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Abstract. We study polynomials of degree up to 4 over the rationals
or a computable real subfield. Our motivation comes from the need to
evaluate predicates in nonlinear computational geometry efficiently and
exactly. We show a new method to compare real algebraic numbers by
precomputing generalized Sturm sequences, thus avoiding iterative meth-
ods; the method, moreover handles all degenerate cases. Our first con-
tribution is the determination of rational isolating points, as functions
of the coefficients, between any pair of real roots. Our second contribu-
tion is to exploit invariants and Bezoutian subexpressions in writing the
sequences, in order to reduce bit complexity. The degree of the tested
quantities in the input coefficients is optimal for degree up to 3, and for
degree 4 in certain cases. Our methods readily apply to real solving of
pairs of quadratic equations, and to sign determination of polynomials
over algebraic numbers of degree up to 4. Our third contribution is an im-
plementation in a new module of library synaps v2.1. It improves signif-
icantly upon the efficiency of certain publicly available implementations:
Rioboo’s approach on axiom, the package of Guibas-Karavelas-Russel
[11], and core v1.6, maple v9, and synaps v2.0. Some existing limited
tests had shown that it is faster than commercial library leda v4.5 for
quadratic algebraic numbers.

1 Introduction

Our motivation comes from computer-aided geometric design and nonlinear com-
putational geometry, where predicates rely on real algebraic numbers of small
degree. These are crucial in software libraries such as esolid [15], exacus(eg.
[12], [2]), and cgal(eg. [8]). Predicates must be decided exactly in all cases, in-
cluding degeneracies. We focus on real algebraic numbers of degree up to 4 and
polynomials in one variable of arbitrary degree or in 2 variables of degree ≤ 2.
Efficiency is critical because comparisons on such numbers lie in the inner loop
of most algorithms, including those for computing the arrangement of algebraic
curves, arcs or surfaces, the Voronoi diagrams of curved objects, eg. [2, 7, 12, 14]
and kinetic data-structures [11].

Our work is also a special-purpose quantifier elimination method for one
or two variables and for parametric polynomial equalities and inequalities of



low degree. Our approach extends [16, 22] because our rational isolating points
eliminate the need of multiple sign evaluations in determining the sign of a
univariate polynomial over an algebraic number of degree ≤ 4. We also extend
the existing approaches so as to solve some simple bivariate problems (sec. 7).

Our method is based on pre-computed generalized Static sequences; in other
words, we implement straight-line programs for each comparison Finding isolat-
ing points of low algebraic degree (and rational for polynomials of degree ≤ 4) is
a problem of independent interest. It provides starting points for iterative algo-
rithms and has direct applications, e.g. [7]. Our Sturm-based algorithms rely on
isolating points in order to avoid iterative methods (which depend on separation
bounds) and the explosion of the algebraic degree of the tested quantities. In
order to reduce the computational effort, we factorize the various quantities by
the use of invariants and/or by the elements of the Bezoutian matrix; for our
implementation, this is done in an automated way.

We have implemented a package of algebraic numbers as part of the synaps 2.1
library [6] and show that it compares favorably with other software. Our code
can also exist as a stand-alone C++ software package. We call our implementation
S3 which stands for Static Sturm Sequences (or Salmon-Sturm-Sylvester).

The following section overviews some of the most relevant existing work.
Next, we formalize Sturm sequences. Sect. 4 studies discrimination systems and
its connection to the invariants of the polynomial. Sect. 5 obtains rational iso-
lating points for degree ≤ 4. Sect. 6 bounds complexity and sect. 7 applies our
tools to sign determination and real solving and indicates some of our techniques
for automatic code generation. Sect. 8 illustrates our implementation with ex-
perimental results. We conclude with future work.

2 Previous work and contribution

Although the roots of rational polynomials of degree up to 4 can be expressed
explicitly with radicals, the computation of the real roots requires square and
cubic roots of complex numbers. Even if only the smallest (or largest) root is
needed, one has to compute all real roots (cf [13]). Another critical issue is that
there is no formula that provides isolating rational points between the real roots
of polynomials: this problem is solved in this paper for degree ≤ 4.

