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This article examines the computation of the Voronoi diagram of a set of ellipses in the
Euclidean plane. We propose the first complete methods, under the exact computation
paradigm, for the predicates of an incremental algorithm: κ1 decides which one of two
given ellipses is closest to a given exterior point; κ2 decides the position of a query ellipse
relative to an external bitangent line of two given ellipses; κ3 decides the position of a
query ellipse relative to a Voronoi circle of three given ellipses; κ4 determines the type
of conflict between a Voronoi edge, defined by four given ellipses, and a query ellipse.

The article is restricted to non-intersecting ellipses, but the extension to arbitrary ones
is possible.

The ellipses are input in parametric representation, i.e. constructively in terms of
their axes, center and rotation. For κ1 and κ2 we derive optimal algebraic conditions
and provide efficient implementations in C++. For κ3 we compute a tight bound on the
number of complex tritangent circles and design an exact symbolic-numeric algorithm,
which is implemented in maple. This essentially answers κ4 as well. We conclude with
current work on optimizing κ3 and on its implementation in C++.

Keywords: Voronoi diagram; ellipse; predicate; Euclidean distance; bisector; parametric
representation; exact computation
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1. Introduction

The Voronoi diagram is one of the essential tools in robot motion planning amidst

obstacles. In this problem the computation of a path of the moving object can be

transformed to a computation of a path in a Voronoi diagram. Applications, such

as navigation among objects, benefit the most from the exact Voronoi diagram of

ellipses, since ellipses model different kind of obstacles.

Another motivation comes from visibility problems among ellipses18 or pairwise

disjoint bounded convex sets of constant complexity2. In these problems is needed

the computation and characterization (as external or internal) of all bitangents of

two ellipses; a problem of independent interest. The predicate κ2 involved in the

computation of the Voronoi diagram of ellipses can answer such questions.

In this article we study the Voronoi diagram of ellipses (see fig. 1) under the exact

computation paradigm. The distance of an exterior point to an ellipse is defined to

be the minimum Euclidean distance to any point of the ellipse. As is the case for

almost all problems in computational geometry for curved objects, the algorithm

relies heavily on predicates implemented by algebraic operations.

The Voronoi diagram of ellipses can be considered as a generalization of the

Apollonius diagram of hyperspheres (sec. 2.4.3 of the ECG book9). Another diagram

similar to the Voronoi diagram is the Power diagram (sec. 2.3.3 of the ECG book9),

which simplifies the predicates, but changes the distance function. An extension of

this diagram to ellipses should lead to a simpler algorithm. Nonetheless, we use the

Euclidean distance as a more natural metric.

We design and implement exact and complete algorithms for the predicates

needed in the framework of abstract Voronoi diagrams24 and, more particularly,

for the incremental algorithm of Karavelas and Yvinec22. To be more precise, the

algorithm computes the Delaunay graph, since no computation of Voronoi vertices

or edges is necessary. Still, if one wishes to draw the diagram with fixed precision,

the algorithm and our methods provide sufficient information.

Our final goal is a cgal a software package for constructing the Voronoi diagram

of ellipses, based on the cgal implementation for circles14, which uses the same

incremental algorithm. Hence the crucial question is to analyze and implement

the predicates for ellipses. Some of the presented predicates are also needed in

computing the visibility complex and the convex hull of ellipses.

Voronoi diagrams have been studied extensively, however the bulk of the exist-

ing work in the plane concerns point or linear sites. McAllister et al26 compute the

diagram of convex polygons, with an approach similar to our subdivision technique,

since their algorithm “moves” on the objects’ boundary using pruning. Recent ef-

forts have extended Voronoi diagrams to the case where the sites are curves1,3 or

have non-empty interior8. In particular, the diagram of circles has been implemented

in cgal 14; see also the work of Anton et al4 and Kim et al23. Anton3 examines

ahttp://www.cgal.org



September 4, 2006 22:19 WSPC/Guidelines ett-ijcga-voronoi

The predicates for the Voronoi diagram of ellipses 3

Fig. 1. Voronoi diagram of five ellipses

κ3 for the diagram of ellipses but his algebraic system’s mixed volume is too large,

hence leading to high complexity. His matrix methods for solving the system seem

slower than ours and do not guarantee exactness.

Harrington et al20 derive an optimal combinatorial algorithm for constructing

Voronoi diagrams of strictly convex rounded sites in R3, but the predicates are not

considered. Boissonnat and Delage7 describe a dynamic algorithm for constructing

the Voronoi diagram of additively weighted points in Rd. This specializes to the

Voronoi diagram of circles or spheres, but does not seem to cover ellipses. Another

line of work, which has been quite successful, is to approximate the curved sites by

polygons5. Boada et al6 compute a polygonal approximation of a Voronoi diagram

at different levels of detail.

Perhaps the work coming closest to ours is the approach of Hanniel et al19.

The authors essentially trace the bisectors in order to compute the Voronoi cells

of arbitrary curves up to machine precision. Their algorithm uses floating point

arithmetic; they claim that their software works well in practice. Although they

argue that their algorithm can be extended to exact arithmetic, they do not explain

how. For instance, they do not discuss degenerate configurations. Our implementa-

tions follow the exact computation paradigm, but can also run with any prescribed

precision.

We offer a full investigation of the problem dealing with both degenerate and

non-degenerate configurations. We study the case of non-intersecting ellipses, which

we expect to generalize to arbitrary ellipses and even pseudo-circles22. We assume

that the input ellipses are given constructively in terms of their axes, center and
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rotation, all being rational, or if they are given implicitly that we are able to switch

representation using only rational arithmetic (see next section).

The four predicates of the incremental algorithm22 are:

(κ1) given two ellipses and a point outside of both, decide which is the ellipse

closest to the point.

(κ2) given two ellipses, decide the position of a third one relative to a specific

external bitangent of the first two.

(κ3) given three ellipses, decide the position of a fourth one relative to one

(external tritangent) Voronoi circle of the first three; this is the InCircle

predicate.

(κ4) given four ellipses, compute the part of the bisector that changes due to

the insertion of a fifth ellipse.

Our first contribution are algorithms for κ1 and κ2 that are optimal in terms

of the degree of the algebraic numbers involved. In fact, for κ2, we compute and

characterize all bitangents of two ellipses using our own tools for dealing with al-

gebraic numbers of degree four. Both algorithms satisfy the requirements of exact

computation and are implemented in C++.

Using the implicit representation, we obtain the first tight bound on the num-

ber of complex tritangent circles to three ellipses, namely 184. The number of real

tritangent circles remains open. This approach does not lead to an efficient algo-

rithm by itself, however, it provides a nearly optimal theoretical bound on the bit

complexity of the problem.

By exploiting the parametric representation, the Voronoi circle is specified by

the intersection of bisectors, at any desired accuracy. This is achieved by refining

the interval expressing the three tangency points until the predicate can be decided;

in fact, all tangency points are expressed as a function of one of them. Exactness

is guaranteed by root separation bounds from the equations of the implicit rep-

resentation of the problem. However, instead of running the subdivision algorithm

until the (theoretical) separation bound is reached, our method switches to an exact

algebraic solver, after a predescribed number of iterations.

