
Random polynomials and expeted omplexity of bisetionmethods for real solvingIoannis Z. Emiris∗ André Galligo† Elias P. Tsigaridas‡AbstratOur probabilisti analysis sheds light to the following questions: Why do random poly-nomials seem to have few, and well separated real roots, on the average? Why do exatalgorithms for real root isolation may perform omparatively well or even better than nu-merial ones?We exploit results by Ka, and by Edelman and Kostlan in order to estimate the realroot separation of degree d polynomials with i.i.d. oe�ients that follow two zero-meannormal distributions: for SO(2) polynomials, the i-th oe�ient has variane (
d
i

), whereasfor Weyl polynomials its variane is 1/i!. By applying results from statistial physis, weobtain the expeted (bit) omplexity of sturm solver, ÕB(rd2τ), where r is the number ofreal roots and τ the maximum oe�ient bitsize. Our bounds are two orders of magnitudetighter than the reord worst ase ones. We also derive an output-sensitive bound in theworst ase.The seond part of the paper shows that the expeted number of real roots of a degree
d polynomial in the Bernstein basis is √2d ±O(1), when the oe�ients are i.i.d. variableswith moderate standard deviation. Our paper onludes with experimental results whihorroborate our analysis.Categories and Subjet Desriptors: F.2 [Theory of Computation℄: Analysis of Algorithmsand Problem Complexity; I.1 [Computing Methodology℄: Symboli and algebrai manipulation:AlgorithmsKeywords: Random polynomial, real-root isolation, Bernstein polynomial, expeted om-plexity, separation bound1 IntrodutionOne of the most important proedures in omputer algebra and algebrai algorithms is rootisolation of univariate polynomials. The goal is to ompute intervals in the real ase, or squaresin the omplex ase, that isolate the roots of the polynomial and to ompute one suh interval,or square, for every root.We restrit ourselves to exat algorithms, i.e. algorithms that perform arithmeti with ratio-nal numbers of arbitrary size. The best known algorithms are subdivision algorithms, based onSturm sequenes (sturm), or on Desartes' rule of sign (desartes), or on Desartes' rule andthe Bernstein basis representation (bernstein). Subdivision algorithms mimi binary searhand their omplexity depends on separation bounds. They are given an initial interval, or om-pute one ontaining all real roots. Then, they repeatedly subdivide it until it is erti�ed thatzero or one real root is ontained in the tested interval.

∗National Kapodistrian University of Athens, Greee. Email: emiris(at)di.uoa.gr
†University of Nie, Frane. Emai: galligo(at)unie.fr
‡University of Athens, Greee and Århus University, Denmark. Email: elias.tsigaridas(at)gmail.om1



Thanks to important reent progress [7, 8, 10, 11℄, the omplexity of sturm, desartes andbernstein is, in the worst ase, ÕB(d4τ2), where d is the degree of the polynomial and τ themaximum oe�ient bitsize. The bound holds even when the polynomial is non-squarefree, andwe also ompute (all) the multipliities. This requires a preproessing of omplexity ÕB(d2τ),in order to ompute the square-free fatorization. The new polynomial has oe�ients of size
O(d + τ). The omplexity of this stage, although signi�ant in pratie, is asymptotiallydominated. In this paper we onsider the behavior of sturm on random polynomials of variousforms. Our results an be extended to desartes and bernstein.Another important exat solver (f) is based on the ontinued frations expansion of thereal roots e.g. [1, 33, 35℄. Several variants of this solver exist, depending on the method used toompute the partial quotients of the real roots. Assuming the Gauss-Kuzmin distribution holdsfor the real algebrai numbers, it was proven [35℄, that the expeted omplexity is ÕB(d4τ2).By spreading the roots, the expeted omplexity beomes ÕB(d3τ) [35℄. The urrently knownworst-ase bound is ÕB(d4τ2) [25℄. This paper redues the gap between sturm f.Numerial algorithms ompute an approximation, up to a desired auray, of all omplexroots. They an be turned into isolation algorithms by requiring the auray to be equal tothe theoretial worst-ase separation bound. The urrent reord is ÕB(d3τ) and is ahieved byreursively splitting the polynomial until one obtains linear fators that approximate su�ientlythe roots [32, 27℄. It seems that the bounds ould be improved to ÕB(d2τ) with a more sophisti-ated splitting proess. We should mention that optimal numerial algorithms are very di�ultto implement.Even though the omplexity bounds of the exat algorithms are worse than those of thenumerial ones, reent implementations of the former tend to be ompetitive, if not superior, inpratie, e.g. [19, 30, 11, 35℄. Our work attempts to provide an explanation for this. There is ahuge amount of work onerning root isolation and the referenes stated represent only the tipof the ieberg; we enourage the reader to refer to the referenes.Most of the work on random polynomials, whih typially onerns polynomials in the mono-mial basis, fouses on the number of real roots. Ka's [20℄ elebrated result estimated the ex-peted number of real roots of random polynomials (named after himself) as 2

π
log d + O(1),when the oe�ients are standard normals i.i.d. or uniformly distributed, and d is the degree ofthe polynomial. We refer the reader to e.g. [5, 24, 12℄ for a historial perspetive and to [3℄ forvarious referenes. A geometri interpretation of this result and many generalizations appearin [9℄. We mainly examine SO(2) polynomials, where the i-th oe�ient is an i.i.d. Gaussianrandom variable of zero mean and variane (

d
i

). Aording to [9℄, they are �the most naturalde�nition of random polynomials�, see also [34℄. Their expeted number of real roots is √d. ForWeyl polynomials, the i-th oe�ient is an i.i.d. Gaussian random variable of zero mean andvariane 1/i!, and the expeted number of real roots is about 2
π