In quantifier elimination, an effort was made to optimize low level, opera-
tions, eg. [16, 22]. However, by that approach, there is a need for multiple Sturm
sequences. By our approach, we need to evaluate only one Sturm sequence in
order to decide the sign of a polynomial over a cubic or quartic algebraic number.

Our discrimination system for the quartic is the same as that in [23], but is
derived differently and corrects a small error in [23].

Rioboo implemented in axiom an arithmetic of real algebraic numbers of
arbitrary degree with coefficients from a real closed field [17]. The extension he
proposed for the sign evaluation is essentially based upon theorem 2.

Iterative methods based on the approach of Descartes / Uspensky seem to
be the fastest means of isolating real roots, in general (cf. [18]). Such methods



sec rfc g pg rma rnma

S3 137 2 5 10 34
core v1.6 − 10 17 20 195
leda v4.5 374 5 11 19 104

Table 1. Computing the arrangement of 300 circular arcs with: random full circles
(rfc), circles centered on the crosspoints and the centers of the cells of a square grid
of cell size 104 (g), the same perturbed (pg), random monotone arcs (rma), random
non-monotone arcs (rnma). All the geometry code was done in cgal and so the first
column shows the arithmetic used.

are implemented in synaps. An iterative method using Sturm sequences, has
been implemented in [11]. Both methods are tested in sec. 8.

leda and core1 evaluate expression trees built recursively from integer op-
erations and k

√, and rely on separation bounds. leda treats arbitrary algebraic

numbers, by the diamond operator, based on Descartes/Uspensky iteration. But
it faces efficiency problems ([20]) in computing isolating intervals for degree 3
and 4, since Newton’s iteration cannot always be applied with interval coeffi-
cients. core recently provided for dealing with algebraic numbers using Sturm
sequences. Currently this operator cannot handle multiple roots.

Precomputed quantities for the comparison of quadratic algebraic numbers
were used in [5], derived from the u-resultant and Descartes’ rule of sign. In [14],
the same problem was solved with static Sturm sequences, thus improving upon
the runtime by up to 10%. In generalizing these methods to higher degree, it is
not obvious how to determine the (invariant) quantities to be tested in order to
minimize the bit complexity. Another major issue is the isolating points as well
as the need of several Sturm sequences.

The contribution of this paper starts with quadratic numbers, for which we
reformulated the existing method in order to make it generalizable to higher
degree [10]. The efficiency of our implementation for quadratic numbers is illus-
trated in [8]; we copy table 1 from this paper. For algebraic numbers of degree 3
and 4, preliminary results are in [10, 9], where more details can be found, which
cannot fit here for reasons of space. Our novelty is to use a single Sturm se-
quence for degree up to 4 (see cor. 4), first by considering the discrimination
system of the given polynomial for purposes of root classification and in or-
der to derive a square-free polynomial defining the algebraic number, second by
deriving rational isolating points (theorems 6 and 10) and finally by reducing
the computational effort through factoring of the tested quantities using invari-
ants and elements of the Bezoutian matrix. Our implementation computes these
quantities in an automatic way.

1 http://www.algorithmic-solutions.com/enleda.htm, http://www.cs.nyu.edu/exact/core



3 Sturm Sequences

Sturm sequences is a well known and useful tool for isolating the roots of any
polynomial (cf [24], [1]). Additionally, the reader can refer to [14] where Sturm
sequences are used for comparing algebraic numbers of degree 2, or to [5] where
the comparison of such numbers was done by the resultant. In the sequel D is
a ring, Q is its fraction field and Q the algebraic closure of Q. Typically D = Z

and Q = Q.

Definition 1. Let P and Q ∈ D[x] be nonzero polynomials. By a (general-
ized) Sturm sequence for P, Q we mean any pseudo-remainder sequence P =
(P0, P1, . . . , Pn), n ≥ 1, such that for all i = 1, . . . , n, we have aiPi−1 = QiPi +
biPi+1 (Qi ∈ D[x], ai, bi ∈ D), such that aibi < 0 and P0 = P, P1 = Q, Pn+1 = 0.
We usually write PP0,P1

if we want to indicate the first two terms in the sequence.