We present and implement in maple a symbolic-numeric algorithm for κ3. The

first step of the algorithm is a customized subdivision-based scheme which “moves”

on the border of parametrically defined ellipses, using the parametric representa-

tion of the ellipses. Almost all the easy cases are answered during this step. If we

are in a degenerate, or near a degenerate configuration, then, after some subdivi-

sion steps, we switch to an exact algebraic method in the parametric space which

corresponds to real solving a univariate polynomial and comparing real algebraic

numbers. Our approach exploits the underlying geometry and avoids computing

the Voronoi circle. Hence, our code is faster than applying generic state-of-the-art

software to approximate the Voronoi circle.

The algorithm for κ3 essentially answers κ4, as well. This is the first complete

solution of how to implement the Voronoi diagram of ellipses (via the Delaunay
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graph) in the exact computation paradigm.

A preliminary version of most of our work appeared in 13.

The article is organized as follows. The next section discusses representation

issues. In sections 3 and 4 we give algorithms to decide predicates κ1 and κ2. Sec. 5

studies the Voronoi circle from the implicit representation viewpoint. The paramet-

ric representation is considered in sec. 6, where we combine the algebraic tools with

a subdivision method to yield a symbolic-numeric algorithm for κ3. Predicate κ4

is settled in sec. 7. Sec. 8 illustrates our implementations with various tests and

finally, the last section concludes with future work.

2. Representation

We assume that an ellipse is given in rational parametric form, i.e. constructively

in terms of its rational axes, center and rotation. It is more intuitive for a GUI

to offer constructive input rather than require the coefficients of the implicit form.

The parametric approach is suitable for tracing the boundary of an ellipse, which is

crucial for the subdivision step of the symbolic-numeric algorithm for κ3. Moreover,

given the parametric form it is always possible to derive the implicit one using only

rational arithmetic. If the ellipses were given implicitly it is not always possible,

using only rational arithmetic to derive the parametric approach.

The parametric representation is

x(t) = xc + α

(
1 − w2

1 + w2

) (
1 − t2

1 + t2

)

− β

(
2w

1 + w2

) (
2t

1 + t2

)

= xc +
−α(1 − w2)t2 − 4βwt+ α(1 − w2)

(1 + w2)(1 + t2)
,

y(t) = yc + α

(
2w

1 + w2

) (
1 − t2

1 + t2

)

+ β

(
1 − w2

1 + w2

) (
2t

1 + t2

)

= yc + 2
−αwt2 + β(1 − w2)t+ αw

(1 + w2)(1 + t2)
,

(1)

where 2α, 2β are the lengths of the major and minor axes, respectively, t =

tan(θ/2) ∈ (−∞,∞), θ is the angle that traces the ellipse, w = tan(ω/2), ω is

the rotation angle between the major and horizontal axes and (xc, yc) is its rational

center. This representation leaves out of the boundary a single point, called the

i-point.

The symmetric ellipse (with respect to its center) is

x̄(t) = −x(−t) + 2xc and ȳ(t) = −y(t) + 2yc.

We call it the twin ellipse. Every point of an ellipse is different from its twin point,

including the i-point. We denote by Et an ellipse parametrized by t and by Ēt its

twin ellipse.

An ellipse has the following implicit equation:

E(x, y) := ax2 + 2bxy + cy2 + 2dx+ 2ey + f ∈ Q[x, y]. (2)
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The coefficients of (2) are polynomials in the coefficients of (1):

χ = ycw
2 + 2xcw − yc,

ψ = xcw
2 − 2ycw − xc,

(1 + w2)2a = 4w2α2 + (w − 1)2(w + 1)2β2,

(1 + w2)2b = 2(α− β)(α + β)w(w − 1)(w + 1),

(1 + w2)2c = 4w2β2 + (w − 1)2(w + 1)2α2,

(1 + w2)2d = −2wχα2 − (w − 1)(w + 1)ψβ2,

(1 + w2)2e = +2wψβ2 − (w − 1)(w + 1)χα2,

(1 + w2)2f = χ2α2 + ψ2β2 − (1 + w2)2α2β2.

(3)

Note that χ and ψ express the equations of the major and minor axes, respectively,

evaluated at (xc, yc). The following quantities are invariant under rotation and

translation:

J1 = a+ c = α2 + β2, J2 = ac− b2 = α2β2, (4)

while J4 = J2(x
2
c + y2

c −J1) is invariant under rotation. Now, the coordinates of the

center of the ellipse are

(xc, yc) =

(
be− cd

J2
,
bd− ae

J2

)

. (5)

When an ellipse is given in parametric form constructively (rational axes, center

and w), the equations in (3) allow us to transform it to its implicit form.

3. Predicate κ1

For κ1, we are given two ellipses and a point outside of both, and we wish to find

the one closest to the point, under the Euclidean metric. We define the distance

from a point to an ellipse as the length of the segment from the point to the ellipse,

which is perpendicular to the ellipse.

We start by obtaining a lower bound on the inherent complexity. Take a point

V outside an ellipse; it may have up to four normals to the ellipse (fig. 2 left)

depending on its position relative to the evolute curve, which is a stretched astroid

(fig. 2 right). There are four normals if V lies inside the evolute, three normals if

V is on the evolute but not at a cusp and two normals if V is on a cusp or outside

the evolute21.

3.1. The implicit approach

Consider an ellipse E in the implicit representation as in (2) and point V = (v1, v2)

outside E. We denote by C(V,
√
s) a circle centered at V with radius equal to

√
s,

s > 0. We express the Euclidean distance δ(V,E) between V and E by the smallest

positive value of
√
s for which C is tangent to E. In comparing distances, it is

sufficient to consider the squared distance s.
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Fig. 2. Left: an example of a point with four normals to a given ellipse. Right: The evolute of an
ellipse.

Let us express a conic as [x, y, 1]M [x, y, 1]T , where M is an appropriate 3 × 3

real symmetric matrix. Then the matrices for E and C are

E =





a b d

b c e

d e f



 , C(s) =





1 0 −v1
0 1 −v2

−v1 −v2 v2
1 + v2

2 − s



 .

Their pencil is λE + C and their characteristic polynomial is

ϕ(λ) = det(λE + C(s)) = J2
2λ

3 + c2(s)λ
2 + c1(s)λ + s, (6)

where J1, J2 are defined in (4) and

c1(s) = J1s− E(v1, v2),

c2(s) = J2s− T (v1, v2),

T (v1, v2) = J2[(v1 − xc)
2 + (v2 − yc)

2 − J1].

Notice that φ(λ) is cubic polynomial in λ; its discriminant is:

∆(s) = J2
2 (J2

1 − 4J2) s
4+

2J2(9J1J
2
2 − J2

1T + 6J2T − 2J3
1J2 − J1J2E) s3+

(−18J3
2E + 4J1J2ET − 27J4

2 + J2
1T

2 − 18J1J
2
2T

+J2
2E

2 + 12J2
1J

2
2E − 12J2T

2) s2+

2(2T 3 − J1ET
2 − 6J1J

2
2E

2 + 9J2
2ET − J2E

2T ) s+

E2(T 2 + 4J2
2E),

(7)

where E = E(v1, v2) and T = T (v1, v2). It is interesting that T stands for a circle

centered at the center of E with squared radius equal to J1 (see fig. 3). A circle

is externally tangent to an ellipse iff ϕ(λ) has a positive double root (and one

negative root)30,17. Since we want ϕ(λ) to have a multiple root its discriminant ∆
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must vanish. Notice that from (7), ∆(s) is a univariate polynomial in s of degree

four.

