	1	0.04	00000000
99678312	1	0.02	00000021
13792740	1	0.003	00000075
8820469	1	$2^{-8,93}$	00000024
7619847	1	$2^{-9,14}$	000000 c 1
5442633	1	$2^{-9,63}$	00000278
4214934	1	2^{-10}	00000577
459548	1	$2^{-13,2}$	000038 fe
444656	1	$2^{-13,24}$	00000 b 68
14977	1	$2^{-18,13}$	$0006825 c$
14559	1	$2^{-18,18}$	$0004 \mathrm{fa} \mathrm{b1}$
5165	1	$2^{-19,67}$	00 0a d4 4e
4347	1	$2^{-19,92}$	0004943 a
1091	1	$2^{-21.91}$	00214 b 3 b
317	1	$2^{-23,7}$	00284136
27	1	$2^{-27,25}$	01 3a Od Oc
6	1	$2^{-29,42}$	06232551
5	3	$3 \cdot 2^{-29,68}$	061 a ea 18
4	2	$2 \cdot 2^{-30}$	23 c 6 6f 2b
2	3	$3 \cdot 2^{-31}$	69 ea 6375
1	2	$2 \cdot 2^{-32}$	7 e be d1 92

With probability $0.82^{4} \simeq 0.45$, we have a, b, c and d in a cycle of length $\ell=3504665256$, resulting in:
\rightarrow a cycle of length ℓ for \widetilde{P}^{4},
\rightarrow a cycle of length at most
$4 \ell=14018661024$ for \widetilde{P} and P.

Cycle structure of ϕ_{1} for 11-round AES-128 key schedule.

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.
\rightarrow This explains the observation on mixFeed [Khairallah, ToSC'19].
\rightarrow This allows to make a forgery against mixFeed.

Cycle analysis of 11-round AES key schedule

Summary: 45% of keys belong to cycles of length $14018661024 \approx 2^{33.7}$.
\rightarrow This explains the observation on mixFeed [Khairallah, ToSC'19].
\rightarrow This allows to make a forgery against mixFeed.
\rightarrow This contradicts the assumption made in a security proof of mixFeed:

Assumption [Chakraborty and Nandi, NIST LW Workshop]

For any $K \in\{0,1\}^{n}$ chosen uniformly at random, probability that K has a period at most ℓ is at most $\ell / 2^{n / 2}$.

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(2) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Khairallah proposed a forgery attack against mixFeed:

- we assume that Z belongs to a cycle of length ℓ
- we choose a message M made of m blocks, with $m>\ell$

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Khairallah proposed a forgery attack against mixFeed:

- we assume that Z belongs to a cycle of length ℓ
- we choose a message M made of m blocks, with $m>\ell$
(1) Cut

Forgery attack against mixFeed [Khairallah, ToSC'19]

The goal of a forgery attack is to forge a valid tag T^{\prime} for a new ciphertext C^{\prime} using (M, C, T).

Khairallah proposed a forgery attack against mixFeed:

- we assume that Z belongs to a cycle of length ℓ
- we choose a message M made of m blocks, with $m>\ell$
(1) Cut
(2) Paste

Forgery attack against mixFeed

Summary of the forgery attack:
\rightarrow Data complexity: a known plaintext of length higher than $2^{37.7}$ bytes
\rightarrow Memory complexity: negligible
\rightarrow Time complexity: negligible
\rightarrow Success rate: 45\%
\Rightarrow Verified using the mixFeed reference implementation:
41 successes out of 100 tests!

Table of contents

(1) A New Representation of the AES-128 Key Schedule

(3) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Table of contents

(1) A New Representation of the AES-128 Key Schedule

- Short Length Cycles
- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Property on the AES Key Schedule

One round of the AES key schedule with graphic representations of bytes positions (alternative representation).

Only the XOR of the colored bytes is required for each state.

Property on the AES Key Schedule

Property on the AES Key Schedule

How to compute K_{14}^{i} ?

Property on the AES Key Schedule

How to compute K_{14}^{i} ?

Property on the AES Key Schedule

How to compute K_{14}^{i} ?
\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.

Property on the AES Key Schedule

How to compute K_{8}^{i} ?

$$
K_{8}^{i}=\left(K_{8}^{i} \oplus K_{12}^{i}\right) \oplus K_{12}^{i}
$$

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.
\rightarrow A byte in the 2 nd column depends on only 64 bits of information.