√
d + O(1) where higher-orderterms are not known to date [31℄. For results on omplex roots we refer to e.g. [14, 13℄.Our �rst ontribution onerns the expeted bit omplexity of sturm, when the input israndom polynomials with i.i.d. oe�ients; notie that their roots are not independently dis-tributed! In other words, we have to go beyond the theory of Ka, and Edelman and Kostlan,in order to study the statistial behavior of root di�erenes and, more preisely, the minimumabsolute di�erene. We examine SO(2) and Weyl random polynomials, and exploit the relevantprogress ahieved in statistial physis. In fat, these polynomial lasses are of partiular interestin statistial physis beause they model zero-rossings in di�usion equations and, eventually, ahaoti spin wave-funtion [4, 14, 31℄. The key observation is that, by applying these results,we an quantify the orrelation between the roots, whih is su�iently weak, but does exist.For both lasses of polynomials we prove an expeted ase bit omplexity bound of ÕB(r d2τ),where r is the number of real roots. A lose related bound was speulated in [18℄, based on2



experimental evidene.Our bounds are tighter than those of the worst ase by two fators. In the ourse of thisanalysis, sturm is shown to be output-sensitive, with omplexity proportional to the numberof real roots in the given interval, even in the worst ase. A similar bound appeared in [15℄.Besides polynomials in the monomial basis, polynomials in the Bernstein basis are im-portant in many appliations, e.g. CAGD and geometri modeling. They are of the form∑d
i=0 ai

(
d
i

)
xi(1 − x)d−i. For the random polynomials that we onsider, ai are standard normalsi.i.d. random variables, that is Gaussians with zero mean and variane one. Suh polynomialsare also important in Brownian motion [21℄. In [2℄, they examine random polynomial systems;they also estimate the expeted number of real roots of a polynomial in the Bernstein basis as√

d, when the variane is (
d
i

). This left open the ase, see also [21℄, of smaller variane, that ispolynomial and not exponential in d.Our seond ontribution is to examine random polynomials in the Bernstein basis of de-gree d, with i.i.d. oe�ients with mean zero and �moderate� variane Θ(1/
√

d/(i(d − i))), for
d > i > 0. Indeed, we have 1 ≥

√
d/(i(d − i)) ≥ 2/

√
πd. We prove that the expeted numberof real roots of these polynomials is √2d ±O(1). We onlude with experimental results whihorroborate our analysis, and shows that these polynomials behave like polynomial with vari-ane 1. This is the �rst step towards bounding the expeted omplexity of solving polynomialsin the Bernstein basis.The rest of the paper is strutured as follows. First we speify our notation. Se. 2 and 3applies our expeted-ase analysis to estimating the real root separation bound, and to estimatingthe omplexity of sturm solver. Se. 4 determines the expeted number of real roots of randompolynomial in the Bernstein basis and supports our bounds by experimental results. The paperonludes with a disussion of open questions.Notation. OB means bit omplexity and the ÕB-notation means that we are ignoringlogarithmi fators. For A =

∑d
i=1 aiX

i ∈ ZZ[X], dg(A) denotes its degree. L (A) denotes anupper bound on the bitsize of the oe�ients of A (inluding a bit for the sign). For a ∈ (Q,
L (a) ≥ 1 is the maximum bitsize of the numerator and the denominator. ∆ is the separationbound of A, that is the smallest distane between two (real or omplex, depending on theontext) roots of A.2 Subdivision-based solversIn order to make the presentation self-ontained, we present in some detail the general shemeof the subdivision-based solvers. The pseudo-ode of a suh a solver is found in Alg. 1. Ourexposition follows losely [11℄.The input is a square-free polynomial A ∈ ZZ[x] and an interval I0, that ontains the realroots of A whih we wish to isolate; usually it ontains all the positive real roots of A. In whatfollows, exept if expliitly stated otherwise, we onsider only the roots (real and/or omplex)of A with positive real part, sine similar results ould be obtained for roots with negative realpart using the transformation x 7→ −x. Our goal is to ompute rational numbers between thereal roots of A in I0.The algorithm uses a stak Q that ontains pairs of the form {f, I}. The semantis are thatwe want to isolate the real roots of f ontained in interval I. push(Q, {f, I}) inserts the pair {f, I}to the top of stak Q and pop(Q) returns the pair at the top of the stak and deletes it from
Q. add(L, I) inserts I to the list L of the isolating intervals.There are 3 sub-algorithms with index sm, whih have di�erent speializations with respetto the subdivision method applied, namely sturm, desartes, or bernstein. Generally,initializationsm does the neessary pre-proessing, ountsm(f, I) returns the number (or an3



Algorithm 1: subdivisionSolver(A, I0)Input: Square-free A∈ ZZ[x], I0 = [0,B]Output: A list of isolating intervals for the real roots of A in I0initializationsm(A,I0)1
L← ∅, Q← ∅, Q← push(Q,{A,I0})2 while Q 6= ∅ do3

{f,I}← pop(Q)4
V← ountsm(f,I)5 swith V do6 ase V = 0 ontinue7 ase V = 1 L← add(L,I)8 ase V > 19

