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Abstract

Based on precomputed Sturm-Habicht sequences, discriminants and invariants, we
classify, isolate with rational points, and compare the real roots of polynomials of de-
gree up to 4. In particular, we express all isolating points as rational functions of the
input polynomial coefficients. Although the roots are algebraic numbers and can be
expressed by radicals, such representation involves some roots of complex numbers.
This is inefficient and hard to handle in applications to geometric computing and
quantifier elimination. We also define rational isolating points between the roots of
the quintic. We combine these results with a simple version of Rational Univariate
Representation to isolate all common real roots of a bivariate system of rational
polynomials of total degree ≤ 2 and to compute the multiplicity of these roots.
We present our software within synaps and perform experiments and comparisons
with several public-domain implementations. Our package is 2–10 times faster than
numerical methods and exact subdivision-based methods, including software with
intrinsic filtering.
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1 Introduction

Although the roots of rational polynomials of degree up to 4 can be expressed
explicitly with radicals, their computation, even in the case of real roots,
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requires square and cubic roots of complex numbers; this is the famous casus
irreducibilis. In addition, even if only the smallest (or largest) root is needed,
the customary algorithms compute all real roots, see e.g. [17]. Our approach
isolates and determines the multiplicity of a specific polynomial root (given by
its index), without computing all roots. Another critical issue is that there has
been no formula that provides isolating rational points between the real roots
of polynomials, in terms of the input coefficients. This problem is settled in
this paper for degree ≤ 5 using the floor function for square roots of integers.

In isolating and comparing algebraic numbers, we rely on these isolating
points, thus avoiding iterative methods, which depend on separation bounds
and, hence, lead to an explosion of the tested quantities. Our approach is
based on pre-computed (static) Sturm sequences; essentially, we implement
straight-line programs for each computation. In order to further reduce the
computational effort, we factorize various quantities by the use of invariants
and/or the elements of the Bezoutian matrix. These quantities were computed
in an automated way by our maple software, then used in our algorithms.

Lazard in [21] derives necessary conditions for a quartic polynomial to take
only positive values and for an ellipse to lie inside a unit circle. In that paper
optimal solutions were derived, that could not be obtained by general-purpose
algorithms. Inspired by such examples, we enumerate and isolate the real roots
of integer polynomials of degree up to 4 and present algorithms for comparing
two real algebraic numbers of degree up to 4. Moreover, we derive an efficient
algorithm for isolating in rational boxes all common real roots of systems
of bivariate integer polynomials of total degree ≤ 2. For each root we also
compute its multiplicity.

Our package for algebraic numbers and bivariate polynomial system solving
compares favorably with other software. Our implementation is part of the
synaps 1 library [25], which is an open source software library for symbolic
and numeric computations. Our software implements the algorithms presented
in the sequel as well as certain specific optimized functions.

Important applications are in computer-aided geometric design and nonlinear
computational geometry, where predicates, which rely on algebraic numbers
of small degree, must be decided exactly in all cases, including degeneracies.
Efficiency is critical because comparisons and real solving of small degree
polynomials lie in the inner loop of several algorithms, most notably those
for computing arrangements and Voronoi diagrams of curved objects, see e.g.
[7, 8, 11] and related kinetic data-structures [31]. Moreover, isolating points
can be used as starting points for iterative algorithms and present independent
interest for geometric applications, see e.g. [6, 38]. All of the above are also

1 www-sop.inria.fr/galaad/logiciels/synaps/
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basic operations for software libraries supporting geometric computing, such
as esolid [18], exacus 2 , and the upcoming algebraic kernel of cgal 3 [10].

Our work also provides a special-purpose quantifier elimination method for one
or two variables, and for parametric polynomial equalities and inequalities of
degree ≤ 4; an extension is possible to degree ≤ 9. Our approach extends that
of [39], which covers the case of degree 3.

The rest of the paper is organized as follows. The next section overviews
relevant existing work and our main contributions. Sec. 3 formalizes Sturm
sequences and the representation of algebraic numbers. The following two sec-
tions study discrimination systems, and their connection to invariants and
root classification, for cubic and quartic polynomials, respectively; in partic-
ular, Sec. 5.1 obtains rational isolating points between all real roots of the
quartic. Sec. 6 bounds the complexity of comparing algebraic numbers, and
applies our tools to real solving bivariate polynomial systems. Sec. 7 sketches
our implementation and illustrates it with experiments. Sec 8 extends our
results to the quintic. Future work is mentioned throughout the paper.

2 Previous work and our contribution

In quantifier elimination, seminal works optimize low level operations, e.g. [21,
39]. However, by these approaches, the comparison of real algebraic numbers
requires multiple Sturm sequences or sign evaluations of polynomials over alge-
braic numbers. In our approach, we evaluate only one Sturm-Habicht sequence,
over two rational numbers.

Rioboo in [28] studies the arithmetic of real algebraic numbers of arbitrary
degree with coefficients from a real closed field. This is the only package that
can handle non-trivial examples and is implemented in axiom. The proposed
sign evaluation method is essentially the same as in Thm. 1.

Iterative methods based on the approach of Descartes/Uspensky offer an effi-
cient means for isolating real roots in general [13, 30]. Such a method, based on
the Bernstein basis, is implemented in synaps 2.1 [24]. An iterative method,
using subdivision and Sturm sequences, has been implemented in [31]. These
methods have their source codes available and are tested in Sec. 7. On numer-
ical algorithms for univariate solving we refer the reader to [26], and for real
solving to [27] and the references therein.

2 www.mpi-sb.mpg.de/projects/EXACUS/
3 www.cgal.org
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leda 4 and core 5 evaluate expression trees built recursively from integer op-
erations and k

√, and rely on separation bounds. leda treats arbitrary algebraic

numbers by the diamond operator, based on Descartes/Uspensky iteration and
Newton’s method [34]. It faces, however, efficiency problems in computing iso-
lating intervals for the roots of polynomials of degree 3 and 4, since Newton’s
iteration needs special tuning in order to work with interval coefficients. core
provides a rootOf operator for dealing with algebraic numbers using Sturm
sequences; it is tested in Sec. 7.

Precomputed quantities for the comparison of quadratic algebraic numbers
were used in [8], with static Sturm sequences. In generalizing these methods
to higher degree, it is not clear how to determine the (invariant) quantities to
be tested in order to minimize the bit complexity. Another major issue has
been the isolating points as well as the need of several Sturm sequences. Here
we settle both problems.