Using this notation, δ(V,E) is the square-root of the smallest positive zero of

∆(s). The (algebraic) degree of the coefficients of ∆(s), in v1, v2 and the parameters

of E, is six, eight, ten, twelve, and fourteen, in order of decreasing power in s.

If we consider ∆(v1, v2, s) as a trivariate polynomial, then the algebraic degree

of its coefficients, which are polynomials in the parameters of E, is six.

Proposition 1. Given ellipses E1, E2 and a point V outside both of them, we can

decide which ellipse is closest to V by comparing two algebraic numbers of degree

at most four.

Proof. We consider the polynomials ∆1(s) and ∆2(s), that are quartic polynomi-

als in s, the smallest positive roots of which correspond to δ(V,E1) and δ(V,E2),

respectively. Thus the distances are algebraic numbers of degree ≤ 4 and the propo-

sition holds.

In the previous proof it is stated that the distances are real algebraic numbers of

degree ≤ 4 and not exactly 4. This is so because, in the presence of multiple roots,

we can compute the real roots, almost always, as rational polynomial functions in

the coefficients of the polynomial15.

The degree is optimal with respect to the degree of the algebraic numbers in-

volved, when the distances are computed. This follows from the fact that in the

worst case a point outside an ellipse has up to four normals and thus in order to

compute its distance from the ellipse we must solve a quartic polynomial. Moreover,

the arithmetic complexity of real root isolation of a quartic polynomial and com-

parison of real algebraic numbers of degree ≤ 4 is O(1)15 thus κ1 can be answered

in constant time. If we are interested in the bit complexity then, if τ is a bound on

the bit size of the coefficients, the bit complexity is OB(τ lg τ lg lg τ ).

Before ending this section, we would like to present some semi-algebraic condi-

tions that allow us to determine whether a circle is externally tangent to an ellipse.

These conditions can be derived from the following corollary of Descartes’ rule:

Corollary 1. For a polynomial of degree d, the number of sign variations in its

coefficient sequence gives precisely the number of positive roots, assuming no root

equals zero and there are d real roots.

Now, apply this corollary to the characteristic polynomial φ(λ). Its sign sequence

is (+, sign(c2), sign(c1),+), and the constant coefficient is s > 0. The sequence of

φ(−λ) is (−, sign(c2),− sign(c1),+). Recall that for the (parametric) circle to be

external to the ellipse, φ(λ) must have a double positive root and one negative root.

Lemma 1. The (parametric) circle is externally tangent to the ellipse, iff the co-

efficients of φ(λ) satisfy ∆ = 0 and one of the following: either c2 ≥ 0 and c1 < 0,

or c2 < 0 (fig. 3).
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T

C J1

s

V

Fig. 3. The geometric meaning of c2 < 0

Proof. [⇐] ∆ = 0 ensures a multiple root, and 2 sign variations ensure a double

root.

[⇒] External tangency enforces existence of one negative root and one positive

double root. Now, ∆ = 0 since there is at least one multiple root, hence all 3 roots

of φ are real; thus, cor. 1 applies. The case we wish to describe corresponds to 2

sign changes for φ(λ) and one for φ(−λ). There are two cases for c2. If c2 ≥ 0, then

the sign sequences of φ(λ), φ(−λ) become

(+,≥ 0, sign(c1),+) and (−,≥ 0,− sign(c1),+),

so we must have c1 < 0. If sign(c2) < 0, then the sequences are

(+,−, sign(c1),+) and (−,−,− sign(c1),+),

so anything goes for sign(c1).

The above lead to the following theorem:

Theorem 1. Circle C(V,
√
s) is externally tangent to a given ellipse iff the coef-

ficients of ϕ(λ) satisfy ∆ = 0 and one of the following: Either V lies outside the

closed disk of T (x, y), defined in sec. 3, or V lies inside the closed disk T (x, y)

and E(v1, v2) > J1s. The latter means, for fixed s, that V is outside the ellipse

E − J1s = 0, which has the same foci as E but different axes.

3.2. The parametric approach

Consider two ellipses Et, Er and a point V (v1, v2). We may consider V as the

intersection of the two normal lines at points t and r on each ellipse, respectively,

which are

cx(t)v1 + cy(t)v2 = c,

dx(r)v1 + dy(r)v2 = d.
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Since we have a linear system, the coordinates of V are rational functions in t and

r. Let us now compare the distances:

[v1(t, r) − x(t)]2 + [v2(t, r) − y(t)]2 − [v1(t, r) − x(r)]2 − [v2(t, r) − y(r)]2.

Now, in order to decide the predicate we have to perform computations with two

algebraic numbers of degree eight. This is so, because the values of the parameters

of the two ellipses, for which the tangency points occur are of degree four and thus

the distance of a point to an ellipse is expressed by an algebraic number of degree

eight. However, we can use (3) to transform the ellipses to the implicit form and

decide the predicate as before, using algebraic numbers of degree four and a smaller

amount of operations.

In sec. 8 we report on our exact implementation in C++.

4. Predicate κ2

Predicate κ2 decides the position of a query ellipse relative to one (externally)

bitangent line to two given ellipses. The line partitions the plane to two half-planes.

We want to know if the query ellipse lies entirely in one of the two half-planes (and

which), if it intersects the line or if it is tangent to it. In fact, our algorithm provides

additional information, i.e. characterizes all bitangent lines of two ellipses. This may

be used to speed up the overall algorithm.

Habert18 proposes a more complicated approach for determining the type of a

single bitangent line without computing all bitangents. He also has to deal with

algebraic numbers of degree four but uses a smaller amount of operations. No ad-

ditional information is computed in this case and although for his problems this is

sufficient, it is not clear that in our case we would obtain greater speedup.

For this predicate, the implicit and the parametric approach are of equal com-

plexity, since both require computations with real algebraic numbers of degree up

to four. However, in the parametric case we can decide the characterization of all

the bitangents after characterizing two of them, while in the implicit case we have

to characterize three.

4.1. The implicit approach

Consider a (non-vertical) line L : y − u x − v and an ellipse E in implicit form, as

in (2). The common points of L and E correspond to the solutions of the system

L(x, y) = E(x, y) = 0. Since L(x, y) is linear, we can solve it for y and substitute

its value in E(x, y), obtaining the polynomial

R :=
(
2 bu+ a+ cu2

)
x2 + (2 cvu+ 2 d+ 2 eu+ 2 bv)x+ f + cv2 + 2 ev

which is univariate in x. Notice that R is the resultant of the system L(x, y) =

E(x, y) = 0 with respect to y, that is it expresses the projection of the roots on

the x axis. The solutions of R(x) = 0 are the abscissas of the intersection points

of L and E. Since L and E may have up to two common points, in order L to
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Fig. 4. Four bitangent lines of two ellipses, two external and two internal.

be tangent to E, the common point must be of multiplicity two, as a root of the

system. Moreover, R(x) must have one root and since it is of degree two, this root

is a double root and so the discriminant of R:

Λ(u, v) = (e2−cf)u2+2(cd−be)uv+(b2−ac)v2+2(de−bf)u+2(bd−ae)v−af+d2

must vanish.

Now consider two ellipses E1 and E2. We can compute the parameters of the

line(s) L tangent to both of them as the solutions of the system

Λ1(u, v) = Λ2(u, v) = 0, (8)

where the Λ1 = 0 (respectively Λ2 = 0), expresses the fact that L is tangent to E1

(respectively E2). The system is of total degree two, can be solved in O(1)15 and

the real solutions are pairs of real algebraic numbers of degree ≤ 4. There are at

most four solutions which correspond to four bitangent lines.

