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ABSTRACT

Real solving of univariate polynomials is a fundamental prob-
lem with several important applications. This paper is fo-
cused on the comparison of black-box implementations of
state-of-the-art algorithms for isolating real roots of univari-
ate polynomials over the integers. We have tested 9 differ-
ent implementations based on symbolic-numeric methods,
Sturm sequences, Continued Fractions and Descartes’ rule
of sign. The methods under consideration were developed
at the GALAAD group at INRIA, the VEGAS group at LO-
RIA and the MPI-Saarbrücken. We compared their sensitiv-
ity with respect to various aspects such as degree, bitsize
or root separation of the input polynomials. Our datasets
consist of 5 000 polynomials from many different settings,
which have maximum coefficient bitsize up to bits 8 000,
and the total running time of the experiments was about 50
hours. Thereby, all implementations of the theoretically ex-
act methods always provided correct results throughout this
extensive study. For each scenario we identify the currently
most adequate method, and we point to weaknesses in each
approach, which should lead to further improvements. Our
results indicate that there is no “best method” overall, but
one can say that for most instances the solvers based on
Continued Fractions are among the best methods. To the
best of our knowledge, this is the largest number of tests for
univariate real solving up to date.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms—Algebraic algo-
rithms; D.2.8 [Software Engineering]: Metrics—performance
measures

General Terms: Experimentation

Keywords: benchmarks, univariate polynomial, real root
isolation
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1. INTRODUCTION

Real solving of univariate polynomials is one of the most fun-
damental research problems, the application range of which
touches almost all research areas. Moreover, it is one of the
key ingredients for solving polynomial systems. This paper
is focused on the comparison of black-box implementations
of state-of-the-art algorithms for isolating real roots of uni-
variate polynomials over the integers, that is, the output
is supposed to consists of intervals with rational endpoints,
each containing exactly one real root of the polynomial

We consider two classes of algorithms for real root isola-
tion of integer polynomials. The first class consists of the
subdivision algorithms [7, 11, 23, 27, 8, 29, 16], which ex-
ploit either Sturm’s theorem or Descartes’ rule of signs. The
second class contains the Continued Fraction algorithms [1,
32, 30], which are based on the continued fraction expan-
sion of the roots of the polynomial. The best worst case
complexity bound for all these algorithms, after eliminat-

ing the (poly)logarithmic factors, is eOB(d4τ 2), where d is
the degree of the polynomial and τ the maximum coefficient
bitsize. From a theoretical point of view, the goal is to pro-
pose algorithms with complexity bounds that are close to,
or match, the bound of the nearly optimal numerical algo-
rithm of Pan [28]. The worst case bound of the latter is
eOB(d3τ ), which can be further improved to eOB(d2τ ), using
sophisticated splitting techniques.

However, in practice, things are quite different. There is
no implementation of the optimal numerical algorithm [28],
since it is very complicated. Moreover, the known efficient
implementations of numerical algorithms [5] could only cer-
tify their output using accuracy equal to the theoretical sep-
aration bound, that is, the smallest distance between two
(possible complex) roots of the polynomial. This makes
them quite inefficient. Moreover, with the exception of ran-
dom polynomials, exact algorithms are more efficient [20,
29, 32, 3, 22, 24] and evidently they can certify their results
in all cases. There is also a trend for symbolic-numeric algo-
rithms, which are a combination of both approaches. These
algorithms, roughly speaking, work with approximate, actu-
ally multi-precision, arithmetic, and if they can not certify
their result, then they increase the precision. We refer the
reader to [29, 11, 6] and references therein, for more details.
However, the complexity of these algorithms is the same as
the complexity of their corresponding exact versions. Thus,
the main motivation for this work was to evaluate and com-



pare these algorithms experimentally.
Another motivation was the recent need to develop soft-

ware that exactly handles complex geometric objects. More-
over, our work was facilitated by the fact that CGAL1, the
Computational Geometry Algorithms Library, is aiming for
an algebraic kernel [4]. The univariate part basically consists
of three major components: (i) a support for polynomials
covering fundamental methods such as GCD computation or
square free factorization, (ii) a solver for real root isolation,
and (iii) a proper handling of algebraic real numbers, that
is, their comparison, approximation and refinement. Our
work is the serious evaluation of the different options for the
second component, namely the real root isolation.

Previous work includes [21] and [24]. The former de-
scribes benchmarks between a solver based on Sturm se-
quences and the Descartes-based solvers developed at the
MPI-Saarbrücken. The major conclusion for real root isola-
tion was that for degrees ≥ 20 the latter are faster or much
faster. In [24], the authors introduced the CGAL-based uni-
variate algebraic kernel of the VEGAS group, and presented
experiments on real root isolation and computation of ar-
rangements of x-monotone polynomial curves. For real solv-
ing, besides their solver, they also considered the Descartes-
based solver of MPI, and the NCF implementation of GALAAD’s
kernel. The presented experiments are of two kind: (i) de-
gree 12 polynomials, with only real roots and varying bit-
size, and random polynomials of degree 100, and (ii) random
polynomials with fixed bitsize (32 and 100) and varying de-
gree (up to 2 000), and Mignotte polynomials. Even though
the focus of this work was on the capabilities of the pro-
posed kernel, their conclusions on their set of solvers are
similar to ours. In this work we perform experiments with
6 additional solvers, and perform experiments on a richer
variety of datasets.

We have tested 9 different implementation that are based
on symbolic-numeric methods, Sturm sequences, Continued
Fractions and Descartes’ rule of sign. The methods under
consideration were developed at the GALAAD group at IN-
RIA, the VEGAS group at LORIA and the MPI-Saarbrücken.
We compared their sensitivity with respect to various as-
pects such as degree, bitsize or root separation of the in-
put polynomials. Our datasets consist of 5 000 polynomials
from many different settings, which have maximum coeffi-
cient bitsize up to bits 8 000, and the total running time of
the experiments was about 50 hours. Thereby, all implemen-
tations of the theoretically exact methods always provided
correct results throughout this extensive study. All results
are accessible through a web interface2 that provides tables
and graphs with respect to user specified parameters. To the
best of our knowledge, this is the largest number of tests for
univariate real solving up to date.