The basis of our work are the discrimination systems, which are the same as
in [40], but they are derived differently; we also correct a small typographical
error concerning the quartic. For a polynomial of degree up to 4, we use the
quantities involved in its discrimination system not only to determine the
number of its roots, but also to compute their multiplicity, to express them as
rationals when this is possible, to compute the polynomial’s square-free part,
and to provide rational points that isolate its roots. The derivation of rational
isolating points allows us to compare two real algebraic numbers using a single
Sturm-Habicht sequence (Thm. 1).

For quadratic numbers and for the efficiency of our implementation see [10].
For algebraic numbers of degree 3 and 4, preliminary results are in [9]. Here we
compare our software with the univariate Bernstein solver of synaps [24], rkg
of [31], fgb/rs 6 [30], core, and NiX, the polynomial library of exacus. Our
software is faster, even compared to those software packages that have intrinsic
filtering. However, our code is slower than the continued fractions implemen-
tation of [37], which uses an approach completely different from subdivision.
Lastly, we show that the classical closed-form expressions for the roots of cubic
and quartic polynomials with large coefficients are very impractical because
they involve complex numbers and square and cubic roots.

Solving polynomial systems in a real field is an active area of research. There
are several algorithms that tackle this problem, refer for example to [1] and
the references therein. To solve quadratic bivariate systems, without assuming
generic position, we precompute resultants and Sturm-Habicht sequences in
two variables and combine the rational isolating points with a simple version

4 www.algorithmic-solutions.com/enleda.htm
5 www.cs.nyu.edu/exact/core
6 http://fgbrs.lip6.fr/salsa/Software/
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of Rational Univariate Representation.

For real-solving of bivariate systems, we experimentally compared our algo-
rithms with the existing solvers in synaps, that is newmac, based on nor-
mal forms [23], sth, based on [14], res, based on computing the generalized
eigenvalues of a Bezoutian matrix [2]. Additionally, we tested against fgb/rs
through its maple interface, which uses Gröbner bases and the Rational Uni-
variate Representation [29]. Our implementation is 2–10 times faster, even
compared to approximate methods.

3 Sturm Sequences and real algebraic numbers

Sturm (and Sturm-Habicht), e.g. [1, 13, 15, 22], sequences is a well known and
useful tool for isolating the roots of any polynomial. For a detailed description
the reader may refer to e.g. [1, 13]. In the sequel, D is a ring, Q is its fraction
field and Q the algebraic closure of Q. Typically D = Z,Q = Q; we shall also
consider problems where D = R. Let VARP1,P2(a) denote the number of sign
variations of the evaluation of the Sturm sequence of polynomials P1 and P2,
over a.

Theorem 1 Let P, Q ∈ D[x] be relatively prime polynomials and P square-
free. If a < b are both non-roots of P , and γ ranges over the roots of P in
[a, b], then

VARP,Q[a, b] := VARP,Q(a) − VARP,Q(b) =
∑

γ

sign (P
′

(γ)Q(γ)),

where P
′

is the derivative of P . The theorem also holds if we replace Q by the
pseudo-remainder of Q divided by P .

Corollary 2 If Q = P ′ ∈ D[x] and a < b are as above, then the previous
theorem counts the number of real roots of P in (a, b).

The isolating-interval representation of a real algebraic number α ∈ Q is

α ∼= (A(X), I),

where A(X) ∈ D[X] is square-free, A(α) = 0, α ∈ I = [a, b], a, b,∈ Q, and A
has no other root in I. Let B(X) ∈ D[X] and define a real algebraic number
β = B(α), where α ∼= (A, [a, b]). By Thm. 1, sign(B(α)) = sign(VARA,B[a, b] ·
A

′

(α)).

Let us compare two algebraic numbers γ1
∼= (P1(x), I1) and γ2

∼= (P2(x), I2)
where I1 = [a1, b1], I2 = [a2, b2]. Let J = I1∩I2. When J = ∅, or only one of γ1
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and γ2 belong to J , we can easily order the two algebraic numbers. These tests
are implemented by Thm. 1. If γ1, γ2 ∈ J , then γ1 ≥ γ2 ⇔ P2(γ1) ·P ′

2(γ2) ≥ 0.
We easily obtain the sign of P

′

2(γ2) and, from Thm. 1, we obtain the sign of
P2(γ1).

In order to test if the two real algebraic numbers are equal, it suffices to test
if their gcd (i.e. the last nonzero polynomial in their Sturm-Habicht sequence)
changes sign, when evaluated over the endpoints of J . This algorithm is similar
to that in [13, 28]. The reader may refer to [5, 13] for details and generalizations
of this procedure.

4 The cubic

For a given polynomial we can always compute a system of discriminants, the
signs of which determine the number and the multiplicities of the real roots.
For the quadratic polynomial the system of discriminants is trivial. For the
cubic, it is well known, e.g. [39]. We will present it in the sequel and we will
also compute isolating points for the real roots.

Consider the cubic equation

f = a x3 + b x2 + c x + d, (1)

where f ∈ IR[x] and a > 0. We need the following quantities, that are either
invariants of the cubic polynomial [3] or elements of the Bézout matrix of f
and its derivative f ′.

∆2 = b2 − 3 a c, ∆3 = c2 − 3 b d,

W = b c − 9 a d, P = 2 b∆2 − 3 a W.
(2)

The discriminant of the cubic is

∆1 = −1

3
(W 2 − 4 ∆2 ∆3).

The Sturm-Habicht sequence of f is

StHa(f, f ′) = (f, f ′, 2 ∆2x + W,−3∆1),

and the number of real roots of f is VAR(StHa(f ;−∞))− VAR(StHa(f ;∞)),
which means that it depends on the signs of the leading coefficients of the
sequence.
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replacemen

−2a2
3a3

− W
2∆2

(a) Isolator line of the cubic having
three real roots; here, ∆1 > 0∧P > 0.

A1

A2

τ2
τ1

σ2
σ1

b
a

(b) A quartic and the two isolator poly-
nomials. Recall that b

a
is the mean of the

roots.

Fig. 1. Isolator polynomials for the cubic and the quartic.

By elementary algebra, we can prove that sign(f(− b
3a

)) = sign(2b∆2−3aW ) =
sign(P ). We denote the roots of f by γ1, γ2, γ3 and let f = 9a2x2 + 6abx −
2b2 + 9ac, which is the quotient of the pseudo-division of f by 3a x − b.

Lemma 3 Consider f as in expression (1), such that it has three real roots.
Then the local minimum, the local maximum, and the saddle point of f are all
colinear. The line through them is called isolating line, its equation has rational
coefficients with respect to the coefficients of f and intersects the x−axis at a
rational point.

