
EuroCG 2010, Dortmund, Germany, March 22–24, 2010

Approximate Nearest Neighbor Queries among Parallel Segments

Ioannis Z. Emiris∗ Theocharis Malamatos† Elias Tsigaridas‡

Abstract

We develop a data structure for answering efficiently
approximate nearest neighbor queries over a set of
parallel segments in three dimensions. We connect
this problem to approximate nearest neighbor search-
ing under weight constraints and approximate nearest
neighbor searching on historical data in any dimension
and give efficient solutions for these as well.

1 Introduction

Nearest neighbor searching is a fundamental geomet-
ric problem with applications in many areas. For high
dimensions there are no known efficient exact solu-
tions and thus approximate solutions to the problem
have been studied. Let d(p, q) denote the euclidean
distance between points p, q. Given a set P of points
in R

d and a parameter ε > 0, we say that a point p of
P is an ε-approximate nearest neighbor (ε-NN) to a
point q if d(p, q) ≤ (1+ε)d(q′, q) where q′ is a nearest
point to q in P . Arya et al. [3] have shown how to
find efficiently an ε-NN to any given query point in
constant dimensions and Indyk and Motwani [6] pre-
sented efficient methods for high dimensions. See [5]
for more references.

An interesting generalization of the problem arises
if we replace the point set P with a set of objects
O. For this version there are only few results known.
When O is a set of disjoint polyhedra in three dimen-
sions Koltun and Sharir [7] presented a data struc-
ture of near quadratic size that can answer an ε-NN
query in O(log(n/ε)) time. In three dimensions again,
Wang [9] showed how to answer ε-NN queries when
O is a set of triangles, segments, and points in a con-
vex position in O(log2 n/ε2) query time and using
O(n/ε2) space. In high dimensions, Magen [8] pro-
vided an algorithm for a set of k-flats with query time
polynomial in d, log n and 1/ε but super-polynomial
space.

The rest of the paper is structured as follows: Sec. 2
presents the problem and we give a first solution in
Sec. 2.1. Sec. 2.2 presents an enhanced solution that
saves a log factor both in space and time using results

∗Dept. of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Greece.

†Dept. of Computer Science and Technology, University of
Peloponnese, Greece.

‡Dept. of Computer Science and Technology, University of
Peloponnese, Greece.

in Sec. 3. The latter section is motivated by the cheap

gas station problem. Given n gas stations (sites) and
a car at a position q (query point) we want to find the
gas station that is closest or approximately closest to
q (since exact distance is not so important) which sells
gas for at most w euros. In Sec. 4 we present a data
structure for answering time-dependent ε-NN queries.
We conclude with a synopsis and on-going work.

2 Methods for parallel segments

Let S be a set of n disjoint segments in R
3. We assume

wlog that all segments in S are parallel to the x-axis.
For simplicity we also assume that they are in general
position. Let P be the set of the 2n endpoints of
the segments in S. Let q be a query point in R

3, s
be a segment of S nearest to q, and p be the point
of s nearest to q. Observe that p is either one of the
endpoints of s or that the segment qp is perpendicular
to s. Let Hq be the plane passing through q that is
parallel to the yz plane. Note that if p is interior to s
then p is one of the points in Hq ∩ S. (See Fig. 1)

q

p

Hq

e

Figure 1: Segments that lie in two parallel planes in
R

3 and a query point q. The endpoint nearest to q is
e; however, the closest point to q is p.

It follows that to find an ε-NN to q in S it suffices
to (a) find an ε-NN to q in P , (b) find an ε-NN to q in
the set Hq∩S and then report whichever of the two is
nearest to q. For solving (a) we use an (t, ε)-AVD on
set P with t = O(1/ε) together with the associated
data structure [2]. This structure has O(n) space and
it returns an ε-NN to any q in O(log n + 1/ε) time.
For solving (b) we present two methods which are
both based on a variation of the well-known interval

26th European Workshop on Computational Geometry, 2010

tree [4]. The second method is more complicated but
leads to a significant improvement.

