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A bit of context

The block cipher MiMC

72 Minimize the number of multiplications in Fn.

41 Construction of MiMCs [Albrecht et al., EC16]:
2 n-bit blocks (n odd ~ 129)
> n-bit key k
M decryption : replacing x3 by x° where
s=(2"1-1)/3
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A bit of context

The block cipher MiMC

42 Minimize the number of multiplications in Fan. R:=[nlog;2] .

73 Construction of MiMCs [Albrecht et al., EC16]:

n 129 255 769 1025
A n-bit blocks (n odd =~ 129)
N n-bit key k R 82 161 486 647

M decryption : replacing x3 by x° where
s=(2"1-1)/3

Number of rounds for MiMC instances.
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73 Construction of MiMCs [Albrecht et al., EC16]:

129 255 769 1025
M n-bit blocks (n odd ~ 129)
M n-bit key k R 82 161 486 647

M decryption : replacing x3 by x° where
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Number of rounds for MiMC instances.
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On the Algebraic Degree of Iterated Power Functions

© Background
@ Emerging uses in symmetric cryptography
o Definition of algebraic degree

© On the algebraic degree of MiMCs
@ First plateau
o Bounding the degree
o Exact degree

© Integral attack

@ Secret-key 0-sum distinguisher
o Comparison to previous work
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Definition of algebraic degree

@ Background
o Emerging uses in symmetric cryptography
@ Definition of algebraic degree
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y Emerging uses in symmetric cryptography

Definition of algebraic degree

Emerging uses in symmetric cryptography

’ Problem: Analyzing the security of new symmetric primitives‘

Protocols requiring new primitives:
71 multiparty computation (MPC)
71 systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.
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Emerging uses in symmetric cryptography
Definition of algebraic degree

Emerging uses in symmetric cryptography

’ Problem: Analyzing the security of new symmetric primitives‘

Protocols requiring new primitives:
71 multiparty computation (MPC)
71 systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

"Usual” case Arithmetization-friendly
2 operations on Fan, where n ~ 4, 8. > operations on Fg, where
> based on CPU instructions and q€{2" p},p~2",n> 64
hardware components 2 based on large finite-field arithmetic
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Background . . .
Emerging uses in symmetric cryptography

Definition of algebraic degree

Algebraic degree

Let F : ] — ], there is a unique univariate polynomial representation on F». of degree
at most 2" — 1:

2"—1
F(x) = bix'; b € Far
i=0

Definition

Algebraic degree of F : F; — FJ:

deg(F) = max{wt(i), 0 < i < 2", and b; # 0}

If F:Fj — FJ is a permutation, then

deg(F)<n-1
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Background . . .
Emerging uses in symmetric cryptography

Definition of algebraic degree

Algebraic degree

Let F : ] — 3, there is a unique univariate polynomial representation on F».» of degree
at most 2" — 1:

2"—1
F(x) = Z bix'; b € Fan
i=0

Definition

Algebraic degree of F : F§ — FJ:

deg(F) = max{wt(i), 0 < i <2", and b; # 0}

If F:F5 — 5 is a permutation, then

deg(F) <n-1

6/16 Clémence Bouvier On the Algebraic Degree of Iterated Power Functions



First plateau
On the algebraic degree of MiMC3 Bounding the degree

Exact degree

© On the algebraic degree of MiMCj
o First plateau
@ Bounding the degree
o Exact degree
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.

For r rounds:
> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.

For r rounds:
> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .

2 Round 1: B! =2
Pi(x) = x3

3=[11],
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.

For r rounds:
> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .

2 Round 1: B! =2
Pi(x) = x3
3=[11]
2 Round 2: B =2
Pa(x) = x° + ax® + i + ¢}

9= [1001], 6 = [110]2 3 = [11],
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.

For r rounds:
> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .
47 Round 1:
Pl(X) = X3
3=[11]2

72 Round 2: Bz =2
Pa(x) = x° + ax® + c2x® + &

9 =[1001], 6 = [110], 3 = [11]

8/16 Clémence Bouvier On the Algebraic Degree of Iterated Power Functions



First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.