Proof. The abscissae of the extreme points of the graph of f are the solutions
of the quadratic f ′ = 0, which are

w1 =
−b −√

∆2

3 a
and w2 =

−b +
√

∆2

3 a
.

By some elementary computations we can prove that the equation of the
isolating line is 2∆2x + ay + W = 0. The coordinates of the saddle point are(
− b

3a
, f(− b

3a
)
)
, which satisfies the equation of the isolating line. The isolating

line intersects the x−axis at point (− W
2∆2

, 0).

For the case P, ∆1 > 0, see Fig. 1(a). 2

Theorem 4 Consider the cubic f(x) = a x3 + b x2 + c x + d with three real
roots. The rational numbers −b

3a
and − W

2∆2
isolate the real roots.

The proof follows from the previous lemma; for details, see [9], where Prop. 6
is applied.

The previous discussion allows us not only to compute the discrimination
system of the cubic, but also to compute the isolating interval representation
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(1) ∆1 < 0 ∧ P = 0 γ1
∼= [f, (−∞,− b

3a
)]

γ2 = − b
3a

γ3
∼= [f, (− b

3a
,+∞)]

(2) ∆1 < 0 ∧ P < 0 γ1
∼= [f, (−∞,− W

2∆2
)]

γ2
∼= [f, (− W

2∆2
,− b

3a
)]

γ3
∼= [f, (− b

3a
,+∞)]

(3) ∆1 < 0 ∧ P > 0 γ1
∼= [f, (−∞,− b

3a
)]

γ2
∼= [f, (− b

3a
,− W

2∆2
)]

γ3
∼= [f, (− W

2∆2
,+∞)]

(4) ∆1 > 0 ∧ d = 0 γ1 = 0

(5) ∆1 > 0 ∧ d < 0 γ1
∼= [f, (0,+∞)]

(6) ∆1 > 0 ∧ d > 0 γ1
∼= [f, (−∞, 0)]

(7) ∆1 = 0 ∧ ∆2 6= 0 γ1 = min (−W
2∆2

, b∆2−aW
a∆2

)

γ2 = max (−W
2∆2

, b∆2−aW
a∆2

)

(8) ∆1 = 0 ∧ ∆2 = 0 γ1 = − b
3a

Table 1
Discrimination system and isolating points of the cubic.

and the multiplicities of its real roots. This is summarized in table 1. The
cases (1), (2) and (3) correspond to a cubic with three distinct real roots.
Cases (4), (5) and (6) correspond to cubics with one real root. In this case we
can easily isolate the root using the sign of the trailing coefficient. Case (7)
corresponds to cubics with two distinct real roots, meaning that one of them
is a double root; then, the roots are rational functions in the coefficients of the
cubic. The double root is always equal to − W

2∆2
, whereas − W

2∆2
cannot be a root

of a cubic with three distinct real roots, since sign(f(− W
2∆2

)) = sign(P∆1) 6= 0.
Finally, the last case corresponds to cubics with one real root of multiplicity 3.

5 The quartic

We study the quartic and determine its roots as rationals, if this is possi-
ble, otherwise we provide isolating rationals between every pair of real roots.
Consider the quartic polynomial equation, where a, b, c, d, e ∈ ZZ and a > 0:

f(x) = ax4 − 4bx3 + 6cx2 − 4dx + e. (3)

We study the quartic using Sturm-Habicht sequences and the Bézout matrix,

8



while [40] used a resultant-like matrix. We use invariants to characterize the
different cases; for background see [3, 33]. We consider the rational invariants
of f , i.e. the invariants in GL(2, Q). They form a graded ring generated by
A = W3+3∆3 and B = −dW1−e∆2−c∆3 [3], where the Wi, ∆i are defined in
expression (4). Every other invariant is isobaric in A, B, hence homogeneous
in the coefficients of the quartic. Let ∆1 = A3 − 27B2 be the discriminant.
The semivariants (i.e. the leading coefficients of the covariants) are A, B and

∆2 = b2 − ac, R = aW1 + 2b∆2, Q = 12∆2
2 − a2A.

We also define the following quantities, which are not necessarily invariants
but they are elements of the Bezoutian matrix of f, f

′

.

∆3 = c2 − bd, W1 = ad − bc, T = −9W 2
1 + 27∆2∆3 − 3W3∆2,

∆4 = d2 − ce, W2 = be − cd, T1 = −W3∆2 − 3 W 2
1 + 9 ∆2∆3,

W3 = ae − bd, T2 = AW1 − 9 bB.

(4)

In [40] there is a small typographical error in defining T . Since our discrimi-
nation system is based on Sturm-Habicht sequences and, essentially, on the
principal subresultant coefficients, we use the Bezoutian matrix to compute
them symbolically.

Proposition 5 [40] Let f(x) be as in expression (3) and consider the quan-
tities defined above. The following table gives the real roots and their multi-
plicities. In case (2) there are 4 complex roots, while in case (8) there are two
complex double roots:

(1) ∆1 > 0 ∧ T > 0 ∧ ∆2 > 0 {1, 1, 1, 1}
(2) ∆1 > 0 ∧ (T ≤ 0 ∨ ∆2 ≤ 0) {}
(3) ∆1 < 0 {1, 1}
(4) ∆1 = 0 ∧ T > 0 {2, 1, 1}
(5) ∆1 = 0 ∧ T < 0 {2}
(6) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R = 0 {2, 2}
(7) ∆1 = 0 ∧ T = 0 ∧ ∆2 > 0 ∧ R 6= 0 {3, 1}
(8) ∆1 = 0 ∧ T = 0 ∧ ∆2 < 0 {}
(9) ∆1 = 0 ∧ T = 0 ∧ ∆2 = 0 {4}
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5.1 Rational isolating points

In correspondence with prop. 5, we give the rational or quadratic roots of
equation (3), when they exist, obtained in a straightforward manner from
(pseudo-)remainders in the Sturm sequence. Then, we derive rational isolating
points for the other cases.

(1) {1, 1, 1, 1}
In Thm. 9, we specify 3 rational isolating points.

(3) {1, 1}
In Cor. 10, we specify a rational isolating point.

(4) {2, 1, 1}
The double root is rational since it is the only root of gcd(f, f ′) and if
∆2 = 0 then its value is W3

3W1
, otherwise it is − T2

3T1
, with quantities defined in

expression (4). The other two roots are the roots of the quadratic polynomial
a2x2 − 2abx + 6ac − 5b2.

(5) {2}
As in the previous case, the double root is rational. If ∆2 = 0, then the root
equals W3

3W1
, otherwise it equals − T2

3T1
.