Property on the AES Key Schedule

\rightarrow A byte in the last column depends on only 32 bits of information.
\rightarrow A byte in the 3rd column depends on only 64 bits of information.
\rightarrow A byte in the 2nd column depends on only 64 bits of information.
\rightarrow A byte in the first column depends on 128 bits of information.

Property on the AES Key Schedule

Using our new representation of the key schedule, we demonstrate that:
\rightarrow A byte in the last column depends on only 32 bits of information
\rightarrow A byte in the 3rd column depends on only 64 bits of information
\rightarrow A byte in the 2nd column depends on only 64 bits of information
\rightarrow A byte in the first column depends on 128 bits of information

Even after a large number of rounds, the key schedule does not mix all the bytes!

Table of contents

(1) A New Representation of the AES-128 Key Schedule

- Short Length Cycles
- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Impossible Differential - AES

The attack is in 2 parts:
(1) find candidates for the key bytes marked G.
(2) find the master keys corresponding to these bytes.

Matching bytes from K^{0} and K^{7}

Given 10 bytes of K^{0} and 4 bytes of K^{7}, how to find the corresponding master keys?

Matching bytes from K^{0} and K^{7}

Given 10 bytes of K^{0} and 4 bytes of K^{7}, how to find the corresponding master keys?

Naively:

- Guess 6 bytes of K^{0}
- Filter using 4 bytes of K^{7}

Complexity: 2^{48}

Matching bytes from K^{0} and K^{7}

> Given 10 bytes of K^{0} and 4 bytes of K^{7}, how to find the corresponding master keys?

Naively:

- Guess 6 bytes of K^{0}
- Filter using 4 bytes of K^{7}

Complexity: 2^{48}

Improvement:

- Guess 2 bytes of K^{0}
- Filter using 2 bytes of K^{7}
- Guess 2 bytes of K^{0}
- Filter using 1 byte of K^{7}
- Guess 1 byte of K^{0}
- Deduce 1 byte of K^{0} from K^{7}

Complexity: 4×2^{16}

Matching bytes from K^{0} and K^{7}

Matching bytes from K^{0} and K^{7}

How to compute K_{12}^{7} from K^{0} ?

Matching bytes from K^{0} and K^{\top}

How to compute K_{12}^{7} from K^{0} ?

Matching bytes from K^{0} and K^{\top}

How to compute K_{12}^{7} from K^{0} ?

Matching bytes from K^{0} and K^{\top}
We can filter using K_{12}^{7} by guessing only 2 bytes of K^{0} !

Matching bytes from K^{0} and K^{7}

Matching bytes from K^{0} and K^{7}

All the input of f_{3} is known, so the output is also known

Matching bytes from K^{0} and K^{7}

All the input of f_{3} is known, so the output is also known

Matching bytes from K^{0} and K^{7}

Matching bytes from K^{0} and K^{\top}
We are also able to filter according to $K_{6}^{7}=\left(K_{14}^{7} \oplus K_{6}^{7}\right) \oplus K_{14}^{7}$

Results

Attack	Data	Time	Mem.	Ref.
Meet-in-the-middle	2^{97}	2^{99}	2^{98}	[Derbez, Fouque, Jean, EC'13]
	2^{105}	2^{105}	2^{90}	[Derbez, Fouque, Jean, EC'13]
	2^{105}	2^{105}	2^{81}	[Bonnetain, Naya-Plasencia, Schrottenloher, ToSC'19]
	2^{113}	2^{113}	2^{74}	[Bonnetain, Naya-Plasencia, Schrottenloher, ToSC'19]
Impossible differential	2^{113}	2^{113}	2^{74}	[Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{105.1}$	2^{113}	$2^{74.1}$	[Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{106.1}$	$2^{112.1}$	$2^{73.1}$	Variant of [Boura, Lallemand, Naya-Plasencia, Suder, JC'18]
	$2^{104.9}$	$2^{110.9}$	$2^{71.9}$	New

Best single-key attacks against 7-round AES-128.

Table of contents

(1) A New Representation of the AES-128 Key Schedule

(5) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential

4) Generalisations

- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Table of contents

(1) A New Representation of the AES-128 Key Schedule

(3) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

New Representation of the AES-192 Key Schedules

One round of the AES-192 key schedule (alternative representation).