It remains to characterize the bitangent lines as internal or external ones. A

bitangent line is external if both ellipses are on the same half-plane of the two ones

that it defines; otherwise it is internal (fig. 4). Thus, a bitangent line is external iff

its equation yields the same sign when evaluated at the center of each ellipse.

Let L̄ : y − ū x − v̄, be one of (the four possible) bitangent lines, where (ū, v̄)

is a solution of system (8) and (xc1
, yc1

), respectively (xc2
, yc2

), is the (rational)

center of E1, respectively E2, see (5). L̄ is an external bitangent if sign(L̄(xc1
, yc1

)) ·
sign(L̄(xc1

, yc1
)) > 0. The signs can be computed directly or we can reduce the

computation to comparison of two real algebraic numbers of degree ≤ 4. In either

case the complexity is O(1)15. The combination of signs, over all the solutions of the

systems and the two ellipses, yields the characterization of the bitangent lines as

externals or internals. A vertical bitangent line yields a simpler (univariate) system

(8) and can be treated in an easier way.

Now we can answer κ2 as follows. Given an external bitangent L̄ : y = ūx+ v̄,

we can determine the relative position of a query ellipse E3 with respect to this line
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by computing the discriminant of L̄ and E3, i.e. Λ3(ū, v̄). Λ3 is negative, zero, or

positive iff E3 has zero, one or two common points with L̄ respectively. In the first

two cases, the sign of L̄(x, y), evaluated at the center of E3, specifies the side of L̄

on which E3 lies.

Notice that all the computations involve real algebraic numbers of degree ≤ 4.

This degree is optimal with respect to the degree of the real algebraic numbers

involved, when the bitangent lines are computed, since there are up to four bitan-

gents.

4.2. The parametric approach

Let us suppose that the ellipses are represented parametrically as in (1). The two

ellipses are Et(αt, βt, wt, xct
, yct

) or Et, Er(αr, βr, wr, xcr
, ycr

) or Er and the query

ellipse is Es(αs, βs, ws, xcs
, ycs

) or Es.

We consider the tangent at point (x(t), y(t)) of the ellipse Et. The implicit

equation of this line is (y − y(t))x′(t) − (x − x(t))y′(t) = 0. If we replace x(t) and

y(t) from (1) we obtain a polynomial of degree two with respect to t. Now, we

replace x, y with x(r), y(r) from ellipse Er and obtain a quadratic polynomial with

respect to r, the solutions of which correspond to the points where the tangent line

of Et intersects Er. For this line to be tangent to both ellipses, the discriminant

Λtr(t) of the polynomial should vanish. The algebraic degree of the coefficients of

Λtr(t) is 12, in the parameters of the two ellipses. The discriminant is of degree four

with roots that correspond to the tangency points on Et of the four bitangent lines

of Et, Er. We ignore the denominator which is (1 + w2
2)(1 + r2).

A bitangent line is external to both ellipses iff its equation yields the same sign

when evaluated at an interior point (i.e. center) of each ellipse. For Et, the sign is

always positive, because the equation evaluates to 2αβ(1 + w2)(1 + t2). Hence, to

determine the type of a bitangent line, it suffices to compute the sign of a quadratic

polynomial, evaluated at an algebraic number of degree four.

Lemma 2. Let t1 < t2 < t3 < t4 be the solutions of Λtr(t). Let µ correspond to

an internal bitangent and ǫ to an external one. Then (t1, t2, t3, t4) correspond to a

cyclic permutation of (µǫǫµ).

Proof. Consider a supporting line of the two ellipses, tangent to one of them.

As we roll this line around the first ellipse, it will hit all four bitangent lines in

ǫ, µ, µ, ǫ order. Depending on the location of the i-point of the first ellipse with

respect to the tangency point of the first external bitangent, we get a different cyclic

permutation.

Corollary 2. Given two ellipses parametrically, in order to determine the permu-

tation of their bitangents, it suffices to determine the type of exactly two bitangents.

We now arrive at the following:
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Theorem 2. The relative position of Es with respect to an external bitangent of

ellipses Et, Er reduces to the sign of Λts(t), which has degree four, over t̂, which is

a root of Λtr(t) (also of degree four). Now sign(Λts(t̂)) = −1, 0, or 1 iff Es does not

intersect, is tangent to, or intersects the bitangent, respectively.

With the same reasoning as in the implicit case the degree of the algebraic

numbers employed is optimal. The same holds not only for the predicate but also

for the computation and the characterization of the bitangents of two ellipses.

The predicate is implemented in C++, see timings in sec. 8.

5. Implicit approach to κ3

Given three ellipses E1, E2 and E3, we consider their external tritangent circle,

known as their Voronoi circle. If there are two such circles, we assume that one

is specified. We wish to decide the position of a fourth ellipse, E0, relative to this

circle. This section considers all ellipses in implicit form and applies certain tech-

niques from algebraic geometry for studying the problem. For an introduction to

the algebraic notions, the reader may refer to Cox et al12.

Let
√
s be the radius of the tritangent circle and (v1, v2) its center. For each of

the three ellipses and the circle, we consider the discriminant, as in (7), and we get

the system

∆1(v1, v2, s) = ∆2(v1, v2, s) = ∆3(v1, v2, s) = 0. (9)

The following lemma is quite straightforward.

Lemma 3. A solution (v̄1, v̄2, s̄) of system (9) corresponds to an external tritangent

circle iff s̄ is the smallest positive root of all ∆i(v̄1, v̄2, s), i = 1, 2, 3. If s−0 , s
+
0 are

the smallest and largest positive roots of ∆0(v̄1, v̄2, s), where ∆0 corresponds to the

query ellipse, then:

• s̄ ≤ s−0 ⇔ the query ellipse is outside the circle and is tangent iff s̄ = s−0 .

• s̄ ∈ (s−0 , s
+
0 ) ⇔ the query ellipse intersects the circle.

• s̄ ≥ s+0 ⇔ the query ellipse is inside the circle and is tangent iff s̄ = s+0 .

Notice that among the solutions of system (9), the external tritangent circle of

interest may or may not have the smallest radius (fig. 5).

The previous lemma provides a straightforward solution to κ3, but requires

algebraic tools of which there is no efficient and exact implementation as of today.

This will become clearer in the sequel, where we study the complexity of the system.

The mixed volume of a polynomial system bounds the number of complex so-

lutions by exploiting the structure (non zero terms) of the equations12. The mixed

volume of system (9) is 256 and in order to reduce it, we remove solutions at infinity

by introducing a new variable q.

q = v2
1 + v2

2 − s. (10)
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Fig. 5. Tritangent circles to three ellipses; only one is externally tangent

Replacing s by q in system (9) and adding (10) yields the system

∆1(v1, v2, q) = ∆2(v1, v2, q) = ∆3(v1, v2, q) = q − v2
1 − v2

2 + s = 0 (11)

with unknowns v1, v2, q and s, that has mixed volume 184. If we ignore the fourth

polynomial and variable s, the mixed volume is again 184.

The resultant is an irreducible polynomial in the coefficients of an overcon-

strained system of n + 1 polynomials in n variables, the vanishing of which is the

minimum condition of solvability of the system. By considering only v1, v2 and s

as unknowns in (11) we have computed the resultant as a polynomial of degree 184

in q.