(6) {2, 2}
The roots are the smallest and largest root of the derivative i.e. a cubic.
Alternatively, we express them as the roots of 3∆2x

2 + 3W1x − W3.
(7) {3, 1}

The triple root is − W1

2∆2
and the simple root is 3 aW1+8 b∆2

2 a∆2
.

(9) {4}
The real root is b

a
∈ (Q.

For the cases above, where rational points are not available from the Sturm
sequence, we shall establish rational isolating points in the sequel. First, let
us state a useful result.

Proposition 6 [35] Given a polynomial P (x), with any two adjacent real roots
denoted by γ1 < γ2, and any two other polynomials B(x), C(x), let A(x) :=
B(x)P ′(x) + C(x)P (x), where P ′ is the derivative of P . Then A(x) and B(x)
are called isolating polynomials because at least one of them has at least one
real root in the closed interval [γ1, γ2]. In addition, it is possible to have deg A+
deg B ≤ deg P − 1.

Hence, we isolate the real roots of any quartic, in the worst case, by two
quadratic numbers and a rational. In the sequel, we use these to obtain rational
points.

Lemma 7 Given a1, a2 ∈ ZZ, δ1, δ2 ∈ IN, let τ > σ > 0 be defined below. Then,
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it is possible to determine r ∈ (Q as a function of a1, a2, δ1, δ2, such that

σ = a1 +
√

δ1 ≤ r ≤ a2 +
√

δ2 = τ.

Proof. Now, σ is a root of the polynomial h1(x) = x2 −2 a1x− δ1 +a1
2, while

τ is a root of h2(x) = x2 − 2 a2x − δ2 + a2
2. We consider a resultant w.r.t. y:

h(x) = Res(h1(y), h2(x + y)) = x4 + n3x
3 + n2x

2 + n1x + n0, (5)

where n3 = 4 a1 − 4 a2,
n2 = −12 a2a1 + 6 a2

2 − 2 δ1 − 2 δ2 + 6 a1
2,

n1 = −4 (a1 − a2) (−a1
2 + 2 a2a1 + δ1 + δ2 − a2

2),
n0 = 4 a2a1δ1 + 4 a2a1δ2 + δ1

2 − 2 δ1δ2 − 2 δ1a1
2 − 2 δ1a2

2 + δ2
2 − 2 δ2a1

2 −
2 δ2a2

2 + 6 a1
2a2

2 − 4 a2a1
3 − 4 a2

3a1 + a1
4 + a2

4.

Polynomial h(x) has τ−σ > 0 as one of its (four) real roots. We consider any of
the possible lower bounds k > 0 on the positive roots of h, see [16, 19, 36, 41].
Independently of the precise value of k, the following holds:

a1 +
√

δ1 < k + a1 +
√

δ1 < a2 +
√

δ2.

If k ≥ 1, then we set

r = k + a1 +
⌊√

δ1

⌋
,

which satisfies the inequalities because
⌊√

δ1

⌋
+k ≥

√
δ1. In this case, we could

also choose r = 1 + a1 +
⌊√

δ1

⌋
.

If k < 1, then k = λ
µ

for integers 1 ≤ λ < µ, and it holds that

µσ = µa1 + µ
√

δ1 < λ + µa1 + µ
√

δ1 < µa2 + µ
√

δ2 = µτ. (6)

Then, we choose

r =
λ

µ
+ a1 +

⌊
µ
√

δ1

⌋

µ
,

because r < τ ⇔ µr < µτ , which follows from the right inequality (6). More-
over, µr ≥ λ + µa1 + µ

√
δ1 − 1 ≥ µσ. 2

To decrease the bit-size of the numbers involved in the definition of r, we
can use, instead of k, the simplest rational in (0, k]. This can be computed
using an algorithm due to Gosper [20, Sec. 4.5.3, ex. 39]. We can extend the
construction of Lem. 7 to compute a a number between two real algebraic
numbers, as a rational function of the coefficients of the of the polynomials
that define them [12].
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Moreover, we can always compute a lower bound on the positive roots of
equation (5) which lies in (0, 1) and thus unify the two cases in the proof of
Lem. 7. This is done in the next corollary.

Corollary 8 Given a1, a2 ∈ ZZ, δ1, δ2 ∈ IN, let µ = 1 + max{|n1|, |n2|, |n3|},
where ni are the coefficients of equation (5). Then, it is possible to separate
the algebraic numbers σ, τ , defined below, where στ > 0, by some r ∈ (Q as
follows:

σ = a1 +
√

δ1 ≤ r =
1

µ
+ a1 +

⌊
µ
√

δ1

⌋

µ
≤ a2 ±

√
δ2 = τ,

σ = a1 −
√

δ1 ≤ r =
1

µ
+ a1 +

⌊
−µ

√
δ1

⌋

µ
≤ a2 ±

√
δ2 = τ.

Proof. Take σ = a1 +
√

δ1 and both τ > σ > 0, as in Lem. 7. Based on
Cauchy’s lower bound on the roots’ absolute value [41, Lem.6.7], we set k =
1/(1 + max{|n1|, |n2|, |n3|, 1}), where λ = 1 in the notation of the proof of
Lem. 7. Since ni ∈ ZZ, the maximum can be taken over {|n1|, |n2|, |n3|}. Exactly
the same approach computes r when τ = a2 −

√
δ2.

When σ = a1 −
√

δ1 and τ > σ > 0, we use again the quartic h(x) in (5) to
compute the lower bound, since its roots are the possible differences of the
two algebraic numbers. Notice that h(x) is symmetric w.r.t. indices 1, 2.

If both algebraic numbers are negative, i.e. σ < τ < 0, the same proof applies.
2

Of course, if σ, τ have opposite signs, then we pick r = 0.

Suppose the quartic in equation (3) has 4 simple real roots. Let us reduce the
number of parameters, i.e. some of the coefficients of the quartic. In particular,
we can set the coefficient of x3 to zero, by applying x 7→ x/a in equation (3),
then multiply the resulting expression by a3; recall that a > 0. W.l.o.g., after
renaming the coefficients, we can write the quartic as

f(x) = x4 + cx2 + dx + e, (7)

where c, d, e ∈ ZZ. Since equation (7) has 4 simple real roots, Descartes’ rule of
signs counts exactly the positive (and negative) real roots. This rule implies
the following sign conditions, according to the quartic’s roots:

• If f has two negative and two positive roots, then c < 0, e > 0 and d can
have any sign condition, including 0.

• If f has 3 negative and one positive root, then c < 0, d < 0, e < 0.
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• If f has one negative and 3 positive roots, then c < 0, d > 0, e < 0.

