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ABSTRACT
This paper examines the computation of the Voronoi dia-
gram of a set of ellipses in the Euclidean plane. We propose
the first complete algorithms, under the exact computation
paradigm, for the predicates of an incremental algorithm:
κ1 decides which one of 2 given ellipses is closest to a given
exterior point; κ2 decides the position of a query ellipse rel-
ative to an external bitangent line of 2 given ellipses; κ3

decides the position of a query ellipse relative to a Voronoi
circle of 3 given ellipses; κ4 determines the type of conflict
between a Voronoi edge, defined by 4 given ellipses, and a
query ellipse. The paper is restricted to non-intersecting
ellipses, but the extension to arbitrary ones is possible.

The ellipses are input in parametric representation or con-
structively in terms of their axes, center and rotation. For
κ1 and κ2 we derive optimal algebraic conditions, solve them
exactly and provide efficient implementations in C++. For
κ3 we compute a tight bound on the number of complex tri-
tangent circles and use the parametric form of the ellipses in
order to design an exact subdivision-based algorithm, which
is implemented on Maple. This approach essentially answers
κ4 as well. We conclude with current work on optimizing κ3

and implementing it in C++.

Categories and Subject Descriptors: 7.2.2 [Nonnumer-
ical Algorithms and Problems]: Geometrical problems and
computations

General Terms: Algorithms

Keywords: Voronoi diagram, ellipse, predicate, Euclidean
distance, bisector, parametric representation, exact compu-
tation
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1. INTRODUCTION
Computational geometry for curved objects relies on pred-

icates implemented by algebraic operations. In this paper
we study the Voronoi diagram of ellipses in the exact com-
putation paradigm. The distance of an exterior point to an
ellipse is defined to be the minimum Euclidean distance to
any point of the ellipse. We design and implement exact
and complete algorithms for the predicates needed in the
framework of abstract Voronoi diagrams [22] and, more par-
ticularly, the incremental algorithm in [20]. To be more pre-
cise, the algorithm computes the Delaunay graph, since no
computation of Voronoi vertices or edges is necessary. Still,
if one wishes to draw the diagram with fixed precision, the
algorithm and our methods provides sufficient information.

Our final goal is CGAL1 software for constructing the
Voronoi diagram of ellipses, based on the CGAL implemen-
tation for circles [12], which uses the same incremental al-
gorithm. Hence the crucial question is to analyze and im-
plement the predicates for ellipses. Some of the presented
predicates are also needed in computing the visibility com-
plex and the convex hull of ellipses.

Voronoi diagrams have been studied extensively, however
the bulk of the existing work in the plane concerns point
or linear sites. One relevant work computes the diagram
of convex polygons [23], with an approach similar to ours,
since the algorithm “moves” on the objects’ boundary using
pruning techniques. Recent efforts have extended Voronoi
diagrams to the case where the sites are curves (e.g. [1, 3])
or have non-empty interior [8]. In particular, the diagram of
circles has been implemented in CGAL [12]; see also [4, 21].
Anton [3] examines κ3 for the diagram of ellipses but his al-
gebraic system’s mixed volume is too large, hence leading to
high complexity. His matrix methods for solving the system
seem slower than ours and do not guarantee exactness.

In [19], an optimal combinatorial algorithm is derived for
constructing Voronoi diagrams of strictly convex rounded
sites in R3, but the predicates are not considered. In [7], a
dynamic algorithm is described for constructing the power
diagrams of points in Rd. This specializes to the diagram
of circles or spheres, but does not seem to cover ellipses.
Another line of work, which has been quite successful, is to
approximate the curved sites by polygons, e.g. [5]. In [6] the
authors compute a polygonal approximation of a Voronoi
diagram at different levels of detail. We expect that appli-
cations, such as navigation among objects, shall benefit from
an exact diagram of ellipses, given the ability of ellipses to
model, quite accurately, different kinds of obstacles.
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Perhaps the work coming closest to ours is [18]. The au-
thors essentially trace the bisectors in order to compute the
Voronoi cells of arbitrary curves up to machine precision.
Their algorithm uses floating point arithmetic; they claim
that their software works well in practice. Although they
argue that their algorithm can be extended to exact arith-
metic, they do not explain how. For instance, they do not
discuss degenerate configurations. Our implementations are
exact but can also run with any prescribed precision.