For a Sturm sequence P , VP (p) denotes the number of sign variations of the
evaluation of the sequence at p. The last polynomial in PP0,P1

is the resultant
of P0 and P1.

Theorem 2. Let P, Q ∈ D[x] be relatively prime polynomials and P square-free.
If a < b are both non-roots of P and γ ranges over the roots of P in [a, b], then

VP,Q[a, b] := VP,Q(a) − VP,Q(b) =
∑

γ

sign (P
′

(γ)Q(γ)).

where P
′

is the derivative of P .

Corollary 3. Theorem 2 holds if in place of Q we use R = PRem(Q, P ), where
PRem(Q, P ), stands for the pseudo-remainder of Q divided by P .

Finding isolating intervals for the roots of any polynomial is done below. Still,
the computation of a Sturm sequence is quite expensive. In order to accelerate the
computation we assume that the polynomials are P, Q ∈ D[a0, . . . , an, b0, . . . , bm][x],
where ai, bj are the coefficients considered as parameters, and we pre-compute
various Sturm sequences (n, m ≤ 4).

The isolating-interval representation of real algebraic number α ∈ Q is α ∼=
(A(X), I), where A(X) ∈ D[X ] is square-free and A(α) = 0, I = [a, b], a, b,∈ Q

and A has no other root in I.

Corollary 4. Assume B(X) ∈ D[X ] : β = B(α), and that α ∼= (A, [a, b]). By
theorem 2, sign(B(α)) = sign(VA,B[a, b] · A′

(α)).

Let us compare two algebraic numbers γ1
∼= (P1(x), I1) and γ2

∼= (P2(x), I2)
where I1 = [a1, b1] and I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one
of γ1 and γ2 belong to J , we can easily order the 2 algebraic numbers. All these
tests are implemented by the previous corollary and theorem. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ P2(γ1) ·P

′

2(γ2) ≥ 0. We can easily obtain the sign of P
′

2(γ2), and from
theorem 2, we obtain the sign of P2(γ1).



4 Root classification

Before applying the algorithms for root comparison, we analyze each polynomial
by determining the number and the multiplicities of its real roots. For this, we
use a system of discriminants. For the quadratic polynomial the discrimination
system is trivial. For the cubic, it is well known [22, 10]. We study the quartic by
Sturm-Habicht sequences, while [23] used a resultant-like matrix. For background
see [24, 1]. We factorize the tested quantities by invariants and elements of the
Bezoutian matrix. We use invariants in order to provide square-free polynomials
defining the algebraic numbers, to compute the algebraic numbers as rationals
if this is possible and finally to provide isolating rationals.

Consider the quartic polynomial equation, where a > 0.

f(X) = aX4 − 4bX3 + 6cX2 − 4dX + e. (1)

In the entire paper, we consider as input the coefficients a, b, c, d, e ∈ D.
For background on invariants see [4], [19]. We consider the rational invariants

of f , i.e the invariants in GL(2, Q). They form a graded ring [4], generated by:

A = W3 + 3∆3, B = −dW1 − e∆2 − c∆3. (2)

Every other invariant is an isobaric polynomial in A and B, i.e. it is homogeneous
in the coefficients of the quartic. We denote the invariant A3 − 27B2 by ∆1

and refer to it as the discriminant. The semivariants (which are the leading
coefficients of the covariants) are A, B and:

∆2 = b2 − ac, R = aW1 + 2b∆2, Q = 12∆2
2 − a2A. (3)

We also derived the following quantities, which are not necessarily invariants
but they are elements of the Bezoutian matrix of f and f

′

. Recall that the
determinant of the Bezoutian matrix equals the resultant, but its size is smaller
than the Sylvester matrix [3].

∆3 = c2 − bd T = −9W 2
1 + 27∆2∆3 − 3W3∆2

∆4 = d2 − ce T1 = −W3∆2 − 3 W 2
1 + 9 ∆2∆3

W1 = ad − bc T2 = AW1 − 9 bB

W2 = be − cd W3 = ae − bd

(4)

Proposition 5. [23] Let f(X) be as in (1). The table gives the real roots and
their multiplicities. In case (2) there are 4 complex roots, while in case (8) there
are 2 complex double roots (In [23] there is a small error in defining T ).