We apply Prop. 6 using B1(x) = −x and C1(x) = 4, then a first isolating
polynomial is

A1(x) = 2 cx2 + 3 dx + 4 e.

It has discriminant δ1 and roots σ1, σ2:

−3d −
√

δ1

4c
= σ1 < σ2 =

−3d +
√

δ1

4c
, δ1 = 9 d2 − 32 ce.

Using B2(x) = d x + 4e and C2(x) = −4d, the second isolating polynomial
becomes

A2(x) = (16 ex2 − 2 dcx − 3 d2 + 8 ce)x.

It has discriminant δ2; besides zero, it has real roots τ1, τ2:

2dc −
√

δ2

32e
= τ1 < τ2 =

2dc +
√

δ2

32e
, δ2 = 192 ed2 − 512 e2c + 4 c2d2.

Either one or two pairs of the roots of equation (7) are separated by a rational
root of Bi, i = 1, 2. Consider a pair separated by real, non-rational roots of
A1(x) and A2(x); we shall compute a rational separating point for this pair.

If one of δ1 and δ2 is a square, then one of these roots is rational. Assuming
δ1, δ2 are not squares, we show that the roots of A1(x), A2(x) are different. If
not, σi = τj , for some i, j ∈ {1, 2}, which implies δ1 = δ2, and −24de = 2dc2

i.e. e = −c2/12. Since c, e ∈ IR, it follows c = e = 0, then equation (7) has 0
as root and we have reduced our problem to a simpler question.

Now we consider positive σi 6= τj , for some i, j ∈ {1, 2}. To compute a
rational number between them, i.e. between (−24de ± 8e

√
δ1)/(32ce) and

(2dc2±c
√

δ2)/(32ce), it suffices to compute a rational between −24de±8e
√

δ1

and 2dc2 ± c
√

δ2 and divide it by 32ce.

Following Cor. 8, and the proof of Lem. 7, we let

h(x) = x4 + n3x
3 + n2x

2 + n1x + n0,

where

n0 = −16384 c2e3 (27 d4 − 256 e3 − 16 ec4 + 128 c2e2 + 4 c3d2 − 144 ecd2) ,

n1 = 256 dce (12 e + c2) (−16 ec2 + 3 d2c − 64 e2) ,

n2 = 2304 d2e2 + 16 d2c4 + 192 d2ec2 + 4096 e3c + 1024 c3e2

n3 = −8 d (12 e + c2) ,

Then we set µ = 1+max{|n1|, |n2|, |n3|}, and apply Cor. 8, under the assump-
tion σi < τj , i, j ∈ {1, 2}. This yields two candidate rational isolating points.
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In the case that τj < σi, Cor. 8 yields another two rational points. The roots
of B1(x) and B2(x) yield 0 and −4e

d
as candidates for isolating points. This

proves the main theorem.

Theorem 9 Consider a quartic f as in (7), with 4 distinct real roots. At least
three of the following 6 rational points:



0,−4e

d
,
1 − 24deµ +

⌊
±8eµ

√
δ1

⌋

32ceµ
,
1 + 2dc2µ +

⌊
±cµ

√
δ2

⌋

32ceµ



 ,

isolate the real roots of the quartic, where µ = 1+max{|n1|, |n2|, |n3|} and the
ni ∈ ZZ are defined above. One way of deciding the three isolating points is by
sorting them and evaluating f on them.

We were also able to prove the previous theorem using the raglib library [32].

Corollary 10 If the quartic f in (7) has two simple real roots, then one of
the rational numbers in the previous theorem is an isolating point.

Remark 11 If f has two real roots, and since the leading coefficient is posi-
tive, then any point from Thm. 9 with negative value over f serves as isolating
point.

If f has real roots γ1 < 0 < γ2 < γ3 < γ4, then 0 is an isolating point.
Notice that f is positive between γ2 and γ3, and negative between γ3 and γ4.
The smallest positive rational from Thm. 9, whose evaluation over f is posi-
tive, isolates γ2 and γ3. The next greater rational whose evaluation over f is
negative isolates γ3 and γ4.

If f has real roots γ1 < γ2 < 0 < γ3 < γ4, again 0 is an isolating point. Notice
that f is negative over (γ1, γ2) as well as over (γ3, γ4). The positive (resp.
negative) rationals from Thm. 9 where f becomes negative isolate γ3 and γ4,
resp. γ1 and γ2.

Example 12 Consider the quartic

x4 − 12 x2 − 20 x − 8,

that has 4 real roots, γ1 < γ2 < γ3 < 0 < γ4, the approximations of which are
−2, −1.525427561, −0.6308976138 and 4.156325175, respectively.

We have: A2(x) = −128 x3 − 480 x2 − 432 x, with real roots −9
4
,−3

2
, and 0

(approximately, −2.25, −1.5, and 0). Moreover, B2(x) = −20 x − 32, with
root −8

5
= −1.6.

Since all roots of A2(x), B2(x) are rationals, it is enough to use them as iso-
lating points for the roots of f , thus γ1 < −8

5
< γ2 < −3

2
< γ3 < 0 < γ4.
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Example 13 Consider the quartic

f(x) = x4 − 15 x2 + 20 x − 4,

that has 4 real roots, γ1 < 0 < γ2 < γ3 < γ4, the approximations of which
are −4.439, 0.244, 1.2504 and 2.944, respectively. A1(x) = −30 x2 +60 x−16,
with (15 ±

√
105)/15 (or 0.316 and 1.683) as real roots. A2(x) = −64 x3 +

600 x2−720 x, with real roots 0, (75±3
√

305)/16 (or 0, 1.412 and 7.962). The
graph of f and the two isolator polynomials, A1(x) and A2(x), in the positive
x semi-axis is shown in Fig. 2.

The auxiliary quartic of (5) is

h(x) = x4 − 28320 x3 + 218261760 x2 − 251427225600 x− 193182931353600,

and a lower bound on its positive real roots is k = 1/(1+251427225600), where
µ = 251427225600. The 6 rationals of Thm. 9, in increasing order, are

{
0, 152965885753921

482740273153920
, 4

5
, 682089450409001

482740273153920
, 812514660553921

482740273153920
, 1281200203469667

160913424384640

}
,

and their approximations are {0, 0.3168, 0.8, 1.4129, 1.6831, 7.9620}. The eval-
uation of f over them gives the following signs {−, +, +,−,−, +}. Thus, the
second point 152965885753921

482740273153920
≈ 0.3168, separates γ2 and γ3. Similarly, the fourth

point 682089450409001
482740273153920

≈= 1.419, separates γ3 and γ4.