Each ∆i is the discriminant of ϕi which is the characteristic polynomial of ellipse

i and the Voronoi circle, see (6). The vanishing of ∆i means that ϕi has a multiple

root or equivalently that ϕi and ∂
∂λi

ϕi have a common root, for i = 1, 2, 3. Thus an

equivalent system to (11), with the same mixed volume, is

ϕi(v1, v2, q, λi) =
∂

∂λi
ϕi(v1, v2, q, λi) = 0, for i = 1, 2, 3. (12)

The bit size of the coefficients of (12) is substantially smaller than that in (11).

Theorem 3. Three ellipses admit at most 184 complex tritangent circles. This is

tight since there are triplets attaining this number.

The mixed volume provides an upper bound while the degree of the resultant (of

our example) gives a lower bound. The theorem generalizes to all types of conics.

Recall14 that in the case of three circles, the number of tritangent circles is eight

and the corresponding predicate is of algebraic degree two. The interesting open

question is how many of these circles can be real. Solving system (12) numerically

with PHCpack we found up to 22 real solutions (we checked the real roots by

hand). The total number of complex solutions was 184. There is a construction29

where three conics have at least 136 real tritangent circles. However, we have not

been able to achieve such a configuration with three disjoint ellipses.

Even though systems (11) and (12) have optimal mixed volume, solving them

is a very difficult computational task, even with numerical solvers, let alone exact
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ones. To illustrate this we solved system (12) using PHCpackb which implements

homotopy continuation and is the state-of-the-art in numerical polynomial system

solving. For ellipses with coefficients’ bit size 30 and 100 the timings of PHCpack

were 23.85 and 38.36 seconds, respectively. Anton3 reports that the time to solve

the system describing the Voronoi circle is several minutes, using sparse resultants.

We also tried the iCOs interval-arithmetic solverc on the system of ∆i’s with coeffi-

cients’ bit size 60. It detects a degeneracy for κ3 (three ellipses and a query one, all

externally tangent to the same circle) in about 213 seconds on a 1GHz P3. Recently,

with some preliminary experiments25 exploiting the Gröbner base computation, we

were able to isolate all real roots of the system in about two minutes with GB-Rsd.

Notice that solving system (11), or (12), does not answer the predicate since

then we must apply Lem. 3. However, since the mixed volume of system (11) is

optimal we will use it in sec. 6 in order establish a bit complexity bound for the

predicate.

6. Parametric approach to κ3

We use the parametric representation of ellipses to study the external bitangent

circles. In subsec. 6.1 we shall apply this discussion to external tritangent circles.

We express the Voronoi vertex by the intersection of two bisectors. The bisector

of two ellipses is the locus of points at equal distance from the two ellipses. Given

ellipses Et, Er and points P,Q on each of them, the bisector is obtained as the

intersection V of the normal lines at the ellipses, at P , Q, when |−−→PV | = |−−→QV |.
This expresses all points on the bisector except for a finite number of them, namely

where the two normals are parallel.

Point V (v1(t, r), v2(t, r)) is the solution of a linear system of two equations,

expressing the normals respectively at points with parameter values t and r. A

point defined by parameter value t will also be referred to as point t, or t ∈ Et. The

coordinates’ denominator Dtr vanishes iff the normals are parallel to each other.

The bisector is

B(t, r) =
(
v1(t, r) − x(t)

)2
+

(
v2(t, r) − y(t)

)2 −
(
v1(t, r) − x(r)

)2 −
(
v2(t, r) − y(r)

)2
, (13)

which is rational in t, r with denominator Dtr. The numerator is a bivariate poly-

nomial of degree six in t and six in r. It can be shown that it also vanishes when

Dtr vanishes. Therefore it includes both bisector points at infinity as well as points

where the normal vectors of the two ellipses coincide (i.e. at the minimum distance

between two ellipses). We now consider the bitangent circles.

bhttp://www.math.uic.edu/∼jan/PHCpack/
chttp://www-sop.inria.fr/coprin/ylebbah/icos/
dhttp://fgbrs.lip6.fr/salsa/Software/index.php
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Proposition 2. Given two ellipses and a point on the first, there may exist up to

six real bitangent circles, tangent at the specific point. This bound is tight.

Proof. If we fix t, equation (13) has six complex solutions with respect to r. There-

fore, six is an upper bound for the number of possible real bitangent circles. More-

over, a configuration of two ellipses that have six real bitangent circles can be

attained, see fig. 6.

Note that only one such circle is external to both ellipses. We call this unique

external bitangent circle the Apollonius circle of the two ellipses, e.g. the third circle

from the right in fig. 6. The Voronoi circle of three ellipses is where three Apollonius

circles coincide.

Given ellipses Et, Er as in fig. 8, the tangency points of any Apollonius circle lie

inside their Convex Hull (CH). Thus, for the parameterization (1), there is at least

an i-point of Et, Er, Ēt, Ēr that does not lie inside CH. This implies that we can

always search for a Voronoi circle within a continuous range on the boundary of an

ellipse or its twin.

Now, consider all bitangent circles to Et, Er, tangent at point t on Et. Also,

consider the lines from t tangent to Er at points r1, r2. They define two arcs on Er.

Arc (r1, r2), whose interior points lie on the same side of line r1r2 as t, is called a

visible arc.

Lemma 4. Visible arc (r1, r2) contains only tangency points of bitangent circles at

t, which are externally tangent to Er. These include the Apollonius circle of Et, Er,

tangent at t ∈ Et.

Proof. From a point Q inside the visible arc (fig. 7), an internally tangent circle

to Er cannot be tangent at t, because the tangent line at Q leaves t and Er on

different hyperplanes. External bitangent circles at r1 and r2 are tangent to Et at

points t1, t2 respectively. Since t lies between t1 and t2, there exists some point r

between r1 and r2 that corresponds to the Apollonius circle tangent to r and t of

Er and Et respectively.

The visible arc may also include some other bitangent circles internally tangent

to Et. The subset of the visible arc that contains only one tangency point, namely

the one corresponding to the Apollonius circle is called an Apollonius arc.

Lemma 5. Given is a point P = (x(t), y(t)) on Et. Consider the line ǫ, tangent at

P (see fig. 7). If ǫ does not intersect Er, then the visible arc is an Apollonius arc.

Otherwise, the endpoints of the Apollonius arc are: the intersection of ǫ with Er

and the endpoint of the visible arc which lies on the opposite side of Et with respect

to ǫ.

Proof. If ǫ does not intersectEr, then it leaves each ellipse in a different hyperplane.

In this case, a circle internally tangent to Et at t, cannot be tangent to Er as well.
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Fig. 6. The six bitangent circles: The Apollonius circle is the 4th from the left

A

P
Q
F

V

ǫ

A

P

Q
F

V

ǫ

Fig. 7. The two cases for defining an Apollonius arc

Thus, according to the visibility property, the visible arc is an Apollonius arc. If ǫ

intersects Er, then a circle internally tangent to Et at t can be tangent to Er at a

point that lies in the same hyperplane of ǫ as Et. Therefore, only the part of the

visible arc of Er that lies in the opposite hyperplane is an Apollonius arc.

We thus obtain arc (r1, r2) or (r1,∞) ∪ (−∞, r2) on Er which contains only

the tangency point of the Apollonius circle, isolating it from the tangency points of

non-external bitangent circles.