2.1 First method

The construction of our interval tree T on S pro-
ceeds as follows. Let xm be the median among all
x-coordinates of P . Let Hm be the plane passing
through point (xm, 0, 0) and which is parallel to the
yz plane. We store xm at the root of T . We partition
the set of segments S into three sets Sℓ, Sm, and Sr

where each set consists of the segments that lie on the
left of Hm, that intersect Hm, and that lie on the right
of Hm, respectively. We continue the construction of
the tree T recursively on Sℓ and Sr. (If Sℓ or Sr is
the empty set clearly we get a leaf.) The two roots of
the trees built on Sℓ and on Sr become the left and
right child of the root of T , respectively. See Figs. 2
and 3 for an example.

s1

s2

s3

s4

s5

s6
s7

s8

Figure 2: A projection of a set of segments in xz
plane. The left endpoint of s8 is the median of the x-
coordinates and the vertical line through it divides the
segments to three sets. Segments that are completely
on the left, Sl, that are completely on the right, Sr,
and that stab the line, Sm.

s1 . . . s8

s1, s5 s3, s7, s8s2, s4, s6

Sl Sm Sr

Figure 3: The tree corresponding to the partition of
the segments in Fig. 2.

For the set Sm we build an auxiliary data structure
Tm which we associate with the root of T . (Structures
similar to Tm are built for all internal nodes of T .) Tm

is built as follows. Hm cuts naturally each segment
in Sm into two pieces. Let Cℓ be the left pieces of the
segments and Cr the right pieces. We build one tree
on Cℓ and one on Cr. We describe the construction
of the tree only for Cr since it is symmetric for Cℓ.

Let x′
m be the median among all x-coordinates of

the right endpoints of the segments in Cr. (Note
that the x-coordinates of the left endpoints are all
equal.) Let H ′

m be the plane passing through the
point (x′

m, 0, 0) and which is parallel to the yz plane.
We store x′

m at the root. The segments of Cr that
were not cut by H ′

m form the set S′
ℓ. The right pieces

of the segments cut by H ′
m form the S′

r. The left
pieces (which span between planes Hm and H ′

m) form
the set S′

m. For S′
ℓ, S′

r we continue the construction
recursively (unless empty), much like we built our in-
terval tree T above. We refer the reader to Fig. 4 for
an example of such a construction. We use the set of
segments S′

m to construct a 2D Voronoi diagram for
the point set H ′

m ∩S′
m. Then this Voronoi diagram is

combined with a standard point location algorithm [4]
to gives us a data structure T2 for answering optimally
2D nearest neighbor queries over H ′

m ∩ S′
m. T2 is as-

sociated with the root of the tree for Cr . Structures
similar to T2 are also built for all internal nodes of
Tm.

Hm H
′

m

s1

s2

s3

s4

s5

s6

Figure 4: The left endpoint of s5 is the median of the
left x coordinates. The parts of segments s1, s2 and
s3 that are on the left of H ′

m form the set S′
r. The

parts between Hm and H ′
m, together with s5 form S′

m.
The set S′

ℓ contains the segments s2 and s6.

We compute a bound on the size of Tm, that is, for
the augmented trees on Cℓ and on Cr. Let n′ = |Sm|.
Because we split always at the median, the height of
Tm is O(log n′). This implies that one segment of Sm

may be cut at most O(log n′) times and thus the total
size of Tm is O(n′ log n′). Using standard results, it
is easy to see that the total size of all structures T2

associated with the nodes of Tm is also O(n′ log n′).
We compute a bound on the size of the main data

structure T . Since the set of segments Sm used at
each node of T for the auxiliary data structure Tm are
disjoint and using the space bound on Tm it follows
easily that the total size of T is O(n log n). Due to
the balanced splits T has height O(log n).

We describe now how to solve (b) that is, given a
query q = (qx, qy, qz), how to find an ε-NN to q in
the set Hq ∩ S. (In fact this first method finds an
exact nearest neighbor to q). We start at the root of

EuroCG 2010, Dortmund, Germany, March 22–24, 2010

T and at each node v we follow the child according to
the result of the comparison between qx and xm, the
value stored at v. At each node v we also visit the
auxiliary data structure Tm. We similarly follow the
path from the root of Tm to the leaf containing q and
at each node we use T2 to find the nearest neighbor to
(qy, qz) among H ′

m ∩S′
m. We report as an answer the

nearest point to q over all the points returned from
all queries to T2.

Correctness follows from the fact that we only ex-
clude from consideration segments or fragments of
segments that do not intersect plane Hq and thus are
not needed for (b).