For r rounds:
> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .
Definition
. 1_
** Round 1: There is a plateau whenever B = B;".
Pl(X) = X3
3=[11]2

72 Round 2: Bz =2
Pa(x) = x° + ax® + c2x® + &

9 =[1001], 6 = [110], 3 = [11]

8/16 Clémence Bouvier On the Algebraic Degree of Iterated Power Functions
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On the algebraic degree of MiMC3

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.
For r rounds:

> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .
Definition
3 : e "
- Round 1: There is a plateau whenever B = B;".
Pl(X) = X3
Degree
=[11 30
3=k : =
7 Round 2 | B7 =2 e
9 6, 2,3, 3 t -
Pa(x) = x" + ax® + ¢ix* + ¢ s
8 PVl
9 =[1001], 6 = [110]2 3 =[11]» e
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 Rounds

Algebraic degree observed for n = 31.
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On the algebraic degree of MiMC3

First Plateau

Round i of MiMCs: x — x3 4 ¢i41.
For r rounds:

> Upper bound [Eichlseder et al., AC20]: [rlog, 3] .

> Aim: determine Bj := max. deg’MIMC; [r] .
Definition
ip : 1 .
- Round 1: There is a plateau whenever B = B;".
Pl(X) = X3
Degree
=[11 30
3=k 2 2
2 Round 2: | B =2 s S
9 6, 2,3, 3 t -
Pa(x) = x" + ax® + ¢ix* + ¢ s
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On the algebraic degree of MiMC3
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

E = {3/ mod (2" — 1) where j < i, i € E_1}
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

E = {3/ mod (2" — 1) where j < i, i € E_1}

No exponent = 5,7 mod 8 = No exponent 22K — 1

EC{ 0 3 6 9 12 &5 18 24
24 27 30 33 36 39 42 75
48 51 54 57 60 B3 66 B9

31}
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

E = {3/ mod (2" — 1) where j < i, i € E_1}

No exponent = 5,7 mod 8 = No exponent 22K — 1

&EC{ 0 3 6 9 12 15 18 24
24 27 30 33 36 39 42 7§
48 51 54 57 60 BZ 66 BY
37}
Example - 63 =223 _1¢ & ={0,3,...,81} = B} < 6 = wt(63)
Ve € &\{63}, wt(e) < 4 = B} <4
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

Bounding the degree

After r rounds of MiMC, the algebraic degree is

B3 <2 x [|log,(3")]/2 - 1]
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First plateau
Bounding the degree
Exact degree

On the algebraic degree of MiMC3

Bounding the degree

After r rounds of MiMC, the algebraic degree is

B3 <2 x [|log,(3")]/2 - 1]

Degree

And a lower bound
if 3 < 2" - 1:
Bf > wt(3")
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20
18
16
14
12
10

8

[SENIENE-Y

i

w=p==Upper Bound

«=4==Lower Bound
# Observed Degree

+—+
8 9

10 11 12 13 14 15 16 17 18 19 Rounds




First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

Exact degree

Maximum-weight exponents:

Let k, = [rlog, 3].

Vr e {4,...,16265}\F with F = {465,571, ...}:
S if k, is odd,

w, =2k —5¢€&,

S if k, is even,

w, =2k —7€€&,.
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

Exact degree

Maximum-weight exponents: r—7
Let k, = [rlog, 3]. r—6
Vr € {4,...,162651\F with F = {465,571,...}: r-5s
7 if Ky is odd, o
r—3
wr:2kr_565r7
r—2
r—1
S if k, is even, ’
w, =2 —T€E,. Constructing exponents.

dlst. w,_e€&E_y = w, €&
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Exact degree

Maximum-weight exponents: r—7
Let k, = [rlog, 3]. r—6
Vr € {4,...,162651\F with F = {465,571,...}: r-5s
7 if Ky is odd, Tl
r—3
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r—1
S if k, is even, r
w, =2 —T€E,. Constructing exponents.

dlst. w,_y€&E_y = w, €&
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

Exact degree

Maximum-weight exponents: r—7

Let k, = [rlog, 3]. r—6

Vr e {4,...,16265}\ F with F = {465,571, ...}: r—>5

3 if k, is odd, e

r—3

wr:2kr_5€5ra

r—2

r—1

S if k, is even, @
w, =2 —T€E,. Constructing exponents.

\ae st. w1 E€EE_4 = w, €L,
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First plateau
On the algebraic degree of MiMC3 Bounding the degree
Exact degree

Exact degree

Maximum-weight exponents: @ —
=7
Let k, = |rlog,3]. Sl
Vr e {4,...,16265}\F with F = {465,571,...}: s
2 if Ky is odd, Pore
r—3
w, =2 -5¢€¢&, FE
‘ . r—1
73 if k, is even, kG)
w, = ok _7¢ g . Constructing exponents.

‘36 st. wrp€E_p = w &
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First platea
On the aic de; f C3 Bounding the d.
Exact degree

Covered rounds

Idea of the proof:
inductive proof: existence of “good” /

Rounds for which we are able to exhibit a maximum-weight exponent.