(1) ∆1 > 0 ∧ T > 0 ∧ ∆2 > 0 {1, 1, 1, 1}
(2) ∆1 > 0 ∧ (T ≤ 0 ∨ ∆2 ≤ 0) {}
(3) ∆1 < 0 {1, 1}
(4) ∆1 = 0 ∧ T > 0 {2, 1, 1}
(5) ∆1 = 0 ∧ T < 0 {2}
(6) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R = 0 {2, 2}
(7) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R 6= 0 {3, 1}
(8) ∆1 = 0 ∧ T = 0 ∧ ∆2 < 0 {}
(9) ∆1 = 0 ∧ T = 0 ∧ ∆2 = 0 {4}



5 Rational isolating points

In what follows, f ∈ Z[X ] and a > 0; the same methods work for any computable
real subfield D. It is known that for the quadratic f(X) = a X2 − 2 b X + c, the
rational number b

a
, isolates the real roots.

Theorem 6. Consider the cubic f(X) = a X3−3 b X2+3 c X−d. The rational
numbers b

a
and − W1

2∆2

isolate the real roots.

Proof. In [10], we derive the rational isolating points based on the fact that the
two extreme points and the inflexion point of f(X) are colinear. Moreover, the
line through these points intersects the x−axis at a rational number. Notice that
the algebraic degree of the isolating points is at most 2. Interestingly, the same
points are obtained by applying theorem 7. ⊓⊔

Theorem 7. [21] Given a polynomial P (X) with adjacent real roots γ1, γ2, and
any two other polynomials B(X), C(X), let A(X) := B(X)P ′(X)+ C(X)P (X)
where P ′ is the derivative of P . Then A(X) or B(X) are called isolating polyno-
mials because at least one of them has at least one real root in the closed interval
[γ1, γ2]. In addition, it is always possible to have deg A + deg B ≤ deg P − 1.

We now study the case of the quartic. By theorem 7 it is clear how to isolate
the roots by 2 quadratic algebraic numbers and a rational. In order to obtain an
isolating polynomial, let B(X) = ax − b and C(X) = −4a then

A(X) = 3 ∆2 X2 + 3 W1 X − W3. (5)

Since b
a

is the arithmetic mean of the 4 roots, it is certainly somewhere between
the roots. The other two isolating points are the solutions of (5), i.e

σ1,2 =
−3W1 ±

√

9W 2
1 + 12∆2W3

6∆2
. (6)

We verify that sign
(

f( b
b
)
)

= sign
(

a2A − 3∆2
2

)

, so







σ1 < b
a

< σ2, if f( b
a
) > 0;

σ1 < σ2 < b
a
, if f( b

a
) < 0 ∧ R > 0;

b
a

< σ1 < σ2, if f( b
a
) < 0 ∧ R < 0;

(7)

where R is from (3). If f( b
a
) = 0 then we know exactly one root and can express

the other three roots as roots of a cubic. To obtain another isolating polynomial,
we use B(X) = dx − e, C(X) = −4d, and

A(X) = W3 X3 − 3 W2 X2 − 3 ∆4 X.



By the theorem at least 2 of the numbers below separate the roots.

0, τ1,2 =
3W2 ±

√

9W 2
2 + 12∆4W3

6W3
. (8)

We assume that the roots are > 0, so 0 is not an isolating point. The order of
the isolating points is determined similarly as in (7). Let us now find rational
isolating points for all relevant cases of prop. 5.

{1, 1, 1, 1} Treated below.
{1, 1} Since {1, 1, 1, 1} is harder, we do not examine it explicitly.
{2, 1, 1} The double root is rational since it is the only root of GCD(f, f ′) and its

value is T1

T2

, see eq (4). In theory, we could divide it out and use the isolating
points of the cubic, but in practice we avoid division. When the double root
is the middle root then b

a
and − W1

2∆2

are isolating points, otherwise we use
theorem 7 to find one more isolating point in Q.

{2} Compute the double root from P f,f
′ ; it is rational as a root of GCD(f, f ′).

{2, 2} The roots are the smallest and largest root of the derivative i.e. a cubic.
Alternatively, we express them as the roots of 3∆2X

2 + 3W1X − W3.
{3, 1} The triple root is − W1

2∆2

and the single root is 3 aW1+8 b∆2

2 a∆2

.