Corollary 3. Given a point t0 on Et, it is possible to determine the unique root ri
of B(t0, r), from equation (13), which lies on the Apollonius arc of Er with respect

to t0.

Given a point (x(t), y(t)) on Et, the squared radius of the Apollonius circle of

Et, Er tangent to Et at that point is denoted by ftr(t). From the above, it follows
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A

B

P
P ′

Q
Q′

V

V ′

θ
θ′

U
T

Fig. 8. The radius of the Apollonius circle as we move along the boundary

ftr

t

ftr

t

Fig. 9. A sample graph of f

that: ftr(t) :=
(
v1(t, r̂)− x(t)

)2
+

(
v2(t, r̂)− y(t)

)2
, where r̂ is the root of (13) that

corresponds to the Apollonius circle, when we fix t. Thus,

ftr(t) =
1

4
Pt(t)

(
Atr(t, r̂)

(1 + t2)(1 + r̂2)Dtr(t, r̂)

)2

. (14)

In the above equation, Pt(t) has no real roots, Atr is a bivariate polynomial of

degree two in t and four in r and Dtr 6= 0, unless the normals are parallel.

In the sequel, we assume that ftr(t) is defined on a continuous interval (a, b)

(left-hand side in fig. 9). If the interval is of the form (−∞, a) ∪ (b,∞) (right-hand

side of fig. 9), then the problem is identical or easier.

Lemma 6. Function ftr(t) consists of two strictly monotone parts, one decreasing

and one increasing.

Proof. Although the proof can be intuitive, we provide a more formal one. There
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exist two single points P and Q on Et and Er respectively whose distance is minimal

(fig. 8). As we move from P to P ′ (in CW orientation), we have: |−−→PV | + |−−→V Q| <
|−−−→P ′V ′|+ |−−−→V ′Q′|, since

−−−→
P ′V ′ and

−−−→
V ′Q′ cross the tangent lines at P and Q respectively

and angle θ′ = P̂ ′V ′Q′ is smaller than θ = P̂ V Q . Therefore the radius of the

Apollonius circle grows monotonically to infinity. The same arguments can be used

to show that the radius also grows when we move in CCW orientation.

Fig. 9 (left hand side) shows a graph of f . The figure is correct in terms of the

function’s monotony. We have not proven the function’s convexity, though this is

suggested by numerical examples.

To compute a value of ftr(t) at a given point t we have to determine r̂. First, we

compute a proper Apollonius arc (r1, r2) on the second ellipse. This is an isolating

interval of B(t, r) that contains root r̂ which corresponds to the Apollonius circle.

Now we can compute ftr(t) from equation (14).

6.1. The tritangent circle

In the parametric space, the intersection of two bisectors involves three variables,

so in order to express the Voronoi circle, we need the intersection of three bisectors,

namely the system B(t, r) = B(t, s) = B(r, s) = 0. As a more efficient alternative,

we consider the system:

Q(t, r, s) = B(t, r) = B(t, s) = 0. (15)

Here, Q is the condition that makes the three normals of each ellipse intersect at a

single point. Q is a polynomial of total degree 12, four in each variable t, r, s. This

system has a mixed volume of 432. But, we construct a resultant matrix whose

determinant is factored. Let ress denote the resultant with respect to s. Then we

compute two Sylvester resultants:

R1(t, r) = ress(Q(t, r, s), B(t, s))

= (at28r24 + . . .)
︸ ︷︷ ︸

R′

1

(b12t
12 + . . .+ b1t+ b0)(1 + t2)4

R2(t) = resr(R
′

1(t, r), B(t, r))

= (a184t
184 + . . .+ a1t+ a0)(c12t

12 + . . .+ c1t+ c0)
6(1 + t2)28.

We have proven that there are factors which have no real roots, or their roots

correspond to the normals lying on the same line. In every example we have tried,

if we eliminate all these factors at appropriate powers, we obtain a polynomial of

optimal degree (184) that contains all relevant roots. We conjecture that this is the

general case. We have proven that the factors exist, but we have no proof for the

exponents.

We are now able to describe our subdivision scheme. We solve only for t and we

show that if we know t with sufficient precision, then we are able to answer κ3. The
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P
A

B

Fig. 10. Comparing radii ftr and fts

idea is that we slide an Apollonius circle tangent to two ellipses, trying to make

it tangent to the third one as well. This is implemented by successively smaller

intervals on the first ellipse, which define the point of tangency on this ellipse and,

moreover, allow us to compute the points of tangency on the other ellipses.

The Voronoi circle is the circle which is externally bitangent to Et, Er, Es at the

same time. The tangency point of the Voronoi circle on Et can be defined by the

condition:

Strs(t) = 0, where Strs(t) = ftr(t) − fts(t).

We factor this polynomial as follows:

Strs(t) =
Pt(t)(Q1 −Q2)(Q1 +Q2)

4
[
(1 + t2)(1 + r2)(1 + s2)Dtr(t, r)Dts(t, s)

]2 , (16)

where Q1 and Q2 are functions of (t, r, s).

In the sequel we are interested in the sign of Strs(t) at a given t. We observe

that Q = (Q1 −Q2)/(1 +w2
1) which is the condition where three normals intersect

at the same point.

Lemma 7. To determine the sign of Strs we only need to consider Q(t, r, s),

Atr(t, r) and Dts(t, s)

Proof. Consider the fig. 10, where
−→
PA ‖ −−→

PB and the projections of the points

P,A,B on x-axis (if the projections coincide, then we can consider the projections on

the other axis). To compare |−→PA| and |−−→PB| it suffices to compare the x-coordinates

of P , A and B. More specifically,

sign(|−→PA| − |−−→PB|) = sign((Ax − Px)(Ax −Bx)).
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The above expressions evaluate as follows:

Ax − Px =
y′(t)Atr(t, r)

(1 + t2)(1 + r2)Dtr(t, r)

Ax −Bx =
y′(t)Q(t, r, s)

(1 + t2)(1 + r2)(1 + s2)Dtr(t, r)Dts(t, s)
,

where y′(t) is the derivative of the y-coordinate of the parametric ellipse.

We use a customized bisection to find a root of Strs(t). Using the above lemma,

we perform sign evaluations separately on Atr and Dts, instead of Q1 +Q2 because

the former polynomials are of smaller degree.

Now we determine starting intervals for the subdivision. Consider the comple-

ments ǫ1, ǫ2 of the supporting hyperplanes of the two external bitangents of two

ellipses E1, E2 and a query ellipse E that does not intersect the other two. Let

|ǫi| = 0 or 1 depending on whether E ∩ ǫi = ∅ or not. Let C be the interior of the

convex hull of E1, E2. Then, the number of Voronoi circles is |ǫ1|+ |ǫ2|, if E∩C = ∅,
or 2 − |ǫ1| − |ǫ2|, otherwise.

So, we can find a starting interval that contains the tangency point of the Voronoi

circle. In the case where two Voronoi circles exist, we assume that we know in

advance which one we want and therefore we pick a proper sub-interval. We end up

with an interval that contains only one Voronoi circle, and hence Strs has a unique

root in the starting interval.

We express the Voronoi circle between Et, Er, Es implicitly by an interval con-

taining t, such that (x(t), y(t)) is the tangency point on Et. Note that this interval

might contain tangency points of other non-external tritangent circles. We start by

the initial interval [a, b] that contains the tangency point of the Voronoi circle and

later, if necessary, we subdivide this interval by bisection.