Since the depth of tree T is O(log n) and for each
node of T we visit an auxiliary data structure Tm with
depth also at most O(log n) and at each node of Tm

data structure T2 may have been built for at most n
sites, it follows that query time is O(log3 n). The total
query time is the sum of the time spend on solving (a)
and that on (b) and thus we get the following result:

Theorem 1 Given n parallel segments in 3D we

can construct a data structure of O(n log n) space

for finding an ε-NN to any given query point q in

O(log3 n + 1/ε) time.

We will discuss the construction times of the data
structures in the final version, however they are all in
O(n poly(log n, 1

ε
)).

2.2 Improving space and query time

Next we show a second method that significantly re-
duces the space and query time in terms of n. The
part of the first method that we change is the aux-
iliary data structure Tm for the sets Cℓ and Cr . We
again describe just the data structure Tr for segments
in Cr and an analogous data structure can be built
for Cℓ.

According to (b), our goal for Cr is to find an ε-NN
to q in Hq∩Cr. We solve this by reducing our problem
to a weight-constrained approximate nearest neigh-
bor searching problem in two dimensions. Specifically
each right endpoint (px, py, pz) of a segment in Cr is
mapped to the point (py, pz) with weight px. We de-
note with P ′ the 2D weighted point set obtained (see
Fig. 5). Let P ′

w be the subset of P ′ containing only
the points with weight at least w. Given a query
q = (qx, qy, qz), our goal is to find an ε-NN to point
q2 = (qy, qz) in P ′

qx

. Note that this suffices to achieve
our first goal.

We apply the Theorem 4 of the next section
(weight-constrained ε-NN queries) on point set P ′ for
d = 2, γ = 2 and q = q2 and easily get this lemma:

Lemma 2 Given q and Cr we can build a data struc-

ture Tr of O(|Cr |) size to find an ε-NN to q in Hq ∩Cr

in O(log |Cr| + 1/ε2) time.

(x3, y3, z3)

(x1, y1, z1)

(x2, y2, z2)

y1y2 y3

z1

z2

z3

(x1)

(x2)

(x3)

Figure 5: The values of xi’s on the right hand-side
play the role of weights, hence the points are consid-
ered weighted.

Using the above lemma we obtain the following result:
(We omit the analysis which is similar to that of the
first method.)

Theorem 3 Given n parallel segments in 3D we

can construct a data structure of O(n log(1/ε)) space

for finding an ε-NN to any given query point q in

O(log2 n + log n/ε2) time.

3 Weight-constrained ε-NN queries

Given a set of weighted points in d dimensions,
the weight-constrained ε-approximate nearest neighbor

problem is to find, given a query q and a weight w, an
ε-NN to q among the points in P that have weight at
least w. Here w is a number that is specified at query
time. Note that we allow an approximation error in
one parameter (distance) but we require exactness on
one other (weight). We can also define the symmet-
ric problem where we search for an ε-NN among the
points of P with weight at most w.

Theorem 4 Let P be a set of n points in R
d, and let

0 < ε < 1/2 and 2 ≤ γ ≤ 1/ε be two real parameters.

We can construct a data structure of O(nγd log(1/ε))
space that allows us to answer a weight-constrained

ε-NN query in time O(log(γn) + 1/(εγ)d).

(Proof sketch.) We start with some definitions.
Throughout this section we use notation from [1]. Let
b(q, r) be a ball of radius r centered at point q. Let
b+(q, r) be a ball of radius (1 + ε)r centered at q and
b−(q, r) be a ball of radius (1−ε)r centered at q. (We
omit the parameters wherever they are clear from con-
text.) Given P , q and r an ε-range counting query re-
turns a number that is between |P ∩ b−| and |P ∩ b+|.
That is we approximate the range b with some range
between b− and b+ and count the points in that range.
An ε-range maximum query returns the weight of a
point contained in b+ that has weight at least as large
as the point of maximum weight in b−. Given q and k
an ε-kth nearest neighbor query returns a point con-
tained in the annulus formed by the two balls b−(q, rk)
and b+(q, rk) where rk is the distance to a kth nearest
neighbor to q.

26th European Workshop on Computational Geometry, 2010

We now give a method for solving our problem.
This method is an extension of the methods presented
for answering ε-approximate range queries and partic-
ularly for answering ε-kth nearest neighbor queries [1].
The query input in our case instead of the query point
q and the integer k is q and the one-sided constraint
on the weights w.