{4} The one real root is b
a
∈ Q.

It remains to consider the case where the quartic has 4 simple real roots. We
assume that 0 is not a root (otherwise we deal with a cubic), therefore, e 6= 0.
WLOG, we may consider equation (1) with b = 0. Then, specialize equations
(6) and (8) using b = 0. The only difficult case is when τi and σj , i, j ∈ {1, 2},
isolate the same pair of adjacent roots. WLOG, assume that these are τ1, σ1. We
combine them by the following lemma.

Lemma 8. For any m, n, m′, n′ ∈ N∗, 0 < m
n

< m′

n′
⇒ m

n
< m+m′

n+n′
< m′

n′
.

A := 9∆4 − 3 ce, B := 12 ae∆4 + 9 d2c2 (9)

then, an isolating point is 3d−3dc+
√
A+

√
B

6c+2ae
. If we find an integer K ∈ [

√
A,

√
B],

then it suffices to replace
√
A+

√
B by 2K and we denote the resulting rational

by σi ⊕ τj; notice it has degree 2 in the input coefficients. By prop. 5(1), ∆2 > 0
⇒ c < 0. Descartes’ rule implies that, if e > 0, then there are 2 positive and 2
negative roots, while e < 0 means there are 3 positive and one negative root or
vice versa. We set K = ⌈

√
A⌉ to prove theorem 10, provided the following holds:

Theorem 9. For every quartic in Z[X ] with 4 distinct real roots and b = 0, we
have

√
B −

√
A ≥ 1, using notation (9).

Proof.

√
B ≥ 1 +

√
A ⇔

√

B
A ≥ 1 + 1√

A ⇐
√

B
A ≥ 2 ⇔

g := 4aed2 − 4ace2 + 3d2c2 − 12d2 + 16ce ≥ 0.

First we show that the minimum of g(a, c, d, e) is positive, subject to −a ≤ 1,
c ≤ −5, and −e ≤ −5; we treat the case where c > −5 and e < 5 later. We



introduce slack variables y1, y2, y3 and use Lagrange multipliers. So our problem
now is

min L(a, c, d, e, y1, y2, y3, λ1, λ2, λ3) :=
min

[

g(c, e) + λ1(c + y2
1 + 5)λ2(−e + y2

2 + 5) + λ3(−a + y2
3 + 1)

] (10)

We take partial derivatives,, equate them to zero and the solution of the system,
by maple 9, is (a, c, d, e) = (1,−5, 0, 5) and g(1,−5, 0, 5) = 300 > 0 which is
a local minimum. If −5 < c < 0 and 0 < e < 5 we check exhaustively that√
B −

√
A ≥ 1. If e < 0 then we use again Lagrange multipliers but with the

constraint e + 1 − y2
2 . ⊓⊔

Theorem 10. Consider a quartic as in (1). At least three of the rational num-
bers {0, b

a
, e

d
, σi ⊕ τj} isolate the real roots, i, j ∈ {1, 2}.

6 Complexity of computations

The comparison of the roots of two polynomials of degree d ≤ 4 using Sturm se-
quences and isolating intervals provides the following bounds in the degree of the
tested quantities. We measure degree in terms of the input quartics’ coefficients.
A lower bound is the degree of the resultant coefficients, which is 2 d in terms of
the input coefficients. Recall that the resultant is an irreducible polynomial in
the coefficients of an overconstrained system of n+1 polynomials in n variables,
the vanishing of which is the minimum condition of solvability of the system
([24], [1]).

There is a straightforward algorithm for the comparison of quadratic alge-
braic numbers, with maximum algebraic degree 4, hence optimal ([14], [5]).

Theorem 11. [10] There is an algorithm for the comparison of algebraic cu-
bic numbers (including all degenerate cases), with maximum algebraic degree 6,
hence optimal.

Theorem 12. There is an algorithm that compares any two roots of two square-
free quartics with algebraic degree 8 or 9, depending on the degree of the isolating
points. When the quartics are not square-free, the algebraic degree is between 8
and 13. The algorithm needs at most 172 additions and multiplications in order
to decide the order. These bounds cover all degenerate cases, including when one
polynomial drops degree.