{fL,IL},{fR,IR}← splitsm(f,I)10
Q← push(Q,{fL,IL}), Q← push(Q,{fR ,IR})11 return L12upper bound) of the real roots of f in I, and splitsm(f, I) splits I to two equal subintervals andpossibly modi�es f.The omplexity of the algorithm depends on the number of times the while-loop (Line 3 ofAlg. 1) is exeuted and on the ost of ountsm(f, I) and splitsm(f, I). At every step, sinewe split the tested interval to two equal sub-intervals, we may assume that the bitsize of theendpoints is augmented by one bit. If we assume that the endpoints of I0 have bitsize τ, thenat step h, the bitsize of the endpoints of I ⊆ J0 is τ + h.Let n be the number of roots with positive real part, and r the number of positive real roots,so r ≤ n ≤ d. Let the roots with positive real part, be αj = ℜ(αj) + iℑ(αj), where 1 ≤ j ≤ nand the index denotes an ordering on the real parts. Let ∆i be the smallest distane between

αi and another root of A, and si = L (∆i). Finally, let the separation bound, i.e. the smallestdistane between two (possibly omplex) roots of A be ∆ and its bitsize be s = L (∆).2.1 Upper root boundBefore applying a subdivision-based algorithm, we should ompute a bound, B, on the (positive)roots. We will express this bound as a funtion of the bitsize of the separation bound and thedegree of the polynomial. There are various bounds for the roots of a polynomial, e.g. [36, 16, 26℄,and referenes therein. For our analysis we use the following bound [16℄ on the positive realparts of the roots, B =

⌊
2maxai<0minak>0,k>i

∣∣∣ ai

ad

∣∣∣
1/(k−i)

⌋, for whih we have the estimation[16, 33℄ αr ≤ ℜ(αn) < B < 8dln2
ℜ(αn). The bound an be omputed in ÕB(d2τ).If we multiply the polynomial by x, then 0 is a root. By de�nition of s, we have | log(|ℜ(αi)−

ℜ(αj)|)| ≤ s, for any i 6= j. Hene, we have the following inequalities
ℜ(α1) − 0 ≤ 2s

ℜ(α2) − ℜ(α1) ≤ 2s...
ℜ(αn−1) − ℜ(αn−2) ≤ 2s

ℜ(αn) − ℜ(αn−1) ≤ 2s (+)

ℜ(αn) ≤ n2sThus, we have B < 8dln2
ℜ(αn) < 8dln2

n2s < 16d2 2s < d2 24+s. Hene, we an dedue that
L (B) = O(s + lgd). 4



Lemma 2.1. Let A ∈ ZZ[x], where dg(A) = d and L (A) = τ. We an ompute a bound, B, onthe positive real parts of the roots of A, for whih it holds B < d2 24+s, and L (B) = O(s+ lg d).Remark 2.2. In the worst ase, the asymptotis of, more or less, all root bounds in the liter-ature, e.g. [36, 16, 26℄, are same, sine B ≤ maxi |ai| ≤ 2τ, and L (B) ≤ τ. However, it is veryimportant in pratie to have good initial bounds. Good initial estimations of the roots anspeed up the implementation by 20% [22℄.3 On expeted omplexityExpeted omplexity aims to apture and quantify the property for an algorithm to be fast formost inputs and slow for some rare instanes of these inputs. Let E denote the set of inputs, andassume it is equipped with a probability measure µ; then let c(I) denote the usual worst-aseomplexity of the onsidered algorithm for input I. By de�nition, the expeted omplexity isthe integral ∫
E

c(I)µ(I).In our setting the set E depends on a parameter d (the degree of the input polynomial),and we are interested in the asymptoti expeted omplexity when d tends to in�nity. Eah
Ed is equipped with a probability measure µd (also alled distribution) of the sequene of the(normalized) oe�ients of the input polynomial and we onsider the ases where there exists alimit distribution.3.1 Strategy and IndependeneA natural strategy is to deompose Ed into two subsets Gd and Rd (G stands for generi and Rfor rare), suh that c(I) is small for I ∈ Gd while µd(I) is very small for I ∈ Rd and moreoverthe two partial integrals ∫

Gd
c(I)µd(I) and ∫

Rd
c(I)µd(I) are balaned or at least both small.We fae another di�ulty. Classial properties and estimates in Probability theory are oftenexpressed for a sequene of independent variables (i.i.d.) but most natural bijetive transfor-mations performed in Computer Algebra do not respet independene. For instane, if X and

Y are independent random variables, then U := X + Y and V := X − Y are not independent. Inour setting, even if we onsider a model of distribution of oe�ients whih assumes that theyare i.i.d., then this does not imply that the roots are i.i.d. and we annot apply usual tools orestimates. However, as we are interested in asymptoti behavior, for some models of distribu-tion of oe�ients it happens that the limit distribution of the roots behave almost like a set ofindependent variables, i.e. they have very weak orrelation. So we an invoke general lassialestimates for our analysis.When this is not the ase, a useful tool is the two-point, or multi-point, orrelation funtion.They express the defet of independene between a set of random variables and lassially serve,e.g., to ompute standard deviations.Hereafter, we restrit ourselves to models of distribution of oe�ients, hene indued dis-tribution of roots, for whih the orresponding probability measures and orrelation funtionshave already been studied. Hopefully these models will provide good approximations for thesituations enountered in the many appliations.3.2 SO(2) polynomialsWe onsider the univariate polynomial A =
∑d

i=0 aix
i, the oe�ients of whih are i.i.d. normalswith mean zero and varianes (

d
i

), where 0 ≤ i ≤ d. Alternatively, we ould onsider A as
A =

∑d
i=0

√(
d
i

)
ai xi, where ai are i.i.d. standard normals. These polynomials are onsidered5



by Edelman and Kostlan [9℄ to be �the more natural de�nition of a random polynomial�. Theyare alled SO(2) beause the joint probability distribution of their zeros is SO(2) invariant,after homogenization. In [31℄ they are alled binomial. Let ρ(t) =
√

d
π(1+t2)

be the true densityfuntion, i.e. the expeted number of real zeros per unit length at a point t ∈ IR. The expetednumber r of real roots of A is given by r =
∫IR ρ(t)dt =