Notice that both rationals following 0 separate γ2 and γ3, since f is positive
over them. Similarly, the two rationals after them, where f is negative, separate
γ3 and γ4.

Remark 14 In our experiments, we observed that among the 6 rationals{
0,−4e/d, −3d±⌈

√
δ1⌉

4c
, −3d±⌊

√
δ1⌋

4c

}
one can always find all isolating points, but

we are not able to provide a formal proof.

6 Comparison and real solution

Comparison of algebraic numbers. We consider the problem of compar-
ing real algebraic numbers. In what follows, O and OB denote respectively
asymptotic arithmetic and bit complexity bounds, whereas the notation Õ
and ÕB is used when we are ignoring polylogarithmic factors.

Using the discussion as well as the isolating points computed in the previous
section, we arrive at the following:
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Fig. 2. The quartic x4 − 15x2 + 20x − 4 and two isolator polynomials.

Theorem 15 Given an integer polynomial of degree d ≤ 4 and maximum co-
efficient bit-size τ , we can isolate its real roots and compute their multiplicities
in Õ(1) or ÕB(τ).

This theorem improves the general-purpose real root isolation algorithms by
a factor of τ . The general bounds are Õ(d2τ) and ÕB(d4τ 2), cf. e.g. [13]. In
order to compute the floor of the square root of a non-negative integer, one
may employ the bisection method [4], with complexity logarithmic in the bit-
size of the integer.

We measure the complexity of an algorithm by the maximum algebraic degree
of the tested quantities, in terms of the input polynomials’ coefficients. Take
two univariate polynomials of degree d with symbolic coefficients; the degree
of all coefficients in their (symbolic) resultant is 2 d in the input polynomial
coefficients. A lower bound on the complexity of comparing two roots of these
polynomials is the algebraic degree of their resultant, namely 2d. It is an open
question whether a better lower bound exists.

For quadratic polynomials, there is a straightforward algorithm for the com-
parison of two quadratic algebraic numbers, with maximum algebraic degree 4,
hence optimal, e.g. [8]. Next, we examine cubic and quartic polynomials. Our
algorithms cover all degeneracies, including the case that a polynomial drops
degree.

Theorem 16 Given polynomials of degree ≤ 4, there is an algorithm that
compares any two of their real roots using a constant number of arithmetic
operations. For two cubics, the tested quantities are of algebraic degree 6 in
the input coefficients, hence optimal; for quartics, the degrees are between 8
and 14.
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Proof. We give an overview of the method and specify certain details for the
case of two quartics. For further information, the reader may refer to [9]. The
complete proof for the cubic can be found in the Appendix.

In order to compare two polynomial roots, we use the algorithm at the end of
Sec. 3. The crucial step is to compute isolating intervals for the real roots. For
quartics, the results of Sec. 5 yield quadratic algebraic numbers as endpoints,
if one does not wish to rely on the floor operation of square roots. So we have
to compute the sign of the Sturm-Habicht sequence over a quadratic algebraic
number, by the algorithm from Sec. 3. Hence we have sketched an algorithm
for comparison.

As for the maximum algebraic degree involved, we focus on quartics and con-
sider the hardest case. This is the determination of the sign of the linear
polynomial in the Sturm-Habicht sequence over a quadratic algebraic num-
ber. The algebraic degree of the coefficients of the linear polynomial is 6 in
the input coefficients. In the worst case, the evaluation involves testing the
signs of quantities of algebraic degree 14 [8]. 2

For quartics, our algorithm requires up to 172 additions and multiplications;
the precise algebraic degree depends on the degree of the isolating points. In
particular, the algorithm has algebraic degree 8 or 9 when comparing roots of
square-free quartics.

Fig. A.1 in the Appendix shows the whole evaluation procedure to compare the
two largest roots of two cubic polynomials. The number down and left of each
rhombus denotes the maximum algebraic degree of the expression, while the
number in parentheses denotes the minimum. The number down and right of
each rhombus denotes the maximum number of operations needed to evaluate
the expression, while the one in parentheses denotes the minimum.

Bivariate system solving. We now apply our results to bivariate system
solving. Consider the system f1 = f2 = 0, where f1, f2 ∈ ZZ[x, y] are bivariate
polynomials of total degree at most two. In what follows, we assume that the
system is 0−dimensional (we can detect that it is not so, because then some
resultant that we compute below, would vanish). The real solutions of the

system are points in (Q
2
.

First, we compute the resultants Rx, Ry of f1, f2 by eliminating y and x re-
spectively, thus obtaining degree-4 polynomials in x and y. We isolate the real
solutions of Rx, Ry, define a grid of boxes, where the common roots of f1 and
f2 are located. The grid has 1 to 4 rows and 1 to 4 columns in IR2. It remains
to decide, for the boxes, whether they are empty and, if not, whether they
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contain a simple or multiple root.

The hardest cases are when Rx and Ry do not have multiple roots; otherwise,
the roots are rational or quadratic algebraic numbers, as shown in the pre-
vious section. In this case, f1 and f2 are in generic position (the intersection
points have distinct x−coordinates) and thus we can solve the system using
a simple version of Rational Univariate Representation, e.g. [14, 29]. Now the
y−coordinate is the solution of the first subresultant, which is univariate w.r.t.
y, and its coefficients are univariate polynomials evaluated over the solutions
of Rx, that is γy = F (γx) = −B(γx)

A(γx)
. This is an implicit representation. To have

an isolating interval representation, we use the following trick. Since we have
the solutions of Ry and their isolating points, we find the isolating interval
at which each F (γx) lies. This can be done by testing the signs of univariate
polynomials evaluated over algebraic numbers.

The computation of the resultants is not costly, since the degree is small.
Unlike e.g. [7], where the boxes cannot contain any critical points of f1 and
f2, in our algorithm we make no such an assumption. Hence there is no need
to refine them. Our approach can be extended to computing the intersection
points of bivariate polynomials of arbitrary degree, provided that we obtain
isolating points for the roots of the two resultants, statically or dynamically
(see [5]).

7 Implementation and experimental results

We have implemented a software package, as a part of library synaps (v2.1)
[25], for dealing with algebraic numbers and bivariate polynomial system solv-
ing, which is optimized for small degree. Our implementation is generic in the
sense that it can be used with any number type and any polynomial class that
supports elementary operations and evaluations and can handle all degenerate
cases. We developed C++ code for real solving, comparison and sign determina-
tion functions. In what follows root of is a class that represents real algebraic
numbers, computed as roots of polynomials, and UPoly and BPoly are classes
for univariate and multivariate polynomials. All classes are parametrized by
the ring number type (RT); the reader may refer to the documentation of
synaps for more details. We provide the following functionalities:

• Seq<root of<RT> > solve(UPoly<RT> f): Solves a univariate polynomial.
• int compare(root of<RT> α, root of<RT> β): Compares two algebraic

numbers. For degree up to 4 we use static Sturm sequences. For higher
degree we use Sturm-Habicht sequences, computed on the fly.