Proof. (Sketch) In [10] we derive this bound by considering the evaluation of
the Sturm sequence polynomials over the isolating points (see the discussion
after cor. 4 for additional details). The isolationg points have degree at most 2.
The length of the sequence is at most 6 and so we need at most 12 polynomial
evaluations, hence a fixed number of operations. The number of operations is
obtained by maple’s function cost. ⊓⊔



7 Applications

We have implemented a software package, including a root of class for algebraic
numbers of degrees up to 4 as part of library synaps (v2.1) [6]. Some function-
alities pertain to higher degrees. Our implementation is generic in the sense that
it can be used with any number type and any polynomial class that supports
elementary operations and evaluations. It can handle all degenerate cases and
has been extended to arbitrary degree (though without isolating points for now).
We developed programs that produce all possible sign combinations of the tested
quantities, allow us to test as few quantities as possible, and produce both C++

code and pseudo-code for the comparison and sign determination functions. We
provide the following functionalities, where UPoly and BPoly stand for arbitrary
univariate and quadratic bivariate polynomial respectively:

Sturm(UPoly f1, UPoly f2) Compute the Sturm sequence of f1, f2, by
pseudo-remainders, (optimized) subresultants, or Sturm-Habicht.

compare(root of α, root of β) Compare 2 algebraic numbers of degree
≤ 4 using precomputed Sturm sequences. We have precomputed all the possible
sign variations so as to be able to decide with the minimum number of tests (and
faster than with Sturm-Habicht sequences).

sign at(UPoly f, root of α) Determination of the sign of a univariate
polynomial of arbitrary degree, over an algebraic number of degree ≤ 4. We use
the same techniques, as in compare.

sign at(BPoly f, root of γx, root of γy) γ1
∼= (P1(x), I1) and γ2

∼=
(P2(x), I2), where I1 = [a1, b1] and I2 = [a2, b2], are of degrees ≤ 4. We compute
the Sturm-Habicht sequence of P1 and f wrt X . We specialize the sequence for
X = a1, X = a2, and find the sign of all y-polynomials over γy as above. The
Sturm-Habicht sequence was computed in maple, using the elements of the Be-
zoutian matrix. Additionally we used the packages codegeneration, optimize,
in order to produce efficient C++ code.

solve(UPoly f) Returns the roots of f as root of. If f has degree ≤ 4 we
use the discrimination system, otherwise we use non-static Sturm sequences.

solve(BPoly f1, BPoly f2) We consider the resultants Rx, Ry of f1, f2 by
eliminating y and x respectively, thus obtaining degree-4 polynomials in x and y.
The isolating points of Rx, Ry define a grid of boxes, where the intersection points
are located. The grid has 1 to 4 rows and 1 to 4 columns. It remains to decide,
for boxes, whether they are empty and, if not, whether they contain a simple or
multiple root. Multiple roots of the resultants are either rational or quadratic
algebraic numbers by prop. 5. Each box contains at most one intersection point.
We can decide if a box is empty by 2 calls to the bivariate sign at function. We
can do a significant optimization by noticing that the intersections in a column
(row) cannot exceed 2 nor the multiplicity of the algebraic number and thus
excluding various boxes.

Unlike [2], where the boxes cannot contain any critical points of the inter-
secting conics, our algorithm does not make any such assumption, hence there
is no need to refine them. Our approach can be extended in order to compute
intersection points of bivariate polynomials of arbitrary degree, provided that



msec Z Q far M−Q M Z Q far M−Q M

axiom 38.0 57.4 77.3 67.2 82.3

maple 9 33.2 52.4 69.0 75.5 74.7

core 8.41 5.67 6.76 9.31 10.1

synaps(gmpq) 1.097 0.820 0.596 1.480 2.114 2.687 2.693 2.780 3.764 5.698

[11](gmpq) 1.249 0.921 0.991 1.582 1.544 23.74 64.4 7.3 4.121 54.7

[11]-filt(gmpq) 0.346 0.301 0.279 0.313 0.320 1.594 2.130 1.035 2.758 3.980

S3 (gmpq) 0.077 0.083 0.082 0.074 0.077 0.117 0.190 0.115 0.161 0.129

synaps(gmp mpf) 0.302 0.202 0.195 0.339 0.385

S3 (gmp mpf) 0.060 0.064 0.057 0.063 0.061

synaps(double) 0.055 0.042 0.043 0.061 0.071

S3 (double) 0.010 0.011 0.012 0.010 0.010

Table 2. Running times in msec for comparing specific roots of 2 quartics. In paren-
theses are the number types: gmpq / gmp mpf stand for GMP rationals / floating point.