A second motivation comes from visibility problems among
ellipses [17], or pairwise disjoint bounded convex sets of con-
stant complexity [2]. In particular, the computation and
characterization (as external or internal) of all bitangents
of two ellipses is of independent interest. Our approach ob-
tains this characterization and hence also answers κ2. The
additional information is used by subsequent calls to κ2.

A sketch of our work on the Voronoi circle of 3 ellipses
and κ3 appeared in [15]. Presently, we offer a full inves-
tigation of the problem dealing with both degenerate and
non-degenerate configurations. We study the case of non-
intersecting ellipses, which is straightforward to generalize
to arbitrary ellipses and even pseudo-circles [20]. We assume
that the input ellipses are given parametrically, or construc-
tively in terms of their axes, center and rotation, all being
rational (see next section). This permits to switch to an
implicit representation.

The 4 predicates of the incremental algorithm in [20] are:
• (κ1) given two ellipses and a point outside of both, decide

which is the ellipse closest to the point,
• (κ2) given 2 ellipses, decide the position of a third one

relative to a specific external bitangent of the first two,
• (κ3) given 3 ellipses, decide the position of a fourth one

relative to the (external tritangent) Voronoi circle of the first
3; this is the InCircle predicate,
• (κ4) given 4 ellipses, compute the part of the bisector

that changes due to the insertion of a 5th ellipse.
Our first contribution are algorithms for κ1 and κ2 that

are optimal in terms of algebraic degree. In fact, for κ2,
we compute and characterize all bitangents of two ellipses
which provides additional information. Both algorithms are
exact, complete and implemented in C++. The tangency
points are or are not computed depending on whether we
deal with the parametric or the implicit representation.

Using the implicit representation, we obtain the first tight
bound on the number of complex tritangent circles to 3 el-
lipses, namely 184. The number of real tritangent circles
remains open. However, this approach did not lead to an
efficient algorithm. Hence we turned to parametric repre-
sentation. The Voronoi circle is specified by the intersection
of bisectors, at any desired accuracy. This is achieved by
refining the interval expressing the 3 tangency points until
the predicate can be decided; in fact, all tangency points are
expressed as a function of one of them. Exactness is guar-
anteed by root separation bounds from the equations of the
implicit representation of the problem.

We present and implement in Maple a customized
subdivision-based algorithm for κ3, which “moves” on the
border of parametrically defined ellipses. This exploits the
underlying geometry and avoids computing the Voronoi cir-
cle. Hence, our code is faster than applying generic state-
of-the-art software to approximate the Voronoi circle. Our
dedicated solver contains univariate root isolation and com-
parison, as well as sign evaluation of polynomials in up to 2
variables.

The subdivision-based algorithm essentially answers κ4,
as well. This is the first complete solution of how to im-
plement the Voronoi diagram of ellipses (via the Delaunay
graph) in the exact computation paradigm.

The paper is organized as follows. The next section dis-
cusses representation issues. In sec. 3 we give algorithms
to decide predicates κ1 and κ2. Sec. 4 studies the Voronoi
circle from the implicit representation viewpoint. The para-
metric representation is considered in sec. 5 in order to yield
an algorithm for κ3. Predicate κ4 is settled in sec. 6. Sec. 7
illustrates our implementations with various tests and the
last section concludes with future work.

2. REPRESENTATION
An ellipse has the following implicit equation:

E(x, y) := ax2 + 2bxy + cy2 + 2dx+ 2ey + f ∈ Q[x, y] (1)

Let the length of the major and minor axes be 2α, 2β, re-
spectively. Let (xc, yc) be its (rational) center. Throughout
this paper, we use the following parametric representation:

x(t) = xc + α
“

1−w2

1+w2

” “

1−t2

1+t2

”

− β
“

2w
1+w2

” “

2t
1+t2

”

= xc + −α(1−w2)t2−4βwt+α(1−w2)
(1+w2)(1+t2)

y(t) = yc + α
“

2w
1+w2

” “

1−t2

1+t2

”

+ β
“

1−w2

1+w2

” “

2t
1+t2

”

= yc + 2−αwt2+β(1−w2)t+αw
(1+w2)(1+t2)

,

(2)

where t = tan(θ/2) ∈ (−∞,∞), θ is the angle that traces the
ellipse, w = tan(ω/2), and ω is the rotation angle between
the major and horizontal axes. This representation leaves
out of the boundary a single point, called the i-point.