Let Atrs denote an enclosing interval [a, b] where the tangency point on Et of

the Voronoi circle of Et, Er and Es lies. The subdivision operation is defined as

follows:

(Atrs)
2 :=







[a+b
2 , a+b

2 ], if Strs(
a+b
2 ) = 0,

[a, a+b
2 ], if Strs(a)Strs(

a+b
2 ) < 0,

[a+b
2 , b], otherwise.

We denote multiple subdivisions by the power operator. (Atrs)
k represents an in-

terval [a, b] that has been subdivided k times and its length is 2−k(b− a).

6.2. Deciding κ3

This subsection shows how the above algorithm decides κ3 and establishes its ex-

actness.
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Fig. 11. Starting intervals for t, r, s (and region of the Voronoi vertex)

t

ftr(t) fts(t)

fth(t)

(Atrh)m(Atrs)
n

Fig. 12. Deciding κ3

Given ellipses Et, Er, Es we want to determine the relative position of ellipse

Eh with respect to the Voronoi circle of the first three. The answer of κ3 is False,

True, or 0, depending on whether Eh is outside, intersects the open Voronoi disk,

or is externally tangent to the Voronoi circle of Et, Er, Es.

Lemma 8. Let x ∈ [a, b] be the root of Strs(x). If Strh(x) > 0, then Eh intersects

the Voronoi circle of the other three ellipses. If Strh(x) < 0, then Eh lies outside

the Voronoi circle. Otherwise, Eh is externally tangent to this circle.

Proof. If Strh(x) > 0, then there exists a bitangent circle of Et, Eh tangent at point

x of Et, which lies inside the Voronoi circle of Et, Er, Es. Therefore, Eh intersects

the Voronoi circle. If Strh(x) < 0, then the external bitangent circle of Et on x and

of Eh contains the Voronoi circle. Therefore, Eh lies outside the Voronoi circle. If
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Strh(x) = 0, the two Voronoi circles coincide; this is a degenerate configuration.

Observe that there is a neighborhood U of x where sign(Strh(u)) = sign(Strh(x)),

∀u ∈ U . In our implementation, to find U , it suffices that we have separated the

roots of Strs,Strh. Fig. 12 shows an example where the query ellipse intersects the

Voronoi circle.

We now establish the exactness of the subdivision algorithm, by computing the

number of bits that suffice in order to certify the predicate. We shall use the system

(11) that has optimal mixed volume. Recall that the system is

∆1(v1, v2, q) = ∆2(v1, v2, q) = ∆3(v1, v2, q) = q − v2
1 − v2

2 + s = 0.

Let us eliminate v1, v2, q; the resultant R(s) is of degree 184 in s and has coefficient

bit size 3 · 56 · τ∆ = 168τ∆
12. Here 56 equals the mixed volume of the system

∆i,∆j , q− v2
1 − v2

2 + s, if we consider s as a parameter, and τ∆ denotes the bit size

of the coefficients of ∆i, where 1 ≤ i, j ≤ 3 and i 6= j.

The minimum distance between two roots of a polynomial P (i.e. separation

bound) of degree d and bit size τ is32 sep(P ) ≥ d−(d+2)/2(d+ 1)(1−d)/22τ(1−d), thus

the number of bits that we need in order to compute s is no more than 1389 +

30744 τ∆.

In order to compare two radii s1 and s2, which are roots of polynomials R1 and

R2 respectively, we need a bound for |s1 − s2|. Notice that |s1 − s2| ≥ sep(R1R2),

where the polynomial R1R2 has degree 368, since we multiply two polynomials of

degree 184, and coefficient bit size 8+336τ∆. The latter follows since we multiply two

polynomials of bit size 168τ∆, so their product has, in the worst case, a coefficient

of magnitude 184 ·22·168τ∆, or of bit size ⌈lg 184+2 ·168τ∆⌉. We conclude32 that the

number of bits sufficient to compare two roots of R1 and R2 and thus to compare

the two radii s1 and s2 is 1508+30324τ∆, which corresponds to sep(R1R2) divided

by two.

This bound is close to tight, from a theoretical point of view, since the polyno-

mials R1 and R2 are obtained as resultants of systems with optimal mixed volume,

thus their degree is 184 and they are irreducible in the general case. Moreover, the

worst case separation bound can be attained by Mignotte’s polynomials27. To be

more specific consider the (Mignotte) polynomial xd − 2(a x− 1)2, where d ≥ 3 and

a ≥ 3, has two real roots in the interval ( 1
a − h, 1

a + h).

If the ellipses are given parametrically, in order to compute the implicit repre-

sentation (3), the bit size increases by a factor of six. If the input coefficients have τ

bits, then τ∆ = 6τ . If the order of convergence of our method is φ, then the number

of iterations needed for κ3 is logφ (1508 + 181944τ).

6.3. Overall method for κ3

The theoretical separation bound for the real roots of univariate polynomials that

we presented in the previous section is a significant overestimation, in almost all
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cases. For example the Wilkinson polynomial of degree 20, i.e
∏20

i=1 (x − i), has a

theoretical separation bound 10−344, while the actual separation bound is 1. Even

though we can not avoid it in the analysis, doing computations up to the theoretical

separation bound turned out to be impractical. A small separation bound induces

a big number of subdivision steps. For this we turn to an algebraic method.

Given three ellipses Et, Er, Es and a query one Eh, we compute the resultants

of system (15), i.e. R(t) and R′(t), with respect to the two triplets t, r, s and t, r, h,

respectively. Recall that t is the subdivision parameter. If all four ellipses share

a common Voronoi circle, then R(t) and R′(t) have a common root. In this case

G(t) = gcd(R(t), R′(t)) 6= 1. Given R(t), R′(t) and G(t), we can isolate the real

roots of R(t), R′(t) and G(t), and obtain the actual separation bound. Now, we

may run the subdivision scheme up to this bound, which in all practical cases, is a

lot larger than the theoretical one.

In practice we run the subdivision scheme for a predescribed number of steps, in

order to decide almost all the easy cases. If we do not get the answer then we switch

to the algebraic approach that we presented above. The real roots of R(t), R′(t)

and G(t) are represented by isolating intervals. If R and R′ do not have common

real roots, i.e G(t) = 1, then we continue the subdivision algorithm until it halts,

since we know that the subdivision process stops. If they have common real roots,

i.e G(t) 6= 1, then we refine the subdivision interval either until it contains only

one real of G(t), which means that we are in a degenerate configuration, or until it

contains no real root of G(t), which means that the subdivision process stops and

answers the predicate.

Notice that in all the cases the subdivision scheme runs, in the worst case, up

to the real separation bound induced by the real root isolation of R(t) and R′(t).

7. Conflict region type (κ4)

This predicate takes as input ellipses Et, Er, Es, Eh and determines the type of

conflict of ellipse Eq with the Voronoi edge whose vertices are the centers of the

Voronoi circles defined by Et, Er, Es and Et, Er, Eh respectively. The conflict region

is the set of points V on the Voronoi edge where an Apollonius circle of Et, Er

centered at V intersects Eq, and it may fall into one of six cases 14,22: NoConflict,

Interior, 123-Vertex, 124-Vertex, TwoVertices, EntireEdge (fig. 13).

We estimate t3, t4, such that t3 ∈ Atrs, t4 ∈ Atrh be the tangency points of the

two Voronoi circles and assume t3 < t4. Then, table 1 shows how we can decide κ4

by applying κ3. The case t3 > t4 is treated symmetrically.