√
d [9℄. Let αj be the real roots of A intheir natural ordering, where 1 ≤ j ≤ r.We de�ne the straightened zeros of A as

ζj = P(αj) =
√

d artan(αj)/π, j = 1, . . . , r,in bijetive orrespondene with the real roots αj of the random polynomial, where P(t) =∫t

0
ρ(u) du. Moreover, the ordering is preserved. The straightened zeros are uniformly dis-tributed on the irle of length 2

√
d [4, se.5℄. This is a strong property and implies thatthe joint probability distribution density funtion of two, resp. m, (distint) straightened zerosoinides with their 2-point, resp. m-point, orrelation funtion [4℄.Proposition 3.1. [4, Thm. 5.1℄ Following the previous notation, as d → ∞ the limit 2-pointorrelation of the straightened zeros is k(s1, s2)→ π2|s1 − s2|/4, when s1 − s2→ 0.Let ∆(α) = min1≤i<r{αi+1 − αi} and ∆(ζ) = min1≤i<r{ζi+1 − ζi} be the separation boundof the real roots of A and the straightened zeros, respetively. We onsider eah straightenedzero uniformly distributed on a straight-line interval of length 2

√
d. For two suh zeros, we anonsider one horizontal and one vertial suh interval, de�ning a square, whih represents theirjoint probability spae. Sine the real roots are naturally ordered, if two of them lie in a givenin�nitesimal interval, they must be onseutive.Let Z be a zone bounded above and below by a diagonal at vertial distane l from the maindiagonal of the unit square. The probability Pr[∆(ζ) ≤ l] that there exist two zeros lying ina given interval of in�nitesimal length l tends to the integral of k(s1, s2) over the straightenedzeros lying in Z, as d→∞:Pr[∆(ζ) ≤ l]→

∫
Z

k(s1, s2)ds1 ds2

= 2
∫2

√
d

0
ds1

∫s1+l

s1
k(s1, s2)ds2

= π2

2

∫2
√

d

0
ds1

∫s1+l

s1
|s1 − s2|ds2 = π2

√
d

2
l2,where the �rst integral is over all straightened zeros, whih lie in an interval of size 2

√
d.Notie that k(s1, s2) is essentially the joint probability density funtion of two real roots. UsingMarkov's inequality, e.g. [28℄ we have Pr[∆(ζ) ≥ l] ≤ E[∆(ζ)]/l, soE[∆(ζ)] ≥ l Pr[∆(ζ) ≥ l] = l − l Pr[∆(ζ) < l] > l −

π2
√

d

2
l3.This bounds the asymptoti expeted separation onditioned on the hypothesis that it tendsto zero, as d → ∞. If we hoose l = 1/(dcτ), where c ≥ 1 is a (small) onstant, whih is inaordane with the assumption of l→ 0, then E[∆(ζ)] > 1

dcτ
− π2

2d3c−1/2τ3 .E[∆(ζ)] = E[ min
1≤i<r

{ζi+1 − ζi}] =√
d

π
E[ min

1≤i<r
{artan(αi) − artan(αi+1)] =√

d

π
E[ min

1≤i<r
{artan(

αi − αi+1

1 + αi αi+1

)
}] >

1

dcτ
−

π2

2d3c−1/2τ3
⇔6



E[ min
1≤i<r

{artan(
αi − αi+1

1 + αi αi+1

)
}] >

π

dc+1/2τ
−

π3

2d3cτ3
.Funtion artan is strongly monotone, and 1+αiαi+1 ≥ 1, for all i, exept where αi is the largestnegative root and αi+1 is the smallest positive root. But we an treat this ase separately, sinezero is an obvious separation point.E[ min

1≤i<r
{αi − αi+1}] ≥ E[ min

1≤i<r
{

(
αi − αi+1

1 + αi αi+1

)
}] >

> tan(
π

dc+1/2τ
−

π3

2d3cτ3
) ≥ π

dc+1/2τ
−

π3

2d3cτ3
,where the latter inequality follows from the series expansion tan x = x+x3/3+· · · for x ∈ (0, π/2).Lemma 3.2. Let A ∈ ZZ[x] of degree d, the oe�ients of whih are i.i.d. variables that followa normal distribution with varianes (

d
i

), then for the expeted value of the separation boundof the real roots it holds E[∆] > π
dc+1/2τ

− π3

2d3cτ3 , for a onstant c ≥ 1, and E[s] = E[L (∆)] =

O(lg d + lg τ).3.3 Weyl polynomialsWe onsider random polynomials, known as Weyl polynomials, whih are of the form
A =

d∑

i=0

aix
i/
√

i!,where the oe�ients ai are independent standard normals. Alternatively, we ould onsider Aas A =
∑d

i=0 aix
i, where ai are normals of mean zero and variane 1/

√
i!. The density of thereal roots of Weyl polynomials is

ρ(t) =
1

π

√
1 +

t2d(t2 − d − 1)

et2
Γ(n + 1, t2)

−
t4d+2

(et2
Γ(n + 1, t2))2

,where Γ is the inomplete gamma funtion. The expeted number of real roots is r =
∫IR ρ(t)dt ∼

2
π

√
d [31℄, where the higher order terms of the number of real roots are not expliitly known upto now.The asymptoti density, for d→∞, is