The symmetric ellipse (with respect to its center) is x̄(t) =
−x(−t) + 2xc and ȳ(t) = −y(t) + 2yc. We call it the twin
ellipse. Every point of an ellipse is different from its twin
point, including the i-point. We denote by Et(α, β,w, xc, yc)
or simply Et, an ellipse parameterized by t and by Ēt its
twin ellipse. The coefficients of (1) are polynomials in the
coefficients of (2):

χ = ycw
2 + 2xcw − yc

ψ = xcw
2
− 2ycw − xc

(1 +w2)2a = 4w2α2 + (w − 1)2(w + 1)2β2

(1 +w2)2b = 2(α − β)(α + β)w(w − 1)(w + 1)
(1 + w2)2c = 4w2β2 + (w − 1)2(w + 1)2α2

(1 +w2)2d = −2wχα2
− (w − 1)(w + 1)ψβ2

(1 + w2)2e = +2wψβ2
− (w − 1)(w + 1)χα2

(1 +w2)2f = χ2α2 + ψ2β2
− (1 +w2)2α2β2

(3)

Note that χ,ψ express the equations of the major and mi-
nor axes evaluated at (xc, yc). The following quantities are
invariant under rotation and translation: J1 = a + c =
α2 + β2, J2 = ac − b2 = α2β2, while J4 = J2(x

2
c + y2

c − J1)
is invariant under rotation. Now, xc = (be − dc)/J2, yc =
(bd− ae)/J2.

Since the ellipse is given in parametric form, or construc-
tively (rational axes, center and w), the above equations
transform it to an implicit form.

3. PREDICATES κ1 AND κ2

For κ1, we are given 2 ellipses and a point outside of both,
and we wish to find the one closest to the point, under the
Euclidean metric. To lower bound the inherent algebraic
complexity, take a point V outside an ellipse; it may have
up to 4 normals to the ellipse, depending on its position



V

Figure 1: Left: Voronoi diagram of 5 ellipses. Right:
an example of a point with 4 normals.

relative to the evolute curve (which is a stretched astroid).
There are 4, 3 or 2 normals if V lies inside the evolute, on
the evolute but not at a cusp or, respectively, V is a cusp or
outside the evolute.

Consider an ellipse E, represented algebraically, and point
V = (v1, v2) outside E. We denote by C(V,

√
s) a circle

centered at V with radius equal to
√
s, s > 0. We express

the Euclidean distance δ(V,E) between V and E by the
smallest positive value of

√
s for which C is tangent to E. In

comparing distances, it is sufficient to consider the squared
distance s.

Let us express a conic as [x, y, 1]M [x, y, 1]T , for an appro-
priate matrix M . Then E,C correspond to

A =

0

@

a b d
b c e
d e f

1

A , B(s) =

0

@

1 0 −v1
0 1 −v2

−v1 −v2 v21 + v22 − s

1

A .

Their pencil is λA+B, and their characteristic polynomial
is

ϕ(λ) = det(λA+B(s)) = J2
2λ

3 + c2(s)λ
2 + c1(s)λ+ s, (4)

where c2(s) = J2s− T (v1, v2), c1(s) = J1s− E(v1, v2) and
T (v1, v2) = J2[(v1 − xc)

2 + (v2 − yc)
2 − J1]. Using E and T

for E(v1, v2) and T (v1, v2), its discriminant is:

∆(s) = J2
2 (J2

1 − 4J2) s4+
2J2(9J1J

2
2 − J2

1T + 6J2T − 2J3
1J2 − J1J2E) s3+

(−18J3
2E + 4J1J2ET − 27J4

2 + J2
1T

2
− 18J1J

2
2T

+J2
2E

2 + 12J2
1J

2
2E − 12J2T

2) s2+
2(2T 3

− J1ET
2
− 6J1J

2
2E

2 + 9J2
2ET − J2E

2T ) s+
E2(T 2 + 4J2

2E)
(5)

A circle is externally tangent to an ellipse iff ϕ(λ) has a pos-
itive double root [25, thm.8], [16, sec.4]. This is recognized
by the vanishing of ∆, which is a univariate polynomial (in
s) of degree 4.