Our results indicate that there is no“best method”overall,
but one can say that for most instances the solvers based on
Continued Fractions are among the best methods. For each
scenario we identify the currently most adequate method,
and we point to weaknesses in each approach, which should
lead to further improvements, see also Section 5.

The remaining part of the paper is structured as follows.
In Section 2 we discuss the different kernels and the inves-
tigated root solvers, in particular, we state the known com-
plexity bounds for these methods. In Section 3 we describe
1http://www.cgal.org/
2http://erga.di.uoa.gr/soft/zaf/unibench/index.html

the setup of the benchmarks and the used datasets. Sec-
tion 4 presents the results of the benchmarks and an analysis
with respect to certain parameters. In Section 6 we propose
possible directions for future work in univariate real solving.

2. ALGEBRAIC KERNELS

In analogy to the three developed algebraic kernels this sec-
tion is split into three parts. Each part will give insights
about interesting design aspects of the corresponding kernel.
For instance, we discuss the implementation of the square
free factorization, which is needed to determine the mul-
tiplicity of the roots. However, the main focus is on the
provided root isolation methods. In particular, we state the
known theoretical complexity bounds of the methods.

In what follows OB-notation refers to bit complexity and

the eOB-notation means that we are ignoring (poly-)logarithmic
factors. Finally, in all cases, d will be the degree of the poly-
nomials and τ the maximum coefficient bitsize.

2.1 The GALAAD Kernel

The algebraic kernel by INRIA relies on SYNAPS, which in
turn is now provided by the package Realroot 3 of math-

emagix4. The mathemagix project is an open source effort
that provides fundamental algebraic operations such as alge-
braic number manipulation tools, different types of univari-
ate and multivariate polynomial real root isolation methods,
resultant and GCD computations, etc. The main motivation
behind this project, is the need to combine symbolic and nu-
meric computations, which is ubiquitous in many problems.
We refer the reader to [26] for more details.

The library provides 4 exact methods for real root isola-
tion of univariate polynomial with integer coefficients, namely
Sturm, CF, NCFF and NCF. Moreover, we investigated an ap-
proximative solver Sleeve, who’s computed intervals are
not necessarily isolating. And an experimental implemen-
tation of a hybrid Symbnum that combines Sleeve with the
CF method. For a discussion see the subsequent subsections.

Compared to the other kernels, a principal difference is
that most solvers in this library exploit specialized algo-
rithms for polynomials of degree up to 4. Hereafter, we
refer to these algorithms as IDS (Isolation and Discrimina-
tion Systems). These systems are based on pre-computed
Sturm sequences and they compute rational points that iso-
late the real roots, as functions in the coefficients of the
polynomial. The arithmetic complexity of these methods

is eO(1), whereas the bit-complexity is eOB(τ ), see [17, 31]
for more details. The algorithms that use IDS methods are
Sturm, Sleeve, Symbnum and CF. The solvers NCFF and NCF

do not apply IDS.

2.1.1 Sturm

A subdivision method based on Sturm’s theorem. We refer
to it as ST in the figures. The algorithm employs polynomial
remainder sequences (PRS) as a real root counting query. In
order to determine whether a root is isolated by a certain
interval, the PRS is evaluated at the endpoints of the interval
at question. Traditionally, it is expected to be the slowest
method. The major disadvantage of Sturm is that it must

3http://www-sop.inria.fr/galaad/mathemagix/realroot
4http://www.mathemagix.org/



compute the full PRS before it can even start to isolate the
roots. Moreover, the subsequent evaluation of the PRS is in
general more complex than other methods. Thus, we use
the method primarily as a reference. The complexity of the

algorithm is eOB(d6 +d4τ 2), see also [8, 16, 9] and references
therein.

2.1.2 CF-Family

We investigated three solvers based on the Continued Frac-
tions algorithm (CF) algorithm. The CF algorithm com-
putes the continued fraction expansion of the real roots of
the polynomial to compute isolating interval for them. One
of its main ingredients is the computation of lower bounds
on the positive real roots. Different methods of computing
lower bounds, lead to different variants of the algorithm.
However, all investigated solvers in this article use the same
algorithm to compute lower bounds on the roots, namely
a modification of Hong’s bound proposed in [1]. We refer
the reader to [30, 32, 1] and references therein, for a de-
tailed description. The method is known to be among the
most powerful root isolation approaches, in particular, for
ill-conditioned problems. A disadvantage is that the method
uses exact arithmetic throughout the algorithm, that is, in
terms of its bit-complexity the algorithm is not adaptive.

The worst case complexity of the algorithm is eOB(d5τ 2) [30],

while the average case complexity is eOB(d4 + d3τ ) [32] , as-
suming that the Gauss-Kuzmin distribution holds for the
real algebraic numbers.

The three investigated solvers are CF, NCFF, and NCF.

CF This solver is an implementation of the CF algorithm
that does not use any external factorization tools. The
square free factorization is provided by the package re-
alroot of mathemagix. In case the polynomial degree
is ≤ 4 the method employs IDS.

NCFF This method is based on the same algorithm, but the
implementation employs the NTL library for square
free factorization and factorization over the integers.
Integer arithmetic in NTL is based on GMP, which is
used through a SYNAPS-NTL conversions interface,
see [14]. NCFF does not apply IDS.

NCF The difference between NCFF and NCF is that NCF em-
ploys square free factorization, but not factorization
over the integers. NCF does not apply IDS.