ρ(t) =

{
π−1, |t| ≪

√
d

d
πt2 , |t| ≫

√
d

(1)A useful observation is that the density of the real roots of the Weyl polynomials is similarto the density of the real eigenvalues of Ginibre random matries, that is d × d matries withelements Gaussian i.i.d. random variables [9, 31℄.We onsider only the real zeros of A that are inside the dis entered at the origin with radius√
d sine outside the dis there is only a onstant number of them. In this ase the density isrepresented by the �rst branh of (1).We work as in the ase of the SO(2) polynomials. Now P(t) =

∫t
0
ρ(u)du = t/π. Thestraightened zeros, ζi, are given by

ζi = P(αi) = αi/π,and they are uniformly distributed in [0,
√

d/π] [31℄. The joint probability distribution densityfuntion of two straightened zeros oinides with their 2-point orrelation funtion.7



Proposition 3.3. [31℄ Under the previous notation, as d→∞ the limit 2-point orrelation ofthe straightened zeros is w(s1, s2)→ |s1 − s2|/(4π), when s1 − s2→ 0.Working as in the ase of the SO(2) polynomials, the probability Pr[∆(ζ) ≤ l] that thereexist two roots lying in a given interval of in�nitesimal length l tends to the integral of w(s1, s2)over the straightened zeros lying in Z, as d→∞:Pr[∆(ζ) ≤ l] =
∫

Z
w(s1, s2)ds1ds2

=
∫√d/π

0

∫s1+l

s1−l
w(s1, s2)ds1 ds2 = l2

√
d

4π2 ,and using Markov's inequalityPr[∆(ζ) ≥ l] ≤ E[∆(ζ)]/l⇐⇒ E[∆] > l −

√
d

4π2
l3.If we hoose l = 1/(dcτ), where c ≥ 1 is a (small) onstant, we get E[∆(ζ)] > 1

dcτ
− 1

4π2d3c−1/2τ3and E[∆(α)] > π
dcτ

− 1
4πd3c−1/2τ3 .Lemma 3.4. Let A ∈ ZZ[x] of degree d, the oe�ients of whih are i.i.d. variables that followa normal distribution with varianes 1/i!, then for the expeted value of the separation boundof the real roots it holds E[∆] > π

dcτ
− 1

4πd3c−1/2τ3 and E[s] = E[L (∆)] = O(lg d + lg τ).3.4 The sturm solverProbably the �rst erti�ed subdivision-based algorithm is the algorithm by Sturm, ira 1835,based on his theorem: In order to ount the number of real roots of a polynomial in an interval,one evaluates a negative polynomial remainder sequene of the polynomial and its derivativeover the left endpoint of the interval and ounts the number of sign variations. We do the samefor the right endpoint; the di�erene of sign variations is the number of real roots.We assume that the positive real roots are ontained in [0,B] (Se. 2.1). If there are r ofthem, then we need to ompute r−1 separating points. The magnitude of the separation pointsis at most 1
2
∆j, for 1 ≤ j ≤ r, and to ompute eah we need ⌈lg 2B

∆j

⌉ subdivisions, performingbinary searh in the initial interval. Let T be the binary tree that orresponds to the exeutionof the algorithm and #(T) be the number of its nodes, or in other words the total number ofsubdivisions: #(T) =

r∑

j=1

⌈lg 2B
∆j

⌉
≤ 2r + r lg B−

r∑

j=1

lg∆j. (2)Using Lem. 2.1, we dedue that #(T) = O(rs + r lg(d)).The Sturm sequene should be evaluated over a rational number, the bitsize of whih is atmost the bitsize of the separation bound. Using fast algorithms [23, 29℄ this ost is ÕB(d2(τ+s));to derive the overall omplexity we should multiply it by #(T). Notie that for the evaluationwe use the sequene of the quotients, whih we omputed in ÕB(d2τ) [23, 29℄, and not the wholeSturm sequene, whih an be omputed in ÕB(d3τ), e.g. [7℄.The previous disussion allows us to express the bit omplexity of sturm not only as a fun-tion of the degree and the bitsize, but also using the number of real roots and the (logarithm of)separation bound. This omplexity is output sensitive, and is of independent interest, althoughit leads to a loose worst-ase bound.Lemma 3.5. Let A ∈ ZZ[x], dg(A) = d, L (A) = τ and let s be the bitsize of its separationbound. Using sturm, we isolate the real roots of A with worst-ase omplexity ÕB(rd2(s2+τs)),where r is the number of real roots. 8



In the worst ase s = O(dτ), and to derive the worst ase omplexity bound for sturm,
ÕB(d4τ2), we should also take into aount that ds = O(dτ).To derive the expeted omplexity we should onsider two ases for the separation bound,that is, smaller or bigger than l = 1/(dcτ), where c ≥ 1 is a small onstant that shall be spei�edlater.In the �rst ase, that is ∆ ≤ l = 1/(dcτ), the real roots are not well separated, so we relyon the worst ase bound for isolating them, that is ÕB(d4τ2). This ours with probabilityPr[∆ ≤ l] = Θ(

√
d l2) = Θ( 1

d2c−1/2 τ2 ), by the omputations of Se. 3.2 and Se.3.3. Thisprobability is very small.For the seond ase, sine ∆ > 1/(dcτ) we dedue s = O(lgd + lg τ). The omplexity ofisolating the real roots, following Lem. 3.5 is ÕB(rd2τ). The omputations in Se. 3.2 and Se.3.3suggest that this ase ours with probability Pr[∆ > l] = 1 − Θ(
√

d l2) = 1 − Θ( 1
d2c−1/2 τ2 ),whih is lose to one.The expeted-ase omplexity bound of sturm is