Now δ(V,E) is the square-root of the smallest positive
zero of ∆(s). The degree of the coefficients of ∆(s), in v1, v2
and the parameters of E, is 6, 8, 10, 12, and 14, in order
of decreasing power in s. The degree of every coefficient of
∆(v1, v2, s) (when viewed as a trivariate polynomial) in the
parameters of E is 6.

Proposition 3.1. Given ellipses E1, E2 and V outside
both of them, we decide which ellipse is closest to V by com-
paring two algebraic numbers of degree 4.

This degree is optimal with respect to the algebraic num-
bers compared. Optimality follows since the worst case re-
quires us to work with algebraic numbers of 4th degree. In
sec. 7 we report on our exact implementation in C++.

If we restrict ourselves to the parametric representation
we need to compare two algebraic numbers of degree 8.

Now we examine κ2. This predicate decides the position
of a query ellipse relative to one bitangent line to 2 given
ellipses. In fact, our algorithm provides additional informa-
tion on the characterization of the bitangent lines, which
allows us to answer future predicates.

Consider a (non-vertical) line L : y = ux+v and ellipse E
represented in implicit form. Let us substitute y in E; then,
for L to be tangent to E, its discriminant Λ must vanish:
The bitangent line is expressed by system Λ1 = Λ2 = 0,
where Λi corresponds to the i-th ellipse. The system has
≤ 4 real roots corresponding to the 4 bitangents. A vertical
bitangent line is treated in an easier way.

Now we can answer κ2 as follows. Given an external bitan-
gent L̄ : y = ūx+ v̄, we can determine the relative position
of a query ellipse E3 with respect to this line by computing
the discriminant of L̄ and E3, Λ3(ū, v̄). Λ3 is negative, zero,
or positive iff E3 has 0, 1 or 2 common points with L̄ re-
spectively. In the first 2 cases, the sign of L̄(x, y), evaluated
at the center of E3, specifies the side of L̄ on which E3 lies.
The predicate is implemented in C++, see timings in sec. 7.

Now, let us consider the tangent at point (x(t), y(t)) of the
parametric ellipse Et. The implicit equation of this line is
(y−y(t))x′(t)−(x−x(t))y′(t) = 0. If we replace x(t) and y(t)
from (2) we obtain a polynomial of degree 2 with respect to
t. We replace x, y with x(r), y(r) from ellipse Er and obtain
a quadratic polynomial with respect to r the solutions of
which correspond to the points where the tangent line of Et

intersects Er. For this line to be tangent to both ellipses,
the discriminant Λtr(t) of the polynomial should vanish. A
bitangent line is external to both ellipses iff its equation
yields the same sign when evaluated at an interior point of
each ellipse. For Et, the sign is always positive, because
the equation evaluates to 2αβ(1 + w2)(1 + t2). Hence, to
determine the type of a bitangent line, it suffices to compute
the sign of a quadratic polynomial, evaluated at an algebraic
number of degree 4. This degree is optimal with respect to
the algebraic numbers employed.

Now let t1 < t2 < t3 < t4 be the solutions of Λtr(t). Let
µ correspond to an internal bitangent and ǫ to an external
one. Then (t1, t2, t3, t4) correspond to a cyclic permutation
of (µǫǫµ). Given 2 ellipses, in order to determine the permu-
tation of their bitangents, it suffices to determine the type
of exactly two bitangents. Hence, we arrive at the following:

Theorem 3.2. The relative position of Es with respect to
an external bitangent of ellipses Et, Er reduces to the sign of
Λts(t), which has degree 4, over t̂, which is a root of Λtr(t)
(also of degree 4). Now sign(Λts(t̂)) = −1, 0, or 1 iff Es

does not intersect, is tangent to, or intersects the bitangent
respectively.

4. IMPLICIT APPROACH TO κ3

Given 3 ellipses, we consider their external tritangent cir-
cle, known as their Voronoi circle. If there are two such
circles, we assume that one is specified. We wish to decide
the position of a fourth ellipse relative to this circle. This
section considers all ellipses in implicit form and applies cer-
tain algebraic techniques, discussed in [11].