2.1.3 Sleeve and Symbnum

Sleeve is an approximate real root isolation method that
uses double arithmetic. We refer to it as SV in the figures.
The method computes an “upper” and “lower” (i.e. a sleeve)
approximation of the polynomial. A Descartes-like subdivi-
sion algorithm is applied to the sleeve. The approximation
is refined, if possible, until the machine precision is reached.
The algorithm is certified in the sense that it can not miss
roots. However, an interval may contain more than one root.
In some cases we can certify the result using a sign test with
the first derivative and interval arithmetic, that is, we con-
sider the method as a possible filter. In case the polynomial
degree is ≤ 4 the method employs IDS.

Symbnum is an experimental symbolic-numeric algorithm,
which is a combination of the Sleeve and the Continued

Fraction algorithm. We refer to it as SN in the figures.
Initially the Sleeve algorithm runs and produces some in-
tervals, that may contain more than one real root. In the
sequel, using exact arithmetic, we compute the continued
fractions expansion of the real root(s) that are in the in-
terval, the resulting interval is transformed to (0, 1) and
the Sleeve algorithm is applied again (possible after scaling
the coefficients). In case the polynomial degree is ≤ 4 the
method employes IDS.

For the solvers using polynomials represented in the Bern-
stein basis (eg. ”Sleeve” and ”Symbnum”), the conversion to
approximate arithmetic is done via a basis conversion and
scaling using exact (rational) arithmetic and then rounding
the coefficients up and down to nearest approximate num-
bers. When the bit size of the input is increasing this con-
version is becoming significative.

Although the approximate solvers in some cases do not
isolate all the roots, they can however be interesting as filters
within a given precision. This depends of course on the
applications where you are using these solvers, for instance
if the input is not ”exact”.

2.2 The MPI Kernel

The kernel provided by the MPI is developed within CGAL

and follows the generic programming paradigm [2] using the
template technique of C++. This allows the exchange of the
representation of the algebraic real roots as well as the real
root isolation method, which also selects the used coefficient
type. That is, the kernel can, potentially, combine the best
root isolator with the best representation of algebraic reals
due to its generic design. In the context of this work the
most important template argument is the second, namely
the root isolator. In order to be a valid template argument
the interface of the isolator class must meet a few simple
requirements which are gathered in a so-called concept, for
an exact definition of this concept we refer the reader to [19].

Up to date, the MPI has developed two Descartes-based
root isolators, namely DSC and BSDSC. A major advantage
of both implementations is the possibility to exchange the
coefficient type. In particular, the BSDSC is intended to work
over algebraic extensions, as it is reported in [19, 10, 11], for
example, it can isolate roots of f(x, y)|x=α, where α is an
algebraic number.

By the time of the benchmarks the MPI kernel did not
employ modular arithmetic in order to compute the GCD,
which is used in the square-free factorization. During the
benchmarks, this proved to be a serious drawback in some
of the test cases. However, the two methods provided by
the MPI kernel will benefit from the recent integration of a
modular GCD [18] into the polynomial package of CGAL.

2.2.1 DSC

A real root isolation method based on Descartes’ rule of
signs. The solver is integrated in CGAL and implemented ac-
cording to [7]. A major disadvantage is that the method
uses exact arithmetic throughout the algorithm, that is, in
terms of its bit-complexity the algorithm does not adapt
to the hardness of the particular isolation problem. Tradi-
tionally, it is expected to be slower than the other methods.
Thus, we use the method primarily as a reference. Given the
new tree bound in [12, 10] the complexity of the algorithm

is eOB(d4τ 2).



2.2.2 BSDSC

The method is named Bitstream-Descartes due to the fact
that the coefficients of the polynomial are converted to (po-
tentially infinite) bitstreams. A variant of the Descartes
method is used to find isolating intervals for the real roots.
The advantage of this method is its adaptiveness in terms of
bit-complexity, see also [11, 10]. However, since the method
overestimates the number of required bits, it can happen
that the bitstreams become larger than the actual coeffi-
cients. In this case the method may even become more costly
than the pure Descartes algorithm DSC. According to [10],

the worst case complexity of BSDSC is eOB(d5τ 2).

2.3 The VEGAS Kernel

The kernel which is developed by the VEGAS group at LO-
RIA is based on the RS library5, which in turn is developed
by the SALSA group at INRIA-Rocquencourt, see [24, 29].
The kernel is dedicated for one particular coefficient type,
namely the GMP arbitrary-length integers. In the square
free factorization the kernel uses its own modular GCD im-
plementation. For root isolation the kernel interfaces the
solver provided by RS.

2.3.1 RS

The RS solver is based on the interval Descartes algorithm [6].
The algorithm uses multi-precision floating point arithmetic
to convert the coefficients to intervals of a certain initial pre-
cision. Thereafter, it tries to apply Descartes’ rule of signs
using interval arithmetic. In case this is not applicable the
algorithm increases the precision of the approximations. In
order to improve the memory usage of the method, the im-
plementation takes special care about the order of the trans-
formations that are required for the application of Descartes’
rule of signs. The advantage of this method is its adaptive-
ness in terms of bit-complexity.

3. DATASETS

Our data sets cover classical benchmark instances such as
Mignotte polynomials or random polynomials as well as in-
stances motivated by geometric applications. In order to
reveal the advantages or disadvantages of the solvers with
respect to certain characteristics of the input polynomials,
each data set tries to focus on a certain aspect. In total,
our benchmarks use 5 200 polynomials, distributed over 155
datasets:

[rnd] datasets contain polynomials with random integers
as coefficients. The degree of the polynomials ranges
from 3 to 100, whereas the bitsize of the coefficients
ranges from 10 to 50, which is considered to be rather
small. Consequently, these polynomials are the easi-
est to solve among the ones tested. However, random
polynomials are important, since they occur naturally
in many problems.