ÕB

(
(1 −

1

d2c−1/2 τ2
) · rd2τ +

1

d2c−1/2 τ2
· d4τ2

)
= ÕB(rd2τ),for any c ≥ 1, by using √

d = Õ(rτ), whih follows from the expeted number of real roots. Toavoid using this expeted number, it su�es to set c ≥ 2.Theorem 3.6. Let A ∈ ZZ[x], where dg(A) = d, L (A) = τ. If A is either a SO(2) or a Weylrandom polynomial, then the expeted omplexity of sturm solver is ÕB(r d2τ).In pratie, the Sturm sequene is used and not the quotient sequene. The ost of the formeris ÕB(d3τ) whih dominates the bound of Th. 3.6. This explains the empirial observations thatmost of the exeution time of sturm solver is spend on the onstrution of the Sturm sequene.4 Random Bernstein polynomialsWe ompute the expeted number of real roots of polynomials with random oe�ients, repre-sented in the Bernstein basis. We start with some lemmata.Lemma 4.1. For k ≤ n, non-negative integers, it holds
n∑

j=0

(
k n

k j

)
xkj =

1

k

k−1∑

j=0

(x + ei
2 π j

k )kn.Proof: We onsider the RHS of the equality. For a spei� j we expand the summand, and getterms of the form (
k n

µ

)
xkn−µei

2 π j
k

µ, 0 ≤ µ ≤ kn.There are kn + 1 suh terms. Reall that ei2π = 1. Let µ = λk + ν, where 1 ≤ ν ≤ k − 1,
0 ≤ λ < n, then
(

nk

λk + ν

)
xkn−λk−νei

2 π j
k

(λk+ν) =

(
nk

λk + ν

)
xkn−λk−νei

2 π j
k

λk ei
2 π j

k
ν =

(
nk

λk + ν

)
xkn−λk−νei

2 π j
k

ν.If we sum all these terms over j, we get
k−1∑

j=0

(
nk

λk + ν

)
xkn−λk−νei

2 π j
k

ν =

(
nk

λk + ν

)
xkn−λk−ν

k−1∑

j=0

ei
2 π j

k
ν = 0,9



1

1−ρ

1
1 − ρ

0

−

1

1−ρ

−1 + ρ 1

r

1

2

1

2−ρ

1−ρ

2−ρ
−

1−ρ

ρ

10

Figure 1. The transformation z := y

y+1
in C.sine ∑k−1

j=0 ei
2 π j

k = 0.Let µ = λk. In this ase, we have
(

nk

λk

)
xkn−λk ei

2 π j
k

λk =

(
nk

λk

)
xkn−λk =

(
nk

k(n − λ)

)
xk(n−λ)Notie that 0 ≤ λ ≤ n. Summing up over all λ and all j, and multiplying by 1/k we get theLHS. �Lemma 4.2. For non-negative integers n, k, p,

(
n
k

)p

(
pn
pk

) ≈
√

p
( n

2π

)p−1

√(
1

k(n − k)

)p−1

.Proof: The proof follows easily from Stirling's approximation n! ≈
√

2πn (n
e
)n. �More aurate results ould be obtained if the more preise expression √

2πn (n
e
)ne

1
12n+1 <

n! <
√

2πn (n
e
)ne

1
12n , is onsidered.4.1 The expeted number of real rootsWe aim to ount the real positive roots of a random polynomial in the Bernstein basis of degree

d, i.e.
P̂ :=

k=d∑

k=0

bk

(
d

k

)
zk(1 − z)d−k, (3)where we assume that P̂(0)P̂(1) 6= 0, and {bk} is an array of random real numbers, following thenormal distribution, with �moderate� standard deviation, whih shall be spei�ed below.We introdue a suitable hange of oordinates, z := y/(y + 1), to transform a polynomial inthe Bernstein basis into one in the monomial basis, by setting P = (1 + y)dP̂(y). Now, P and P̂have the same number of real roots, and

P =

k=d∑

k=0

bk

(
d

k

)
yk.Even though the number of real roots does not hange, their distribution over the real axis does,see Fig. 1. In partiular, we an now apply the tehniques already used by Edelman, Kostlan,10



and others for ounting the number (and, eventually, the limit distribution) of real roots. Ofourse, by symmetry, the expeted number of positive and negative real roots is equal.By Lem. 4.2, setting p = 2 and n = d we dedue:
(

d

k

)
≈

√√√√
√

d

π

√
1

k(d − k)

√(
2d

2k

)
=:

√
Sk

√(
2d

2k

)
. (4)It holds that √

2/
√

πd ≤
(
d
k

)
/

√(
2d
2k

)
=

√
Sk ≤ 1. To prove this, notie that Sk is dereasingfrom 1 to d/2 and inreasing from d/2 to d − 1. Hene the lower bound is attained at k = d/2and the upper bound at k = 1 and k = d − 1.Sine Sk is small ompared to (

d
k

), it is reasonable to assume that omitting it will make onlya negligible hange in the asymptoti analysis.Let y = x2, with x > 0. Now the problem at hand to ount the positive real roots of
P =

k=d∑

k=0

ak

√(
2d

2k

)
x2k.We need the following propositionProposition 4.3. [9℄ Let v(t) = (fo(t), . . . , fn(t))⊤ be a vetor of di�erentiable funtions and

c0, . . . , cn elements of a multivariate normal distribution with zero mean and ovariane matrix
C. The expeted number of real zeros on an interval (or a measurable set) I of the equation
c0f0(t) + · · · + cnfn(t) = 0, is