we obtain isolating points for the roots of the two resultants, either statically
(as above) or dynamically.

8 Experimental results

We performed tests on a 2.6GHz Pentium with 512MB memory. The results
are on table 2. axiom refers to the implementation of real algebraic arithmetic
by Rioboo (current CVS version); it is meant, like maple 9, only for a rough
comparison. The package in [11] uses subdivision based on Sturm sequences. Row
[11]-filt is the same but the program tries to decide with double arithmetic
and, if it cannot, then switches to exact arithmetic. S3 is our code implemented
in synaps 2.1. Every test is averaged over 10000 polynomial pairs. The left part
of the table includes results for polynomials with 4 random real roots between
-20 and 20, multiplied by an integer ∈ [1, 20], so the coefficients are integers of
absolute value ≤ 32 · 105 and the Mignotte polynomials are a(x4 − 2(Lx− 1)2),
where a, L are chosen randomly from [3, 30]. The right part of the table tests
polynomials with random roots ∈ [10 · 104, 11 · 104] and Mignotte polynomials
with parameters a, L both chosen randomly from [10 · 104, 11 · 104] with uniform
distribution.

Column Z indicates polynomials with 4 integer roots. Column Q indicates
polynomials with 4 rational roots. Column far indicates that one polynomial has
only negative roots while the other one has only positive ones. M −Q indicates
that one is a Mignotte polynomial and the other has 4 rational roots. M indicates
that we compare the roots of two Mignotte polynomials.

core cannot handle multiple roots. This is also the case for the iterative
solver of synaps, which also has problems when the roots are endpoints of a
subdivision. maple cannot always handle equality for the roots of two Mignotte



polynomials. Of course all the implementations have problems when the number
type is not an exact one. This is the case of double and gmp mpf. By considering
the left part of table 2, our code is 103, 15 and 16 times faster than core, synaps
and [11], respectively, in the average case and when no filtering is used. Even
in case of filtering ([11]-filt) our code is faster by a factor of 4 on average.
Increasing the magnitude of the coefficients or decreasing the separation bound
of the roots, leads to even more dramatic improvement in the efficiency of our
implementation over the other ones; this is the case for the right part of table 2.

S3 has similar running times for all kinds of tests and handles degenerate
cases faster that the general ones since we use the discrimination system. This is
not the case for any of the other approaches. The running times of our code with
an exact number type is less than 8 times slower than when used with doubles.
However the latter does not offer any guarantee for the computed result. This is
an indication that exact arithmetic imposes a reasonable overhead on efficiency
when used in conjunction with efficient algorithms and carefully implemented.

9 Future work

Consider the quintic ax5 + 10 cx3 − 10 dx2 + 5 ex − f, with a > 0 and c < 0 by
assuming 5 real roots. Using the techniques above, we obtain 2 pairs of isolating
polynomials. Two of them are

B1 = 2 X2ca + 3 dXa + 8 c2 B2 =
(

−4 df + 4 e2
)

X2 + feX − f2 (11)

One pair of roots may be separated by the roots of B1, B2. We combine them
by finding an integer between the roots of the respective discriminants: ∆B1

=
a(9d2a−64c3), ∆B2

= (17e2−16df)f2. It suffices to set K to 2⌈∆B1
⌉ or 2⌈∆B2

⌉,
depending on the signs of e, f . Tests with maple support our choices.

Filtering should lead to running times similar to those of the double number
type. Additionally we are planning to compare our software against the software
of [18] and NiX, the polynomial library of exacus.

The algebraic degree of the resultant is a tight lower bound in checking solv-
ability, but is it tight for comparisons?
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