[bts] datasets are intended to test the sensitivity of the
methods with respect to the coefficient length. The
datasets contain polynomials with random coefficients
but with significantly larger bitsize. The [bts] datasets

5http://fgbrs.lip6.fr

contain polynomials of degree between 3 and 100 and
bitsize in the range from 2 000 to 8 000. Note that
the polynomials in this dataset are not particularly
harder to solve than those contained in [rnd]. How-
ever, methods that are not adaptive are expected to
be more afflicted by the increased bitsize.

[3darr] are datasets that have already been used in [19].
The polynomials are motivated by computations of ar-
rangements in 3D. Each dataset contains 100 univari-
ate polynomials of bitsize 200, 400, 600, 800, 1 000,
1 200, 1 400, 1 600, 1 800 or 2 000 and degree 12. Each
polynomial is the product of six parabolas, where each
parabola has at least one root within the interval [−10, 10].
Consequently, all polynomials have 12 real roots.

[vorell] is a dataset that was generated by a concrete ge-
ometric application, namely the exact computation of
the Voronoi diagram of ellipses [13, 15]. The polynomi-
als are resultants that describe all tritangent circles to
three ellipses. The dataset contains 10 polynomials of
degree 184. However, each polynomial has only 8 real
roots. The bitsize of each coefficient is, approximately,
3 500 bits.

[int]/[rat] datasets contain polynomials with integer and
rational roots, respectively. While the roots for the
construction of the polynomials are chosen uniformly
at random, there are cases with multiple selections of
the same root. (e.g. small bitsize, high degree). The
datasets consist of combinations of degree from 3 to
100 and bitsize from 10 to 50. These datasets provide
some insight concerning the behavior of the 9 methods
in “easy” problems.

[mgn] datasets contain Mignotte polynomials [25], that is
polynomials of the form xd − 2(kx− 1)2, of degree be-
tween 3 and 100 and bitsize from 10 to 50. The [mgn]

polynomials achieve very small real root separation,
having 2 real roots very close to each other. Usually,
the real root separation is not known a priori, thus it is
important to know how a method behaves in situations
of small real root separation.

All datasets used during the benchmarks are available at
http://erga.di.uoa.gr/soft/zaf/unibench/index.html.

4. RESULTS AND DISCUSSION

The benchmarks took place on a 32-bit Pentium III with
256MB RAM memory, Debian 4.0 GNU/Linux. Compi-
lation was done using g++ version 4.1.2 with optimization
flags -O3 and -DNDEBUG. We used the internal release 271
of CGAL (released 03-Apr-2008), as well as the software li-
braries GMP6(version 4.2) and NTL7 (version 5.4.1). The
MPI kernel, was instantiated with the integers provided by
the CORE library, which is also maintained by CGAL and
also based on GMP. The integer arithmetic of SYNAPS is
based on GMP, except for the approximative solvers that
naturally rely on usual floating point arithmetic. Moreover,
special efficient routines are available for converting to and

6http://gmplib.org/
7http://www.shoup.net/ntl



from NTL integer types. Time, in msec, was measured using
the clock() function of the ctime library.

For each method we measured the time that was needed
to determine all real roots including the multiplicity of these
roots, that is, we implicitly tested the implemented square
free factorization as well. However, in the case of [3darr]

and [mgn] datasets the polynomials where known to be
square free, which was indicated to the solvers by a cor-
responding flag.

In order to reduce noise, we computed the average time
over a number of iterations such that the total time for each
polynomial exceeded 1 msec. Since there were only small
variances for different instances in the same dataset, the
reported time is the average over all polynomials in each
dataset. In case a method took more than 30 seconds for
some instance or it failed to isolate all the real roots of a
polynomial, we ignored the measurement.

In the sequel, we discuss the results with respect to the
characteristics of the problems, as well as robustness and
effectiveness issues. In the tables, bold entries indicate the
fastest method for each case.

4.1 Polynomials of low degree

Table 1 presents the timings for polynomials of low degree,
which originate from the various datasets. The best times in
each row are emphasized. Note that the table does not list
Sturm, Sleeve, Symbnum and CF, since all these algorithms
apply the same method, namely IDS, for polynomials of de-
gree ≤ 4. In order to achieve higher accuracy in timing,
these tests included 100 iterations for each polynomial in
the set.

Table 1. Polynomials of degree 3.

bits IDS NCFF NCF DSC BSDSC RS

[rnd]

10 0. 066 0. 288 0. 240 0. 256 0. 696 0. 520

20 0. 096 0. 280 0. 224 0. 568 0. 720 0. 696

30 0. 084 0. 688 0. 208 0. 624 0. 536 0. 880

40 0. 063 0. 672 0. 272 0. 392 0. 400 0. 880

50 0. 240 0. 720 0. 344 0. 328 1. 016 1. 016

[mgn]

10 0. 148 0. 800 1. 000 1. 560 1. 840 8. 800

20 0. 318 1. 920 1. 640 2. 400 1. 960 24. 400

30 0. 326 1. 920 2. 000 3. 800 2. 400 49. 000

40 0. 312 2. 000 2. 000 4. 000 2. 400 76. 800

50 0. 442 3. 000 3. 000 4. 400 4. 000 116. 000

[int]

10 0. 231 0. 856 0. 352 1. 040 1. 120 0. 824

20 0. 316 1. 160 0. 520 0. 720 0. 920 1. 600

30 0. 310 1. 520 0. 368 0. 560 1. 360 1. 200

40 0. 408 1. 400 0. 384 0. 720 1. 520 1. 440

50 0. 592 1. 880 0. 560 0. 920 1. 240 1. 520

[rat]

10 0. 293 0. 856 0. 312 0. 800 0. 600 1. 480

20 0. 326 1. 640 0. 336 1. 520 0. 720 1. 520

30 0. 378 1. 400 0. 368 0. 880 1. 040 1. 760

40 0. 464 1. 520 0. 344 1. 040 1. 200 1. 440

50 0. 856 1. 600 0. 376 1. 680 0. 560 1. 520

[bts]

2000 2. 1975 1. 896 1. 856 0. 880 0. 680 1. 288

4000 5. 342 2. 112 1. 400 1. 424 1. 560 1. 976

6000 2. 25 3. 280 1. 984 1. 856 1. 712 2. 800

8000 5. 884 4. 800 2. 480 1. 792 1. 680 3. 720

For the [rnd] instances, random polynomials with small
bitsizes, all solvers perform quite well. However, IDS meth-
ods are clearly the fastest, which is due to the small co-
efficient size of the input polynomials. For the Mignotte
polynomials [mgn] the advantage of the IDS method is even
more evident. This is due to the fact that, in the case of the
IDS methods, the boundaries of the isolating intervals are in
principal computed directly by a formula, whereas the other

solvers have to subdivide several times to separate the close
roots of the Mignotte polynomials.