‘MIMCa n:129‘ ‘MIMC3 n:255‘
19 2 159 161

MIMC3 =769 MIMC3 n=1024

16225 16265

Legend: [ rounds covered by the inductive procedure I  rounds not covered
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On the algebraic degree of MiMC3
Exact degree

Covered rounds

Idea of the proof:
inductive proof: existence of “good” /

» MILP solver (PySCIPOpt)
Rounds for which we are able to exhibit a maximum-weight exponent

‘MIMCLn:129‘ ‘MIMC3.n:255‘
82 161

0
MIMC3 n*769 MIMC3 n*1024
466 486 16225 16265

53

53

rounds covered by the inductive procedure or MILP - rounds not covered

Legend:
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First plateau
Bounding the degree

On the algebraic degree of MiMC3
Exact degree

Covered rounds

Idea of the proof:
inductive proof: existence of “good” /

» MILP solver (PySCIPOpt)
Rounds for which we are able to exhibit a maximum-weight exponent

‘MIMCa‘n:HQ‘ ‘MIMC3.n:255‘
82 161

0
MIMC3 n:769 MIMC3 n:1024
466 486 16225 16265

53

53

rounds covered by the inductive procedure or MILP - rounds not covered

.
= plateau when k, = |rlog, 3] is odd and k.1 = |(r + 1) log, 3| is even
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Secret-key 0-sum distinguisher

Comparison to previous work

Integral attack

© Integral attack
o Secret-key O-sum distinguisher
@ Comparison to previous work
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Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace V C F4 with dimV > deg?(F) + 1, we have a 0-sum distinguisher:

P F(x) =o.

xeV

Random permutation: degree = n—1
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Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace V C F4 with dimV > deg?(F) + 1, we have a 0-sum distinguisher:

P F(x) =o.

xeV
Random permutation: degree = n—1

X X

n bits n bits
k—

n bits n bits

y y

Block cipher Random permutation
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Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

Comparison to previous work

First Bound: [rlog,3] = Exact degree: 2 x [|rlog,3]/2 —1] .

Degree
30
28 »
26 1 = bound from [EGL+20]

24 1 = exact degree (our result)

22
20 A
18
16
14

2 vl

10 +

——t——t—+— +—t
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Rounds

oN B O ®
4
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Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

Comparison to previous work

First Bound: [rlog,3] = Exact degree: 2 x [|rlog,3]/2 —1] .

Degree For n =129, MIMC3 = 82 rounds
30
28 »
1 == bound from [EGL+20] .
;i ] = exact degree (our result) Rounds Time Data SOUI"CG
22
» o 80/82 2'%xor 2%  [EGL+20]
18 1 ﬂ
16
81/82  2'%xor 2% New
. 7 /
o ] 80/82 2%xon 2 New
6]
: ¢ Secret-key distinguishers (n = 129)
0 +—t t "ttt
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Rounds
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Secret-key 0-sum distinguisher
Comparison to previous work

Integral attack

Conclusions

/) guarantee on the algebraic degree of MIMC;.
2 upper bound on the algebraic degree:

2 x [logy(3")]/2 =11 .

2 bound tight, up to 16265 rounds.
72 minimal complexity for higher-order differential attack
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Secret-key 0-sum distinguisher
Comparison to previous work

Integral attack

Conclusions

/) guarantee on the algebraic degree of MIMC;.
2 upper bound on the algebraic degree:

2 x [logy(3")]/2 =11 .

2 bound tight, up to 16265 rounds.
72 minimal complexity for higher-order differential attack

72 application in music for semiconvergents of log,(3)

See more details on eprint.iacr.org/2022/366

Thanks for your attention  :

R R R R R -
»
»
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Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

Music in MIMC;

73 Patterns in sequence (k;),>o:

= denominators of semiconvergents of log,(3) ~ 1.5849625

©={1,[2]3,5,/7][12]17,29,41,/53 94,147,200, 253,306, 359 ...} ,

log,(3) =~ % & 27~3b
/2 Music theory:
S perfect octave 2:1
S perfect fifth 3:2
3\ 12
9 ~312 o 2T~ <2> & 7 octaves ~ 12 fifths



Secret-key 0-sum distinguisher
Comparison to previous work

Integral attack

Sporadic Cases

Bound on ¢

Observation

2t+2
V1<t <21, Vx € Z/3'Z, Jea,...,e2e42 € {0,1}, st. x =D ;4 mod 3" .
j=2

Let: k. = |rlog, 3], by = k, mod 2 and
ﬁr:{f, 1<i<r, s.t. k,_g:k,fkg}.