∫

I

1

π
‖w ′(t)‖dt, w = w(t)/‖w(t)‖.where w(t) = C1/2v(t). In logarithmi derivative notation, this is

1

π

∫

I

√
∂2

∂x∂y
log (v(x)⊤Cv(x))|x=y=tdt.For omputing the integral in Prop. 4.3, we shall use the logarithmi derivative notation.Following Prop. 4.3, f2i(t) =

√(
2d
2i

)
x2i and f2i+1(t) = 0, c2i = ai and c2i+1 = 0, where 0 ≤ i ≤ d,and the variane is 1. Then,

v(x)⊤Cv(y) =

d∑

k=0

(
2d

2k

)
(xy)2k.We onsider funtion

f(z) =

d∑

k=0

(
2d

2k

)
z2k.By Lem. 4.1, for k = 2, we have f(z) = 1

2

(
(1 + z)2d + (1 − z)2d

) and so f
′
(z) = d(z + 1)2d−1 +

d(z − 1)2d−1, f
′′
(z) = d(2d − 1)(z + 1)2d−2 + d(2d − 1)(z − 1)2d.The following quantities are also relevant ff

′
= 1

2
d(z+1)4d−1+dz(z2−1)2d−1+ 1

2
(z−1)4d−1,

ff
′′

= 1
2
d(2d − 1)(z + 1)4d−2 + d(2d − 1)(z2 + 1)(z2 − 1)2d−2 + 1

2
(2d − 1)(z − 1)4d−2, and

(f ′)2 = d2(z + 1)4d−2 + 2d2(z2 − 1)2d−1 + d2(z − 1)4d−2.11



It holds that
∂x∂y(log f(x, y)) =

f
′
f + xyf

′′
f − xy(f

′
)2

f2
=

A

f2
,with

A = d(z + 1)4d−2(1
2
(z + 1) + 1

2
(2d − 1)z − zd)

+d(z2 − 1)2d−2(z(z2 − 1) + (2d − 1)z(z2 + 1) − 2d(z2 − 1)z)

−d(z − 1)4d−2(1
2
(z − 1) + 1

2
(2d − 1)z − zd)

= 1
2
d

(
(z + 1)4d−2 + 4(2d − 1)z(z2 − 1)2d−2 − (z − 1)4d−2

)
.If we let z = t2, then

A(t2)

f(t2)2 =
1
2
d((1+t2)4d−2+4(2d−1)t2(t4−1)2d−2−(t2−1)4d−2)

1
4
((1+t2)2d+(1−t2)2d)2

= 2d 1
(1+t2)2

1+(2d−1)
“

2t

1+t2

”2“

1−t2

1+t2

”2d−2

−
“

1−t2

1+t2

”4d−2

„

1+
“

1−t2

1+t2

”2d
«2 .We onsider the substitutions t = tan θ

2
, tan θ = 2t

1−t2 , sin θ = 2t
1+t2 , osθ = 1−t2

1−t2 , and
dθ
2

= dt
1+t2 . Then

A
f(t2)2 = 2d 1

(1+t2)2

1+(2d−1)sin2 θ(osθ)2d−2−(osθ)4d−2

(1+(osθ)2d)
2 .The expeted number of positive real roots is given by

I = 1
π

∫∞
0

√
A

f(t2)
dt

= 1
π

∫π

0

√
2d

√
1+(2d−1)sin2 θ(osθ)2d−2−(osθ)4d−2

1+(osθ)2d
dθ
2

.Performing the hange θ 7→ π − θ, we notie that I equals twie the integral between 0 and
π/2. Hene, the expeted number of positive real roots of P in (0, 1) equals that in (1,∞).Hene,

I =
√

2d
π

∫π/2

0

√
1+(2d−1)sin2 θ(osθ)2d−2−(osθ)4d−2

1+(osθ)2d dθ.Now we will bound the integral as d→∞. Applying the triangular inequality and notiingthat 1 + (cosθ)4d−2 ≤ 1 and a + osθ2d ≥ 1, we get
I ≤

√
2d
π

[∫π/2

0

√
1dθ +

∫π/2

0

√
2d − 1 sinθ(os θ)d−1 dθ

]

=
√

2d
π

(
π
2

+
√

2d − 1 1
d

)
=

√
2d
2

(
1 + 1

π

√
2d−1
d

)

≤
√

2d
2

(
1 + 1

π

√
2
d

)
≤

√
2d
2

+ 1
π
.For a lower bound, we neglet the positive term (2d − 1) sin2 θ(os θ)2d−2, and notie that√

1 + (os θ)4d−2 ≥ 1 + (os θ)2d−1 ≥ 1 + (osθ)2d−2 = (1 + (osθ)d−1)(1 − (osθ)d−1), and
1+(osθ)d−1

1+(osθ)2d ≥ 1.Lemma 4.4.
W(n) :=

∫π/2

0

(os θ)ndθ ≤ 2√
π

1√
d + 1

.