The (degenerate) case where t3 = t4 implies there is a unique Voronoi circle

tangent to the four given ellipses, which can be detected by κ3. Then, the Voronoi

edge degenerates to a vertex and κ4 reduces to κ3 with arguments any three of the

four ellipses and Eq. The possible outcomes are NoConflict, EntireEdge.

Let us now see the idividual outcomes of the predicate in more detail:

Cases 1 & 2: Eq is outside both Voronoi circles. It lies in the region between
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case κ3(Et, Er, Es, Eq) κ3(Et, Er, Eh, Eq) κ4

1
0 ∨ False 0 ∨ False

NoConflict

2 Interior

3 True 0 ∨ False 123-Vertex

4 0 ∨ False True 124-Vertex

5
True True

TwoVertices

6 EntireEdge

Table 1. Deciding κ4

(1)-NoConflict (3)-123-Vertex (5)-TwoVertices

(2)-Interior (4)-124-Vertex (6)-EntireEdge

Fig. 13. All cases of κ4, where the query ellipse (Eq)is shaded. Top, bottom, left and right ellipses
are Et, Er , Es and Eh respectively.

the Voronoi circles and ellipses Et, Er, iff the tangency points of the Voronoi circles

(there are two of them) of Et, Er, Eq lie in [t3, t4], or in formal notation (Atrq)
k ⊆

[t3, t4] =⇒Interior. Otherwise, Eq does not conflict with the bisector, or more

formally (Atrq)
k ∩ [t3, t4] = ∅ =⇒NoConflict.

Cases 3 & 4: The query ellipse conflicts with only one of the Voronoi circles,

namely Et, Er, Es (or Et, Er, Eh). The center of the (unique) Voronoi circle of

Et, Er, Eq lies on the Voronoi edge, therefore the predicate answers 123-Vertex

(or 124-Vertex), respectively. In both cases, we have (Atrq)
k ⊆ [t3, t4].

Cases 5 & 6: Eq conflicts with both Voronoi circles. It has no common points with

the region between Et, Er, Es, Eh, iff the tangency points of the Voronoi circles of

Et, Er, Eq lie in [t3, t4]. In this case, there is a part of the Voronoi edge that does not

conflict with Eq, or equivalently (Atrq)
k ⊆ [t3, t4] =⇒TwoVertices. Otherwise,

Eq conflicts with the entire edge, that is (Atrq)
k ∩ [t3, t4] = ∅ =⇒EntireEdge.
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8. Exact implementation

We report on our implementations in C++ and maple, and illustrate them with

a series of experiments. We offer some comparison with existing generic algebraic

software for κ3. All tests ran on a P4 2.6GHz-CPU with 1GB of RAM, using Debian

Linux with a 2.6.10 kernel.

We have implemented predicates κ1, κ2 in C++ using the specialized algorithms

of 15,16, which are implemented in the synaps library 28.

The real algebraic numbers are in isolating interval representation, that is by

a square free integer polynomial and an interval with rationals endpoints. Since

predicates κ1 and κ2 involve computations with real algebraic number of degree up

to four we used the implementation based on the algorithms of 15, which avoids

subdividisions both for real solving and comparison.

We used extended integer arithmetic from gmp. We also performed tests with

the cgal filtered type Lazy exact nt, but the results were not better. The reason

is that the size of the various quantities is rather large and the filter almost always

failed. This implies that geometric filters may be used, cf. sec. 9.

For each test we randomly generated 1000 instances (point and two ellipses,

or three ellipses), with the coefficients uniformly distributed between 1 and 2B,

B ∈ {10, 30, 100, 300}. Table 2 summarizes average timings; for κ1 and κ2 runtimes

grow sub-quadratically in B. Note that for κ2 half of the time is spent for the

solution of the bivariate system and the other half is spent for the computation of

the the relative position of the third ellipse.

B predicate κ1 [ms] predicate κ2 [ms]

10 0.45 6.15

30 0.94 16.46

100 3.68 73.21

300 17.3 396.82

Table 2. Timings from our implementation in C++ utilising the implicit approach

The implementation of κ3 with parametric ellipses was done in maple 9. We have

implemented a small algebraic number package that performs exact univariate real

root isolation, comparison and sign evaluation of univariate (bivariate) expressions

over one (two) algebraic number(s), using Sturm sequences and interval arithmetic

over Q.

In order to decide the degenerate cases we have to go up to the separation

bound. This turned out to be quite impractical, because of the number of itera-

tions required. We suspect a degeneracy if after a certain number of iterations, our

algorithm has not yet decided the predicate. Then we verify the degeneracy by com-

puting the resultant, as described in section 6.3. This turned out to work very well
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Fig. 14. Tested configurations of three ellipses (circles) and sample positions of the query object

in practice. With 10-bit coefficients, the computation of the resultant of (11) takes

about five minutes with interpolation, while of (15) it is computed within seven sec-

onds with two applications of Sylvester resultants. This shows that the parametric

system, not only provides a way to answer κ3 with geometric arguments, but also

allows faster computation of the resultant.

We performed several preliminary experiments with different triplets of ellipses

and circles. We consider a query ellipse (or circle) with its centre moving along a line

and measure the time taken by κ3 to decide its relative position with respect to the

Voronoi circle. Among the various configurations, there were both degenerate and

non-degenerate cases, although the former are very hard to generate for ellipses.

The ellipses have 10-bit coefficients in their parametric form. Fig. 14 shows the

three ellipses (or circles) and the query one in its initial, middle and final position. In

fig. 15 we present the times for three test suites: The first two graphs involve ellipses

that do not share a common Voronoi circle with the query one, which center moves

along the line y = −x. Notice that the time increases as we approach a degenerate

configuration. Although the hardest cases took about 5s, in 90% of the cases we can

decide in less than 2.5 seconds. The third graph involves circles, but as the query

circle moves along y = 0, a degenerate configuration is attained. In that case the

algorithm has to compute the resultants. This corresponds to the peak of the graph

which is 30s after 100 iterations. In all other cases the timings are less than 3s.

Our implementations are exact but can also run with any prescribed precision,

e.g. for rendering purposes. In particular, a much faster execution is possible for

the above algorithms if we restrict ourselves to machine precision, as in 19. Fig. 16

presents experiments using machine precision and 32 bit coefficients. With this

inexact approach, we can decide the predicate in less than two seconds in all cases.

9. Future work

We are implementing our methods in C++, using maple as a testbed of ideas. Our

final goal is a cgal implementation. Working in C++ will allow us to use one of the

powerful interval arithmetic packages available.
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Fig. 15. Execution time of κ3 as function of the position of the query ellipse’s (circle’s) center
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Fig. 16. Execution time of κ3 as function of the position of the query ellipse’s (circle’s) center,
using machine precision

Currently our subdivision scheme provides one bit per iteration, thus has a

linear convergence. We could speed up the subdivision by using a method with

better convergence rate. In general, for such methods to work the function (in our

case Strs) should meet several criteria (like convexity or monotonicity). Even strict

monotonicity alone would be an improvement, as we would be able to use Brent’s

(also known as Van Wijngaarden-Dekker-Brent’s) method10 with convergence rate

φ = 1.618 in general. The implementation of these methods should be based on

multi-precision floats and interval arithmetic.

Last, but not least, we would like to certify our algorithm using the constructive

root separation bounds11,31, which may be tighter than the static bounds now used.
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