New Representation of the AES-192 Key Schedules

r rounds of the AES-192 key schedule in the new representation.

New Representation of the AES-256 Key Schedules

r rounds of the AES-256 key schedule in the new representation. B_{i} is similar to B but the round constant c_{i} is XORed to the output of the first S-box.

Other Results

Attack	Cipher	Rounds	Data	Time	Reference
Square	AES-192	$8 / 12$	$2^{128}-2^{119}$	2^{188}	[FKL+, FSE'00]
			$2^{128}-2^{119}$	$2^{187.3}$	Variant of [FKL+, FSE'00]
			$2^{128}-2^{119}$	$2^{185.7}$	Variant of [DKS, AC'10]
Related-Key Impossible Differential	AES-192	$8 / 12$	$2^{64.5}$	2^{119}	$2^{185.1}$
			New		
		$2^{63.5}$	2^{177}	[ZWZ+, SAC'06]	
Impossible Differential	Rijndael-256/256	$9 / 14$	$2^{229.3}$	2^{194}	[WGR+, ICISC'12]
			$2^{228.1}$	$2^{192.9}$	Variant of [WGR+, ICISC'12]
			$2^{227.6}$	$2^{192.5}$	New
Impossible Differential	Rijndael-256/256	$10 / 14$	$2^{244.2}$	$2^{253.9}$	[WGR+, ICISC'12]
			$2^{243.9}$	$2^{253.6}$	Variant of [WGR+, ICISC'12]
			2^{242}	$2^{251.7}$	New

Square Attack

Table of contents

(1) A New Representation of the AES-128 Key Schedule

- Short Length Cycles
- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential
(4) Generalisations
- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Properties on the AES Key Schedule

Representation of the position of the bytes of the proposition.
In cases (2), only the XOR of the two bytes of the same color must be known.

Table of contents

(1) A New Representation of the AES-128 Key Schedule
(3) Short Length Cycles

- Description of mixFeed
- The Explanation of Short Cycles
- Forgery Attack against mixFeed
(3) Combining Efficiently Information from Subkeys
- A property of the AES Key Schedule
- Application to AES - Impossible Differential

4 Generalisations

- New Representations of the AES-192 and AES-256 Key Schedules
- Other Properties on the AES Key Schedule
(5) Conclusion

Conclusion

\rightarrow Alternatives representations of AES key schedules:

- 128 bits: 4 chunks of 4 bytes
- 192 bits: 2 chunks of 12 bytes
- 256 bits: 4 chunks of 8 bytes

Conclusion

\rightarrow Alternatives representations of AES key schedules:

- 128 bits: 4 chunks of 4 bytes
- 192 bits: 2 chunks of 12 bytes
- 256 bits: 4 chunks of 8 bytes
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when iterating an odd number of rounds of key schedule.

Conclusion

\rightarrow Alternatives representations of AES key schedules:

- 128 bits: 4 chunks of 4 bytes
- 192 bits: 2 chunks of 12 bytes
- 256 bits: 4 chunks of 8 bytes
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when iterating an odd number of rounds of key schedule.
\rightarrow Improvement of Impossible Differential and Square attacks against the AES by combining efficiently information from subkeys.

Conclusion

\rightarrow Alternatives representations of AES key schedules:

- 128 bits: 4 chunks of 4 bytes
- 192 bits: 2 chunks of 12 bytes
- 256 bits: 4 chunks of 8 bytes
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when iterating an odd number of rounds of key schedule.
\rightarrow Improvement of Impossible Differential and Square attacks against the AES by combining efficiently information from subkeys.
\rightarrow It confirms that the key schedule should not be considered as a random permutation.

Conclusion

\rightarrow Alternatives representations of AES key schedules:

- 128 bits: 4 chunks of 4 bytes
- 192 bits: 2 chunks of 12 bytes
- 256 bits: 4 chunks of 8 bytes
\rightarrow Attacks on mixFeed and ALE: they exploit the presence of short length cycles when iterating an odd number of rounds of key schedule.
\rightarrow Improvement of Impossible Differential and Square attacks against the AES by combining efficiently information from subkeys.
\rightarrow It confirms that the key schedule should not be considered as a random permutation.

For more details:
https://eprint.iacr.org/2020/1253