In case of polynomials from the [int] and [rat] datasets,
the NCF is comparable or even faster than the IDS methods.
This is caused by the fact that, in the case of integer/rational
roots, the lower bound that is computed by the CF algorithm
is tight, that is, it equals the roots and the subdivision stops
immediately. The NCFF method can not take advantage from
this fact due to the additional overhead of the factorization
procedure. BSDSC and RS can not detect these special roots
since both algorithms work with approximated coefficients.

For random polynomials with moderate bitsize ([bts])
the BSDSC is finally faster than the other methods. The rea-
son is that it only uses a few leading bits of the polynomials
which is enough to isolate and certify the roots. Up to 4 000
bits, the NCF method is also comparable. IDS is not compet-
itive due to its non-adaptive implementation.

4.2 Polynomials of small real root sepa-
ration

s The [mgn] datasets were incorporated into these bench-
marks in order to study the behavior of the methods on
inputs with small root separation. This is important, since
the real root separation is usually not known a priori. In
particular, the [mgn] instances force the subdivision based
solvers to reach their worst case complexity.

The results are given in Table 2. Note that the table
reports only one column for the CF-Family. This is due the
fact that the [mgn] instances are known to be square free,
which was indicated by a flag. Thus, the implementations
for CF, NCFF and NCF can be considered as identical since
they only differ in the way the square free factorization is
implemented.

For the [mgn] instances the CF-Family is clearly the fastest
method. Even for moderate degrees, only the CF-Family is
capable of solving Mignotte polynomials in reasonable time.
For example, the times are not even comparable for [mgn]

of degree 30. The only method that is comparable up to
degree 10 is BSDSC and even though the root separation is
very small it is still faster than DSC. The RS solver performs
seriously worse, in particular, it is even slower than DSC.
The problem is due to the high memory consumption of the
algorithm. In cases of degree higher than 30 the method
would run out of memory. As expected Sturm is the slowest
method.

Table 2 does not report on Sleeve and Symbnum since in
datasets of higher degrees or bitsizes both methods took
much longer than the other methods or even fail to isolate
all the real roots correctly. This is due to the use of inexact
double arithmetic within Sleeve.

4.3 Polynomials of big bitsize

The [bts] instances are incorporated in order to reveal the
dependency on the bitsize of the input. Note that the poly-
nomials are still random, that is, in terms of root separation
they have the same behavior as the [rnd] instances. The
reported times cover the time spent to detect that the poly-
nomials are square free as well as the root isolation it self.
This also explains the difference in the CF-Family. Table 3
shows the results.



Table 2. [mgn] polynomials.

bits Sturm CF-Fam. DSC BSDSC RS

[mgn]: Degree 5

10 3. 2 1. 6 1. 8 2. 0 6. 8

20 7. 6 2. 0 2. 0 2. 2 15. 2

30 10. 8 3. 0 4. 0 3. 6 26. 0

40 15. 8 3. 6 4. 2 4. 2 40. 8

50 21. 4 5. 0 6. 0 4. 4 57. 2

[mgn]: Degree 10

10 7. 6 1. 8 4. 0 4. 0 11. 8

20 19. 6 3. 6 7. 8 8. 0 26. 4

30 33. 4 4. 8 12. 4 12. 0 43. 6

40 52. 4 7. 6 17. 6 15. 8 68. 0

50 77. 6 9. 4 24. 6 19. 8 95. 2

[mgn]: Degree 30

10 80. 4 4. 4 76. 2 76. 6 96. 4

20 321. 7 11. 7 242. 4 187. 9 285. 5

30 868. 8 19. 6 504. 1 357. 1 633. 6

40 1866. 1 29. 2 854. 0 571. 2 1127. 9

50 3345. 3 40. 1 1295. 8 783. 9 1780. 6

[mgn]: Degree 50

10 425. 0 10. 0 627. 0 486. 8 493. 4

20 2444. 0 28. 4 2305. 2 1582. 4 2700. 0

30 7602. 0 51. 4 5230. 8 3206. 4 6386. 8

40 15992. 2 78. 6 12054. 0 5861. 4 11443. 2

50 29494. 6 118. 4 . . 18624. 8

[mgn]: Degree 100

10 7882. 6 32. 4 22486. 8 14096. 0 23852. 8

20 . 121. 4 . . .

30 . 251. 4 . . .

40 . 429. 6 . . .

50 . 674. 8 . . .