• int sign at(UPoly<RT> f, root of<RT> α): Computes the sign of a uni-
variate polynomial evaluated over an algebraic number.

18



• int sign at(BPoly<RT> f, root of<RT> γx, root of<RT> γy):
Computes the sign of a bivariate polynomial evaluated over two real alge-
braic numbers. We use cascaded Sturm-Habicht sequences.

• Seq < pair<root of<RT> > > solve(BPoly<RT> f1, BPoly<RT> f2):
Computes the real solutions of a bivariate polynomial system.

We performed all tests on a 2.6GHz Pentium with 512MB memory, running
Linux, with kernel version 2.6.10. We compiled the programs with g++, v.3.3.5,
with option -O3. We mark our implementation by S3 which stands for Static
Sturm Sequences and use ”f” to denote the filtered version. The other methods
are described in Sec. 2.

Table 2
Univariate root comparison

msec A B C D

f-S3 0.142 0.153 0.150 0.177

S3 0.291 0.320 0.142 0.112

rs 5.240 6.320 4.930 5.180

synaps 1.058 1.011 0.717 1.850

core 3.050 3.520 2.240 1.470

rkg 2.287 2.973 2.212 1.595

NiX 0.358 0.362 0.215 0.377

Table 3
Bivariate real-solving

msec A B

f-S3 0.17 0.18

S3 0.14 0.54

fgb/rs 6.40 6.90

sth 0.51 0.57

res 0.36 -

newmac 3.19 3.26

Univariate polynomials. We performed 4 kinds of tests concerning the
comparison of real algebraic numbers of degree up to 4. For every polynomial
we “computed” all its real roots, with every package since, except for our code
(S3), no other package can compute a specific root only. We repeated each
test 10000 times. The results are in table 2. Column A refers to polynomials
with exactly 4 distinct rational roots in [−1, 1], the bit size of the coefficients
is 40 bits. Column B refers to random polynomials, produced by interpolation
in [−1, 1] × [−1, 1], the bit size of the coefficients is 90 bits. Column C refers
to Mignotte polynomials, of the form a(x4 − 2(Lx − 1)2), where the bit size
of a and L is 40 bits. Column D refers to degenerate polynomials, that is
polynomials with at least one multiple root. All roots are random rationals in
[−1, 1] and the bit size of the coefficients is 30 bits.

rkg is the package of [31], NiX is the polynomial library of exacus that has
intristic filtering, since it is based on leda, core is version 1.7 and rs [30]
is used through its maple interface. synaps refers to the algorithm of [24]
in synaps. We have also tested maple and axiom, but we do not show
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(b) Quartic polynomials.

Fig. 3. Experiments with Mignotte polynomials.

their timings here, since they are too slow, see [9] for details. S3 is our code
implemented in synaps 2.1 and f-S3, is our code using the filtered number
type Lazy exact nt from cgal, i.e. a number type that initially performs all
the operations with doubles and, if this fails, it switches to exact arithmetic.

synaps has some problems when the roots are endpoints of a subdivision,
while core has some problems with subdivision, since Newton’s method is
used for refinement. By considering table 2, S3 is clearly faster than core,
synaps and rkg, even without filtering. Against filtered methods (NiX), S3

is still faster. Special attention must be paid to column D, where our code is
significantly faster. The slow performance of rs is partly due to the fact that
we use its maple interface in order to call the appropriate functions, since the
source code is not available. Now consider the first row of table 2. The adoption
of a filtered number type improves the running times in most cases, otherwise
it leaves them essentially unchanged. Column B represents the hardest case,
due to the bit-size of the coefficients, but even in this column f-S3 is two times
faster than the next fastest software NiX, which has intrinsic filtering.

We also performed experiments on real solving polynomials of variable bit-size
in order to further test the efficiency of our specialized algorithms and to illus-
trate the almost-linear behavior of our algorithms with respect to bit-size. We
tested against rs, using its function rs time() in order to measure it times,
and against a very efficient, recent implementation of the continued fractions
algorithm (cf) [37]. The latter algorithm computes successively closer approx-
imations of the root based on the continued fractions representation, but does
not use any polynomial remainder sequence.

First we tested our algorithms versus cubic and quartic Mignotte polynomials
of the form xd − 2(ax − 1)2, where d ∈ {1, 2} and a = 2n − 1

2n , and n =
{100, 200, . . . , 1000}. The results can be found in Fig. 3. Mignotte polynomials
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Fig. 4. Experiments with random polynomials.

are “easy” polynomials for the cf implementation.

Then we tested random cubic and quartic polynomials obtained by interpo-
lation in the box

[
− 1

2n , 1
2n

]
×

[
− 1

2n , 1
2n

]
, where n ∈ {100, 200, . . . , 4900}. The

points were chosen such that the cubics (resp. quartics) have three (resp. at
least two) real roots. The results can be found in Fig. 4. Even though cf is
the fastest implementation, we can also see in the figures that the graph of S3

is almost linear with respect to the bit-size of the input polynomials.

The tests show that our implementation is faster than rs. This could be
expected since the latter is a general-dimension solver and is used through
is maple interface. On the other hand, our code is slower than cf, which
confirms the efficiency of the latter approach [37].

We also tested the maple’s solve function (together with the evalf function),
which uses the direct formulas for the roots, based on radical and complex
numbers. In the cubic case, maple was not able to complete the experiments,
after 30 hours. This illustrates the fact that the closed form expressions are
not useful from the computational point of view.

Bivariate systems. We performed two kinds of experiments on real solving
of bivariate polynomial systems of degree ≤ 2, and the results are in table 3.
For every test we picked two polynomials at random and solved them; we re-
peat this 10000 times. Column A refers to 1000 bivariate polynomials, with in-
teger coefficients sampled in [−10, 10], with few intersections: every polynomial
has common real roots with 135 others in the list, on average. Column B refers
to 1000 conics sampled by 5 random integer points in [−10, 10] × [−10, 10],
where two random conics probably intersect: every conic has common real
roots with 970 others in the list, on the average.
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We tested our algorithms versus newmac [23], which is a general purpose
polynomial system solver. sth, in synaps, is based on Sturm-Habicht se-
quences and subresultants, following [14]. res is a bivariate polynomial solver
based on the Bezoutian matrix and lapack [2]. For fgb/rs [29] we use its
maple interface, since the source code is not available, which explains the
slow times of this package. S3 refers to our code, while f-S3 is our code based
on Lazy exact nt.