We follow closely [1] (Section 4, improved ap-
proach). A difference is that instead of precomput-
ing an ε/4-range counting query for the smallest and
largest balls handled by u that are centered at a point
inside z we use an ε/4-range maximum query. Let ws

and wℓ be the answers (weights) returned for the small
ball and the large ball query respectively. At query
time, we determine the hypercube z containing q and
similarly use the two weights ws and wℓ stored with
z to determine if u is responsible for answering our
weight-constrained ε-NN query. Here u is responsible
for giving the answer if and only if ws ≤ w ≤ wℓ.
If w < ws we visit the related node responsible for
handling smaller ranges while if w > wℓ we visit the
related node for larger ranges.

We compute the answer to the query by processing
the last node u visited as follows. We consider first
the case where u is a leaf. Each box z ∈ Q(u) is
associated with the point having the largest weight
in S ∩ z. The points in P(u) maintain their original
weight. We simply scan the points of P(u) and the
points associated with boxes in Q(u) and report the
point nearest to q among those having weight at least
w. A similar approach also works if u is a box cell
obtained by shrinking. The last case is if u is a box
cell obtained by splitting. Similarly we use a binary
search to determine an ε-NN to q among the points
with weight at least w. As before instead of the count
for a given spherical range with center q, we compute
the maximum weight for this range and determine
accordingly the next range to check. The space and
time analysis in [1] applies to our case too and thus
we obtain the theorem above.

4 Querying about the past

We define a timestamped operation on a data struc-
ture as an operation which carries a label of the time
it occurred. An element is alive at some moment t if
t is between the time of insertion and deletion of the
element. We consider the following problem: given
a sequence of n timestamped insertions and deletions
of d-dimensional points build a data structure which
given a query point q and a parameter t finds effi-
ciently an ε-NN of q among the points alive at time
t. We call this a t-moment ε-NN query.

We tackle the problem using methods from Sec. 2
and 3. Let p be a point that was inserted at time
ts and deleted at time tf (infinite values are allowed).
We use time as an extra dimension and map the point

p to the segment with endpoints (ts, p) and (tf , p) in
d + 1 dimensions. Note that the points alive at any
given moment t correspond to the segments intersect-
ing the hyperplane with equation x = t. Hence we can
build a similar interval tree as in Sec. 2. To answer
queries part (b) is only needed. We extend Lemma
2 in d dimensions and with a simple analysis get the
following:

Theorem 5 Let n timestamped insertions and dele-

tions of points in R
d, and let 0 < ε < 1/2 be a

real parameter. We can construct a data structure

of O(n log(1/ε)) space that allows us to answer any

t-moment ε-NN query in time O(log2 n + log n/εd).
Here t is given at query time.

5 Conclusion

We have shown how to answer efficiently ε-
approximate nearest neighbor queries over a set of
parallel segments in R

3 and we have presented ap-
plications of this result to interesting approximate
searching problems in higher dimensions. The result
holds also for segments with a fixed number of direc-
tions if we allow the query time to grow up by a con-
stant factor. We are currently investigating answering
ε-NN queries among fat triangles and polyhedra gen-
erated by the above segments.

References

[1] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoffs for approximate spherical range counting. In
Proc. 16th Annu. ACM-SIAM Sympos. Discrete Algo-

rithms, pages 535–544, 2005.

[2] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoffs for approximate nearest neighbor searching. J.

Assoc. Comput. Mach., 57:1–54, 2009.

[3] S. Arya, D. M. Mount, N. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions. J. Assoc. Comput.

Mach., 45:891–923, 1998.

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Applica-

tions. Springer-Verlag, Berlin, Germany, 3rd edition, 2008.

[5] P. Indyk. Nearest neighbors in high-dimensional spaces.
In in Handbook of Discrete and Computational Geometry,
pages 877–892. CRC Press, 2004.

[6] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proc.

30th Annu. ACM Sympos. Theory Comput., pages 604–
613, 1998.

[7] V. Koltun and M. Sharir. Polyhedral Voronoi diagrams of
polyhedra in three dimensions. In SCG ’02: Proceedings of

the eighteenth annual symposium on Computational geom-

etry, pages 227–236, 2002.

[8] A. Magen. Dimensionality reductions in ℓ2 that preserve
volumes and distance to affine spaces. Discrete Comput.

Geom., 38(1):139–153, 2007.

[9] Y. Wang. Approximating nearest neighbor among trian-
gles in convex position. Inf. Process. Lett., 108(6):379–385,
2008.