Table 3. [bts] polynomials.

bits Sleeve Symbnum CF NCFF NCF DSC BSDSC RS

[bts]: Degree 3

2000 2.87 2.91 3.01 1.90 1.86 0.88 0.68 1.29

4000 7.10 7.09 7.17 2.11 1.40 1.42 1.56 1.98

6000 2.88 3.12 3.00 3.28 1.98 1.86 1.71 2.80

8000 7.82 7.85 7.86 4.80 2.48 1.79 1.68 3.72

[bts]: Degree 10

2000 3.56 3.24 1.30 2.34 1.32 1.73 1.90 2.42

4000 7.72 7.64 1.57 3.84 2.01 1.94 2.11 3.24

6000 13.4 13.3 1.62 5.84 2.20 2.56 2.31 3.80

8000 19.6 19.6 1.95 7.92 2.84 2.40 2.16 4.52

[bts]: Degree 30

2000 10.9 10.7 2.9 9.4 2.5 4.7 6.1 5.8

4000 24.2 24.2 4.4 19.9 4.5 7.1 6.8 7.9

6000 39.5 39.2 4.8 64.4 5.6 9.0 6.9 9.6

8000 59.0 59.2 6.1 24.2 6.9 10.9 7.2 11.6

[bts]: Degree 50

2000 19.8 19.7 7.5 36.1 5.8 11.6 15.2 11.8

4000 40.7 40.7 10.2 52.1 8.5 17.3 15.6 14.8

6000 67.9 67.7 13.1 112.9 11.4 21.2 16.7 18.4

8000 101.9 102.1 19.0 126.6 16.2 29.3 17.5 23.9

[bts]: Degree 70

2000 28.0 28.3 11.7 74.3 8.7 19.8 29.2 17.5

4000 59.4 59.4 20.3 88.5 15.9 32.2 30.7 24.8

6000 97.3 97.4 23.9 145.8 19.7 41.5 31.3 28.8

8000 144.8 145.0 31.2 179.0 25.5 52.3 32.0 35.0

[bts]: Degree 100

2000 43.6 43.4 25.4 160.5 17.9 44.3 65.9 34.9

4000 88.1 88.1 36.7 179.2 28.5 63.5 66.9 42.2

6000 144.2 144.6 53.5 239.8 41.6 90.4 68.1 53.8

8000 215.5 215.2 72.1 551.6 57.8 114.5 70.4 66.6

For polynomials of small degree the Descartes solvers are
remarkably fast, in particular they are even faster than CF,
which uses IDS for degrees ≤ 4. For moderate degrees the
CF method is faster, whereas the NCF method is the fastest
for degrees ≥ 50. The difference can be explained by the
overhead that NCF has to pay for the conversion to and from
NTL. For high degrees this pays off due to the more ef-
ficient implementation of polynomial’s operations in NTL.
The NCFF method is the slowest method due to the extra
time spent in the, in this case, useless factorization.

Besides NCFF, the slowest methods are Sleeve and Symb-

num. Actually, this is a surprise since these approximation
methods should be able to solve these easy polynomials fast.
The behavior of RS is similar to CF and NCF, but has a larger
constant overhead.

The Sturm method is not reported here since it was not
competitive at all. This is due to the huge coefficient growth
in the intermediate terms of the polynomial remainder se-
quence that must be computed by Sturm.

Figure 1. [bts] polynomials of degree 50
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Figure 1 illustrates the behavior for polynomials of degree
50, while the bitsize increases. Every method shows almost
linear runtime growth with respect to the number of bits.
However, the interesting part are the slopes. Sleeve and
Symbnum show the worst behavior, whereas CF, NCF, DSC and
RS show a moderate increase. The behavior of BSDSC is
remarkable since it is almost not effected by the increase of
the bitsize. However, for polynomials of degree 50 with less
than 8 000 bits, we can not observe the break even point for
BSDSC due to the huge constant overhead. As one can see
in Table 3, this constant overhead depends on the degree of
the polynomials, which has a serious impact on the number
of required bits within BSDSC.

4.4 Polynomials of integer/rational roots

Figure 2. [int] polynomials of degree 100
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The [int] and [rat] instances indeed contain polynomi-



Table 4. [int] polynomials.

bits Sturm Sleeve Symbnum CF NCFF NCF DSC BSDSC RS

[int]: Degree 5

10 1.120 0.88 1.00 0.84 1.88 0.92 1.48 1.48 1.23

20 1.960 1.88 1.28 1.40 1.88 1.52 1.56 1.52 1.64

30 2.840 1.32 1.76 1.68 1.88 1.36 1.56 1.76 1.88

40 4.200 1.68 1.64 1.16 2.00 1.76 1.16 1.52 1.68

50 4.800 1.68 1.84 1.20 2.00 1.28 1.28 1.52 1.92

[int]: Degree 10

10 1.76 1.88 1.64 1.52 1.32 1.00 1.80 2.16 1.52

20 1.76 1.80 1.60 1.72 1.72 1.24 1.96 2.76 1.60

30 3.60 2.40 2.60 2.80 2.80 1.88 2.20 3.40 1.88

40 7.80 3.20 3.20 3.40 3.40 2.60 3.40 4.00 3.40

50 13.00 4.00 3.60 4.00 4.00 3.60 3.40 3.80 3.80

[int]: Degree 30

10 3.34 3.02 3.18 3.20 1.77 1.58 3.72 3.46 2.01

20 3.30 3.00 3.00 3.12 1.68 1.63 3.76 3.74 1.98

30 3.28 3.10 3.22 3.04 1.65 1.50 3.60 3.66 2.09

40 3.14 2.90 3.02 3.08 1.69 1.63 3.66 3.76 1.99

50 3.20 2.90 2.94 3.16 1.67 1.65 3.54 3.68 2.12

[int]: Degree 50

10 4.00 4.00 4.00 4.00 1.92 1.76 5.60 5.00 3.80

20 4.00 4.00 4.00 4.00 1.92 1.84 4.40 4.80 4.00

30 4.00 4.00 3.80 4.00 1.64 1.60 5.40 5.20 3.80

40 4.00 3.80 4.00 4.00 1.84 1.68 5.80 5.00 3.60

50 4.00 4.00 4.00 4.00 1.92 1.84 4.60 5.40 3.80

[int]: Degree 100

10 7.80 7.60 8.00 8.00 2.00 2.20 11.20 11.60 5.80

20 8.00 8.00 8.00 7.40 2.00 2.20 11.20 11.00 6.00

30 8.20 7.80 7.80 7.80 2.00 2.40 11.40 11.40 5.60

40 8.20 8.20 7.80 7.80 2.20 2.00 11.20 11.20 5.60

50 8.00 7.60 7.80 7.60 2.60 2.00 11.60 11.60 6.00

als with multiple roots, and are meant to provide an insight
on the behavior of the 9 methods in “easy” problems. How-
ever, the obtained times are notably effected by the time
spent, not by root isolation, but within square-free factor-
ization and factorization (if this operation is available). A
combination of the latter two operations could compute the
real roots exactly in all the cases. Thus, our results on these
datasets are, by no means, conclusive and further experi-
mentation is needed with polynomials of considerably higher
degree and bitsize.