We emphasize that our approach is exact, i.e. it outputs isolating boxes with
rational endpoints containing a unique root whose multiplicity is also calcu-
lated. This is not the case for sth and res. sth, uses a double approximation
in order to compute the ordinate of the solution. res works only width dou-
bles, since it has to compute generalized eigenvalues and eigenvectors and that
is why it cannot perform the tests of Column B. newmac, also relies on the
computation of eigenvalues and computes also the complex solutions of the
system. S3 is faster on both data sets. When we use filtering, our code is 3
times faster than any other approach, but somewhat slower in Column A.

For additional experiments we refer the reader to [10]. In a nutshell, our code
is one of the fastest and the most robust concerning real solving of bivariate
systems of polynomials of degree 2.

8 Beyond the quartic

One important consequence of Prop. 6 is is that we can compute isolating
points between the real roots of polynomials of degree up to 5 using square
roots. We show how this fact leads to rational isolating points.

Consider the general quintic

f(x) = x5 + bx3 + cx2 + dx + e.

Using as B1(x) = (−4 d2 + 10 ce)x2 + 5 dex + 25 e2 and C1(x) = (20 d2 −
50 ce)x − 25 de, from Prop. 6 we get A1(x) = (125 e2 + 8 bd2 − 20 bce)x4 +
(−10 deb+12 cd2 − 30 c2e)x3 +(75 e2b − 55 dec + 16 d3)x2. Thus, the isolating
points of the real roots of the quintic are:

0,
5de ± e

√
17 d2 − 40 ce

8 d2 − 10 ce
,

−5 deb + 6 cd2 − 15 c2e ±
√

δ1

125 e2 + 8 bd2 − 20 bce
,

where δ1 = −575 d2e2b2+700 d3ebc−950 de2bc2+36 c2d4−180 c3d2e+225 c4e2−
9375 e4b + 6875 e3dc − 2000 e2d3 − 128 bd5 + 1500 b2ce3.

Using as B2(x) = −10 bx2 + 15 cx − 4 b2 and C2(x) = 50 bx − 75 c, we get
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A2(x) = (−12 b3 − 45 c2 + 40 bd)x2 +(−8 b2c − 60 dc + 50 be)x−4 b2d−75 ec.
Thus, we get another set of isolating points, which are

15 c ±
√

225 c2 − 160 b3

20b
, −30 dc − 25 be + 4 b2c ±

√
δ2

12 b3 + 45 c2 − 40 bd
,

where δ2 = 900 d2c2 + 1500 dcbe + 60 dc2b2 + 625 b2e2 − 1100 b3ec + 16 b4c2 −
48 b5d − 3375 c3e + 160 b3d2.

By applying Lem. 7, one computes rational isolating points between all real
roots of the quintic, in all cases.

Lastly, we can compute isolating points for the real roots of polynomials of
degree up to 9, using quartic roots.
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[23] B. Mourrain and Ph. Trébuchet. Algebraic methods for numerical solving.
In Proc. of the 3rd Int. Workshop on Symbolic and Numeric Algorithms
for Scientific Computing’01 (Timisoara, Romania), pages 42–57, 2002.

24



[24] B. Mourrain, M. Vrahatis, and J.C. Yakoubsohn. On the complexity of
isolating real roots and computing with certainty the topological degree.
J. Complexity, 18(2), 2002.
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A Cubic real algebraic number

Lemma 17 There is an algorithm that compares any two roots of two cubic
polynomials testing expressions of algebraic degree at most 6. The algorithm
is optimal w.r.t. algebraic degree.

Proof. Consider two cubic polynomials fi(x) = aix
3−3bix

2+3cix−d=0, where
ai > 0 and i ∈ 〈1, 2〉, having roots x1 < x2 < x3 and y1 < y2 < y3, in isolating
interval representation. We assume that we want to compare xa

∼= (f1, I1) and
ya

∼= (f2, I2) and that both lie in J = I1 ∩ I2 = [α, β].

We consider the Sturm-Habicht sequence S with S0 = f1 and S1 = f2. Since
f

′

1(x2) < 0 if VARS[α, β] = 1 then x1 > y1, if VARS[α, β] = −1 then x1 < y1.
Finally if VARS[α, β] = 0 then x1 = y1.

We consider the Sturm-Habicht sequence S with S0 = f1(x) and S1 = f2(x),
that is the sequence (S0, S1, S2, S3, S4), where S0(x) = f1(x), S1(x) = f2(x),
S2(x) = −3Jx2 +3Gx−M , S3(x) = [J(P + 12J1) − 3G2] x−(GM−3JM1) =
Z1x + Z2, S4(x) = J2(P 3 − 27Q) = J2 [M(M2 − 9JM2) − 9M1Z2 − 9M2Z1].
In order to simplify the computations we apply various geometric invariants,
namely: ∆11 = W 2

1 − 4∆12∆13, ∆21 = W 2
2 − 4∆22∆23, J = [ab] = a1b2 − a2b1,

J1 = [bc] = b1c2 − b2c1, M = [ad] = a1d2 − a2d1, P = M − 3J , Z1 =
J(M + 9J1) − 3G2 and Z2 = GM − 3JM1.

We also use the following expressions, that are not invariants, but look like one:
G = [ac] = a1c2−a2c1, M1 = [bd] = b1d2−b2d1, M2 = [cb] = c1d2−c2d1, W1 =
a1d1 − c1b1 and W2 = a2d2 − c2b2. If R is the resultant of the two polynomials,
then R = P 3 − 27Q and Q is an invariant. For a detailed treatment of the
invariants of a system of two polynomials the reader can refer to [33].

We need to evaluate the Sturm sequence at, at most two, points of the set

{
b1

a1

,
b2

a2

, +∞,−∞,− W1

2∆12

,− W2

2∆22

}
.

Every number in the above set is of algebraic degree at most 2 and the coef-
ficients of S0, . . . S3 are of degree at most 4. Moreover, deg S4 = 6, so we can
conclude that the maximum degree involved is 6. By the theory of resultants,
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the algorithm is optimal with respect to algebraic degree. 2
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Fig. A.1. Evaluation procedure for comparing the largest roots x3, y3 of cubic poly-
nomials f1, f2, where x3, y3 ∈ (p

q
,+∞). The Si are polynomials in the Sturm-Habicht

sequence of f1, f2, defined in the proof of Lem. 17.
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