Let
√
s be the radius of the tritangent circle and (v1, v2)

its center. Using the discriminant as above for each of the 3
ellipses, we get

∆1(v1, v2, s) = ∆2(v1, v2, s) = ∆3(v1, v2, s) = 0. (6)



Lemma 4.1. A solution (v̄1, v̄2, s̄) of system (6) corre-
sponds to an external tritangent circle iff s̄ is the smallest
positive root of all ∆i(v̄1, v̄2, s), i = 1, 2, 3. If s−0 , s

+
0 are the

smallest and largest positive roots of ∆0(v̄1, v̄2, s), where ∆0

corresponds to the query ellipse, then:
• s̄ ≤ s−0 ⇔ the query ellipse is outside the circle and is
tangent iff s̄ = s−0 ,
• s̄ ∈ (s−0 , s

+
0 ) ⇔ the query ellipse intersects the circle,

• s̄ ≥ s+0 ⇔ the query ellipse is inside the circle and is
tangent iff s̄ = s+0 .

Proof. Let (v̄1, v̄2, s̄) be a solution of the system. (⇒):
Let s̄ be the smallest positive root of all ∆i(v̄1, v̄2, s), i =
1, 2, 3. Then the circle (v̄1, v̄2, s̄) is externally tangent to
all three ellipses, therefore it is an external tritangent circle.
(⇐): Let the circle (v̄1, v̄2, s̄) be an external tritangent circle
to all three ellipses. Since this cirlce is externally tangent to
each one of the ellipses, s̄ will be the smallest positive root
of each ∆i(v̄1, v̄2, s), i = 1, 2, 3.

Now consider all circles C(v̄1, v̄2, s), as s grows from zero
to infinity, assuming that point (v̄1, v̄2) lies outside a query
ellipse E0. When s = 0, C is a point outside E0. When s
is at infinity, C becomes an infinite circle enclosing E0. As
s grows from zero, it passes from the roots of ∆0(v̄1, v̄2, s).
At each one of these (at most four) points, C is tangent to
E0. When s < s−0 , C is outside E0, and when s > s+0 , C
encloses E0. In all other cases, it intersects E0 due to the
topology of the two closed curves C and E0.

Among the solutions of this system, the external tritangent
circle of interest may or may not have the smallest radius.

To reduce the mixed volume of system (6), we remove
solutions at infinity by setting

q = v2
1 + v2

2 − s. (7)

Now the discriminant system becomes

∆1(v1, v2, q) = ∆2(v1, v2, q) = ∆3(v1, v2, q) = 0, (8)

and has mixed volume 184. We have computed the resultant
as a polynomial of degree 184 in q. Adding eq. (7) to this
system yields a system in v1, v2, q, s with mixed volume 184.

Since each ∆i is a discriminant, an equivalent system to
(8), with the same mixed volume, contains ϕi = 0, ∂

∂λi

ϕi =

0, for i = 1, 2, 3, where ϕi is the characteristic polynomial
of ellipse i and the Voronoi circle. This system has sub-
stantially smaller coefficients than (8). We solved this sys-
tem numerically with PHCpack

2 which implements homo-
topy continuation, and found up to 22 real solutions3. The
total number of complex solutions was 184.

Theorem 4.2. Three ellipses admit at most 184 complex
tritangent circles. This is tight since there are triplets at-
taining this number.

Proof. The mixed volume provides an upper bound while
the degree of the resultant (of our example) gives a lower
bound.

Recall that in the case of 3 circles, the number of tri-
tangent circles is 8 and the corresponding predicate is of
algebraic degree 2. Our theorem generalizes to all types of

2http://www.math.uic.edu/∼jan/PHCpack/
3We checked the real roots by hand.

conics, according to F. Sottile 4. The interesting open ques-
tion is how many of these circles can be real. F. Ronga
suggests a construction where three conics have at least 136
real tritangent circles. However, we have not been able to
achieve such a configuration with three disjoint ellipses.

With bitsize as in table 2, the timings of PHCpack were
23.85, 34.52, 38.36, and 38.44 sec respectively. In [3], the
time to solve the system describing the Voronoi circle is sev-
eral minutes. We also tried the iCOs interval-arithmetic
solver 5 on the system of ∆i’s with B = 60. It detects a de-
generacy for κ3 (three ellipses and a query one all externally
tangent to the same circle) in about 213 sec on a 1GHz P3.
Recently, with some preliminary experiments (thanks to D.
Lazard) exploiting the Gröbner base computation, we were
able to isolate all real roots of the system in about 2 min
with GB-Rs.