In Figure 2, we have 4 bands of methods, grouped by the
factorization implementation they employ. The fastest fac-
torization implementation is provided by the NTL library,
which is used by NCFF and NCF. The square-free factoriza-
tion in the LORIA kernel (RS) is a bit faster than the one
within mathemagix (Sleeve, Symbnum, CF). The square free
factorization of the MPI kernel (DSC, BSDSC) is not competi-
tive. This was expected, since the MPI kernel did not apply
any modular arithmetic within the square free factorization
by the time of these benchmarks. However, the MPI kernel
will benefit from the recent integration of a modular GCD
into CGAL.

As expected, every method has similar behavior for [int]
and the respective [rat] cases.

4.5 Polynomials from geometric prob-
lems

The [3darr] polynomials have relatively big bitsize and al-
low us to observe the break even point of BSDSC and RS, see
Figure 3. For small bitsizes the CF-Family methods perform
better than the other methods, but BSDSC and RS outperform
the CF-Family for bitsizes bigger than 1 200. RS is the most
effective method for bitsizes over 600 bits. The behavior of
the method is very good in this set, since it is fast enough
for polynomials of bitsize lower than 600, and the fastest one
for bitsizes over this threshold. However, the bitsize increase
has less effect on BSDSC than on RS and the other methods.
The low degree (in this case 12) is in favor of BSDSC for high
bitsizes.

Table 5. [3darr] polynomials.

bits Sleeve Symbnum CF-Fam. DSC BSDSC RS

[3darr] : Degree 12

200 4.26 4.10 3.44 5.48 5.82 4.58

400 7.46 7.36 4.30 6.42 5.92 4.96

600 10.78 10.74 5.36 7.28 6.26 5.22

800 14.34 14.38 6.48 8.36 6.90 5.72

1000 18.60 18.58 7.24 9.84 7.30 6.28

1200 22.98 22.92 7.70 10.64 7.58 6.64

1400 27.86 27.88 8.32 11.78 7.74 7.00

1600 33.78 34.12 9.06 13.38 7.82 7.30

1800 39.66 39.62 9.66 13.78 7.46 7.02

2000 46.54 46.58 9.94 15.24 7.68 7.50

Figure 3. [3darr] polynomials
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Table 6. [vorell] polynomials.

Sleeve Symbnum CF NCFF NCF DSC BSDSC RS

195. 2 194. 2 394. 4 787. 4 265. 6 759. 2 1275. 4 340. 6

The [vorell] dataset contains polynomials having the
highest degree of all the polynomials tested, namely degree
184. Moreover, the bitsize is considerably high (approx.
3 500 bits). The fastest methods in this case are Sleeve

and Symbnum. Since the polynomials are random, approxi-
mate arithmetic suffices for real root isolation. NCF is very
close to these methods. NCFF and DSC are equivalent, while
BSDSC is not competitive. The degree of these polynomials
slows down BSDSC, while NCFF’s factorization is slow due to
the bitsize. RS is equivalent to CF, which are better than
NCFF and DSC, but worse than NCF and the approximative
methods.

5. CONCLUSION

We summarize the performance of various implementations
of univariate solvers in several typical problem cases. Tables
showing the method with the best performance for [rnd]/[bts]
and [mgn] are presented in Figures 4 and 5. All three char-
acteristics considered (degree, bitsize, root separation) are
important in deciding which method is more effective for a
specific problem.

From the general picture of the benchmarks, it is clear
that there is no “best method” overall. Depending on the
characteristics of the problem the performance of any method



Figure 4. Polynomials of random coefficients
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Figure 5. Polynomials with small real root separation
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may change. However, one can say that for almost all in-
stances the CF and the NCF solvers are among the best meth-
ods. The only exceptions are cases of polynomials having
simultaneously low degree and big bitsize, as shown in Fig-
ure 4. In these cases BSDSC or RS show a better performance,
where RS is slightly more effected by the bitsize than the BS-
DSC.

A remarkable observation is that the implementations of
the theoretically exact methods are complete and that they
always provided correct results throughout this extensive
benchmarking procedure. In some cases though, RS, DSC

or BSDSC may need too much time to finish. Nevertheless,
given the time, they would finish by isolating all real roots.
The implementations are numerically and combinatorially
robust, which means that they comply with their theoretic
exactness.

5.1 Summary for methods

We summarize our results with respect to the different ap-
proaches.

5.1.1 IDS

Isolation and Discrimination Systems are applicable for poly-
nomials with degree ≤ 4 and were used within CF, Sleeve,
Symbnum and Sturm. Their constant arithmetic complexity

is consistent with the benchmark results. In particular, this
is the case for polynomials with a small root separation, see
the [mgn] instance in Table 1. However, the current imple-
mentation just applies exact arithmetic and is not adaptive
at all. Hence, there is a clear disadvantage for input poly-
nomials with moderate to large bitsize.

5.1.2 Sleeve and Symbnum

The implementation of both solvers must be considered as
preliminary, since Symbnum failed to isolate all roots in some
cases. In general it was not possible to observe a difference
among the two solvers, which leads to the conjecture that
the runtime of Symbnum is clearly dominated by the time
spent within Sleeve.