12



Proof: We need the following inequality [6℄ on Wallis' osine formula:
1√

π(k + 4π−1 − 1)
≤ 1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · (2k)
≤ 1√

π(k + 1/4)
.If n is even then W(n) = π

2
(n−1)!!

n!
= π

2
1·3·5···(n−1)

2·4·6···(n)
≤ π√

π(2n+1)
≤ 2√

π
1√
d+1

.If n is odd then W(n) =
(n−1)!!

n!
=

2·4·6···(n−3)(n−1)
1·3·5···(n−2)n

≤
√

π(k + 4π−1 − 1) · 1
n
≤ 2√

π
1√
d+1

. �Using the lemma, ∫π/2

0
(osθ)d−1 dθ ≤ 2√

π
1√
d
, so:

I ≥
√

2d
π

∫π/2

0
1 − (osθ)d−1 dθ

≥
√

2d
2

(
1 − 4

π
√

π
1√
d

)
≥

√
2d
2

−
√

8
π3 .Hene I =

√
2d
2

±O(1) and we an state the following:Theorem 4.5. The expeted number of real roots of a random polynomial P =
∑k=d

k=0 ak

√(
2d
2k

)
x2k,where ak are standard normals i.i.d. random variables, is √2d ±O(1).By employing (4) and onsidering √

Sk as part of the deviation, we have the following:Corollary 4.6. The expeted number of real roots of a random polynomial in the Bernsteinbasis, Eq. (3), the oe�ients of whih are normal i.i.d. random variables with mean 0 andvariane 1/Sk = 1/
√

d
πk(d−k)

, is √2d ±O(1).In Table 1 we present the results of experiments with polynomials in the Bernstein basis(see Eq. (3)), of degree ≤ 1000, the oe�ients of whih are i.i.d. random variables followingthe standard normal distribution, that is mean zero and variane 1. For eah degree we tested100 polynomials. The �rst olumn is the degree, while the seond is the expeted number ofreal roots predited by Cor. 4.6 whih assumes variane 1/Sk. The third olumn is the averagenumber of real roots omputed. Our experiments support the following onjeture:Conjeture 4.7. The expeted number of real roots of a random polynomial in the Bernsteinbasis, Eq. (3), the oe�ients of whih are standard normal i.i.d. random variables, that is withmean 0 and variane 1, is √2d ±O(1).Columns 4-7 of Tab. 1 orresponds to the average number of real roots in the intervals
(−∞,−1), (−1, 0), (0, 1) and (1,∞), respetively. For these experiments we took random poly-nomials in the monomial basis and onverted them to the Bernstein basis. The roots of arandom polynomial in the monomial basis, under the assumptions of [17℄, onentrate aroundthe unit irle. The symmetry of the density suggests that eah of the intervals (−1/(1−ρ),−1),
(−1,−1 + ρ), (1 − ρ, 1), and (1, 1/(1 − ρ)), ontains on the average 1/4 of the real roots (Fig. 1,left). If we apply the transformation x 7→ x/(x + 1) (Fig. 1, right) to transform the polynomialto the Bernstein basis, then 3/4 of the real roots are positive, 1/2 of them are in (0, 1) and 1/4in (1,∞). We refer to the last olumns of Tab. 1 for experimental evidenes of this.As far as the distribution of the real roots in (0, 1) is onerned, if we denote them by ti,then aros(2ti − 1), behaves as the uniform distribution in (0, π). In Fig. 2, we present theprobability-probability plot, (using the ProbabilityPlot ommand of maple) of this funtionof real roots of random polynomials in Bernstein basis, of degree 1000 (light grey line), againstthe theoretial uniform distribution (blak line) in (0, π). We observe that the lines almostmath. For reasons of spae, we postpone the disussion about the distribution of the roots.13
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Figure 2. Left: Funtion aros(2t − 1) of real roots in (0, 1), against uniform distribution in (0, π). Right: Densityof polynomials in the Bernstein basis for d ∈ {5, 10, 15}.
d

√
2d (−∞ ,∞) (−∞ , −1) (−1, 0) (0, 1) (1,∞)100 14.142 13.640 0.760 2.740 6.530 3.610150 17.321 16.540 0.890 3.260 8.090 4.300200 20.000 19.740 1.100 3.780 9.740 5.120250 22.361 21.400 1.350 3.970 10.610 5.470300 24.495 24.320 1.270 4.760 12.300 5.990350 26.458 26.540 1.620 5.100 13.400 6.420400 28.284 27.980 1.490 5.430 14.080 6.980450 30.000 29.460 1.620 5.890 14.970 6.980500 31.623 31.200 1.830 5.960 15.620 7.790550 33.166 32.740 1.770 6.360 16.290 8.320600 34.641 34.300 1.850 6.570 17.270 8.610650 36.056 35.480 2.050 6.840 17.240 9.350700 37.417 37.200 2.160 7.510 18.650 8.880750 38.730 38.180 2.190 7.300 19.360 9.330800 40.000 39.160 2.220 7.830 19.490 9.620850 41.231 40.420 2.130 8.010 20.320 9.960900 42.426 41.780 2.390 8.070 20.530 10.790950 43.589 42.680 2.200 8.330 21.570 10.5801000 44.721 43.540 2.400 8.610 21.770 10.760Table 1. Experiments with random polynomial in the Bernstein basis.5 Conlusions and future workOur results explain why the solvers are fast in general, sine typially there are few real rootsand in general the separation bound is good enough. This agrees with the fat that in mostases the pratial omplexity of the sturm solver is dominated by the omputation of thesequene and not by the evaluation. Our urrent work extends the �rst part of this paper toKa polynomials, and to solvers desartes and bernstein.The main issue with the Ka polynomials is that there is a disontinuity at ±1 when d→∞.To be more preise, the fat that there are few roots even near ±1, where they are onentratedasymptotially, is balaned by the fat the 2-point orrelation, k(s1, s2), between two onseutiveroots is a ompliated funtion of |s1 − s2|, s1 and d and (in opposition with the two otherdistributions we studied) its limit when d tends to in�nity is not equivalent to a simple funtionof |s1 − s2|. This is an interesting problem whih deserves to be studied and investigate further.An interesting question is whether we an design a randomized exat algorithm based onthe properties of random polynomials. Lastly, we wish to extend our study to polynomials with14
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