Proposition

Let r>4,and € L, s.t.
»e=1,2,
N2<0<22st k >k +30+b,+1,and £ is even, or £ is odd, with b,_p = b,;
»2<0<22isodd st. k> k;+30+b, +5

Then w,_y € E_p implies that w, € &,.

4




Rounds for which we are able to exhibit a maximum-weight exponent.

Integral attack

Secret-key 0-sum distinguisher
Comparison to previous work

‘MIMC3.n7129‘ ‘M\MC3.n7255‘
0 7 12 19 24 53 82 106 159 161 212 265 318 359 412 465
MIMCs, n = 760 MIMCs, n = 1024
466 486 518 571 624 647 665 718 665) -+ 53,1, 350 + 665 + 531, 16225 16265

Legend:

i

Rounds for which we are able to construct an exponent.

semiconvergents of log,(3): MILP
"good" ¢
no "good” /: MILP

no "good" ¢ (¢ >53): MILP

1<A<240<p<6

0<A<23,0<pu<5

Rounds likely to be covered by solving the conjecture.

no "good” ¢: no result with MILP



Integral attack

Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.

‘MIMcg‘n:HQ‘ ‘MIMC;.n:2S5‘

7
17|
7|
17|
|

7R

I |

665\ + 5371, 359 + 665\ + 531, 16225 16265
1<A<240<pu<6 0<A<23,0<pu<5s
Legend: [ rounds covered by the inductive procedure or MILP I ounds not covered



Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

MILP Solver

- Multy : 4 - N
Y Loy oot = {(3jo) mod (27 — 1), ..., (3je—1) mod (2" — 1)} ,

o Cover : N¥ - NI
oy o1} = {k =2 i€ {0, 0—1}} .

hat:
So that & = Mults(Cover(&,-1)) .

= MILP problem solved using PySCIPOpt

existence of a solution & w, € (Mults o Cover)‘({37~¢}) ‘

With ¢ =1:

3-lecg Cover 2k —ayp €&,



Secret-key 0-sum distinguisher

Comparison to previous work
Integral attack

MILP Solver (2 rounds)
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Secret-key 0-sum distinguisher
Comparison to previous work

Integral attack

MILP Solver (i rounds)

-+« — Cover
Multz — ...

:

N

Mults

3~ e &_; — Cover 2k —ay, €&,

1 !

Multz

Mults

.
Il ] */ [

- — Cover

r—i r—i+1 r—i+2 r
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Secret-key 0-sum distinguisher
Comparison to previous work

Integral attack

MILP Solver (i rounds)

- =3 Cover

N
L
—
I\>
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Other Quadratic functions

Proposition

Let £, be the set of exponents in the univariate form of MIMCg[r]. Then:

Vieé&, imod8e {0,1}.
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Other Quadratic functions

Proposition

Let £, be the set of exponents in the univariate form of MIMCg[r]. Then:

Vieé&, imod8e {0,1}.

Gold Functions: x3, x2, ...
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Proposition

Let &, be the set of exponents in the univariate form of MIMC,[r], where d = 2/ + 1. Then:

Vie&, imod2 € {0,1}.
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Algebraic degree of MiMC;1

Inverse: F:x+— x% s = (2" —1)/3 =[101..01],
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Some ideas studied

Plateau between rounds 1 and 2, for s = (21 — 1)/3 = [101..01]y:
22 Round 1: Bl = wt(s) = (n+1)/2
22 Round 2: B2 = max{wt(is), for i <s}=(n+1)/2

Proposition

For i < s such that wt(i) > 2:

[wt(i)—1,(n—1)/2] if wt(i)=2mod 3
wt(is) € [wt(i),(n—1)/2] if wt(i) =0 mod 3
[wt(i),(n+1)/2] if wt(i)=1mod3
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Some ideas studied

Plateau between rounds 1 and 2, for s = (21 — 1)/3 = [101..01]y:
22 Round 1: Bl = wt(s) = (n+1)/2
22 Round 2: B2 = max{wt(is), for i <s}=(n+1)/2

Proposition

For i < s such that wt(i) > 2:

[wt(i)—1,(n—1)/2] if wt(i)=2mod 3
wt(is) € [wt(i),(n—1)/2] if wt(i) =0 mod 3
[wt(i),(n+1)/2] if wt(i)=1mod3

Next rounds: another plateau at n — 27

2 > s @[22 +1)]
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