The Sleeve method is very effective in small problems,
where an approximation is able to isolate the roots correctly.
Even for [mgn], which is the most difficult case for approxi-
mation methods. However, when it comes to higher degrees
and bitsizes, it is either much slower than the other methods
or fails to isolate all the real roots correctly.

For polynomials of random coefficients and degree 100 and
bitsize up to 50, both methods are close to NCF and faster
than all other methods. The randomness of the coefficients
is in favor of these approximation methods. However, in
the case of polynomials derived from geometric problems,
we observe different behavior depending on the problem. In
the low degree polynomials in [3darr] the approximation
methods are sensitive to the bitsize increase and thus not
competitive to the exact methods. The same holds for the
[bts] datasets. This was not expected since both datasets
contain rather easy polynomials. On the other hand, both
solvers perform very well in isolating the real roots of the
degree 184 resultant that appears in Voronoi diagram of el-
lipses problems. The approximation methods correctly iso-
late the real roots considerably faster than the fastest exact
method, namely NCF. This can be explained by the num-
ber (8) of well separated real roots with respect to the high
degree (184) of the polynomials within this dataset.

Thus, the fact that the coefficients of a polynomial are
random is not sufficient for the approximation methods to
outperform the exact ones.

The performance of real solvers on ”easy”polynomials (few
and well separated real roots) can be improved, when a nu-
meric filter is enough to (almost) separate the roots, pro-
vided that the conversion of the input is not costly.

However, on difficult polynomials, where the total time
spent is essentially due to (the depth of the subdivision
tree depending on) the subdivision strategy, the symbolic-
numeric method is considerably slower than other methods
and/or do not provide the correct result.

5.1.3 Sturm

As expected the Sturm solver is always among the slowest
methods. This is the case for polynomials with a small root
separation as well as for polynomials with large coefficients.
There are two reasons for this behavior. First, the algorithm
needs a big amount of memory, since it computes a poly-
nomial remainder sequence, the size of which is quadratic
with respect to the degree of the polynomials. Second, it
performs, from the beginning and almost always, computa-
tions with numbers of bitsize equal to the theoretical sepa-
ration bound, which is quite time consuming. Nevertheless,



the algorithm is of great theoretical importance, while its
straightforward implementation makes it attractive for very
small examples and educational purposes.

5.1.4 DSC

Though the DSC solver was also only incorporated for refer-
ence, it performed considerably better than Sturm. For the
[mgn] instances as well as for [bts] instances up to degree
30 it was even faster than RS. And for several instances with
small degree and moderate bitsize the times were similar or
even better than other methods. However, for polynomials
with high degree or large coefficients the DSC solver is not
competitive.

5.1.5 CF-Family

Even for moderate degrees, only the methods based on Con-
tinued Fractions are capable of solving Mignotte polynomi-
als, since there is a rational number with a simple continued
fraction expansion between the real roots that are very close
together. The efficiency of the method is due to its nature,
that does not depend on the separation of the roots, but
rather on their “distribution” on the real axis. This makes
the methods based on Continued Fractions, the only ones
competitive on polynomials with small real root separation.

Overall, one can say that the CF-Family is the method of
choice for moderate to large degrees and for small or mod-
erate bitsizes. However, due to the use of exact arithmetic
throughout the algorithm the solvers are expected to be out-
performed by RS and BSDSC for easy polynomials with large
bitsize and moderate degree, see Figure 1 and Figure 3.

The NCFF solver was often much slower than the other
solvers, which was caused by the additional time spent within
the factorization of the polynomials. That is, it is only ad-
visable to use this method in case the polynomials are known
(or likely) to factorize and in case this gives some advantage
in subsequent steps. For instance, the method was among
the slowest for the [vorell] dataset, since it tried to fac-
torize a polynomial of relative high degree, 184, with big
bitsize, that turn out to be irreducible.

Our suggestion is to decouple such a step from the actual
solver and should be applied on a case by case basis.

5.1.6 BSDSC

The BSDSC is the best solver for easy polynomials of low de-
gree and large coefficients. The main disadvantage is that
the number of bits which is required to certify the roots con-
siderably depends on the degree of the polynomials. There-
fore, it is often much slower than the CF-Family and some-
times also slower than the RS solver. However, it seems al-
most independent from the bitsize of the input polynomials,
see Figure 1 and Figure 3.

Another advantage of the BSDSC is that it is able to handle
coefficient types other than integers (rationals). In particu-
lar the BSDSC is intended to work over algebraic extensions,
as it is reported in [19, 10, 11], for example, it can isolate
roots of f(x, y)|x=α, where α is an algebraic number. This
is the actual strength of the BSDSC. Currently is the only
method recommended for non rational coefficient types.

5.1.7 RS

In general the behavior of the RS solver is similar to the
behavior of the BSDSC solver. However, for many instances it

is faster than the BSDSC due to the fact that it is less effected
by the degree of the polynomials. On the other hand it is
more effected by the bitsize. A serious exception are the
Mignotte polynomials, for which RS-solver is considerably
slow. The problem is due to the high memory consumption
of the algorithm for these instances. For degrees higher than
30 the method would run out of memory, since it is forced
to go very deep to the subdivision tree to isolate the roots.

6. FURTHER WORK

Our current experiments with polynomials with only integer
and/or rational roots are not conclusive for the behavior of
the tested implementations. More experiments are needed,
with polynomials of high degree and big bitsize.

It should be possible to improve the performance and ro-
bustness of the symbolic-numeric techniques which can serve
as a filter for all exact methods presented here.

Isolation and Discrimination Systems (IDS) could be fur-
ther improved by exploiting certified approximate techniques,
such as multi-precision floating point interval arithmetic.
This would lead to a more adaptive behavior.

Given the advantages of the bitstream method for huge bit
sizes (and other coefficient types) as well as the advantages
of the methods based on Continued Fractions for small sep-
aration bound, it seems worthwhile exploiting the bitstream
idea for methods based on Continued Fractions.
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