5. PARAMETRIC APPROACH TO κ3

We use the parametric representation of ellipses to study
the external bitangent circles. In subsec. 5.1 we shall apply
this discussion to external tritangent circles.

We express the Voronoi vertex by the intersection of 2
bisectors. The bisector of two ellipses is the locus of points
at equal distance from the two ellipses. Given ellipses Et, Er

and points P,Q on each of them, the bisector is obtained as
the intersection V of the normal lines at the ellipses, at P ,

Q, when |−−→PV | = |−−→QV |. This expresses all points on the
bisector except for a finite number of them, namely where
the two normals are parallel.

Point V (v1(t, r), v2(t, r)) is the solution of a linear sys-
tem of two equations, expressing the normals respectively
at points with parameter values t and r. A point defined
by parameter value t will also be referred to as point t, or
t ∈ Et. The coordinates’ denominator Dtr vanishes iff the
normals are parallel to each other.

The bisector is

B(t, r) =
`

v1(t, r) − x(t)
´2

+
`

v2(t, r) − y(t)
´2 −

`

v1(t, r) − x(r)
´2 −

`

v2(t, r) − y(r)
´2
, (9)

which is rational in t, r with denominator Dtr. In the case
of ellipses, the numerator is a bivariate polynomial of degree
6 in t and 6 in r. It can be shown that it also vanishes when
Dtr vanishes. Therefore it includes both bisector points at
infinity as well as points where the normal vectors of the
two ellipses coincide (i.e. at the minimum distance between
two ellipses). We now consider the bitangent circles.

Proposition 5.1. Given 2 ellipses and a point on the
first, there may exist up to 6 real bitangent circles, tangent
at the specific point. This bound is tight.

Proof. If we fix t, equation (9) has 6 complex solutions
with respect to r. Therefore 6 is an upper bound for the
number of possible real bitangent circles. Moreover, a con-
figuration of two ellipses that have 6 real bitangent circles
can be attained, see fig. 2.

Note that only one such circle is external to both ellipses.
We call this unique external bitangent circle the Apollonius
circle of the 2 ellipses, e.g. the third circle from the right in

4Personal communication, 2004.
5http://www-sop.inria.fr/coprin/ylebbah/icos/



Figure 2: The 6 bitangent circles: The Apollonius
circle is the 4th from the left

A

P
Q
F

V

ǫ

A

P

QF

V

ǫ

Figure 3: The two cases for defining an Apollonius
arc

fig. 2. The Voronoi circle of 3 ellipses is where 3 Apollonius
circles coincide.

Given ellipses Et, Er as in fig. 4, the tangency points of
any Apollonius circle lie inside their Convex Hull (CH).
Thus, for the parameterization (2), there is at least an i-
point of Et, Er, Ēt, Ēr that does not lie inside CH. This im-
plies that we can always search for a Voronoi circle within a
continuous range on the boundary of an ellipse or its twin.

Now, consider all bitangent circles to Et, Er, tangent at
point t on Et. Also, consider the lines from t tangent to Er

at points r1, r2. They define two arcs on Er. Arc (r1, r2),
whose interior points lie on the same side of line r1r2 as t,
is called a visible arc.

Property 5.2. Visible arc (r1, r2) contains only tangency
points of bitangent circles at t, which are externally tangent
to Er. These include the Apollonius circle of Et, Er, tangent
at t ∈ Et.

Proof. From a point Q inside the visible arc (fig. 3),
an internally tangent circle to Er cannot be tangent at t,
because the tangent line at Q leaves t and Er on different
hyperplanes. External bitangent circles at r1 and r2 are tan-
gent to Et at points t1, t2 respectively. Since t lies between
t1 and t2, there exists some point r between r1 and r2 that
corresponds to the Apollonius circle tangent to r and t of
Er and Et respectively.

The visible arc may also include some other bitangent cir-
cles internally tangent to Et. The subset of the visible arc
that contains only the Apollonius circle is called an Apollo-
nius arc.

Lemma 5.3. Given is a point P = (x(t), y(t)) on Et.
Consider the line ǫ, tangent at P (cf. fig. 3). If ǫ does not
intersect Er, then the visible arc is an Apollonius arc. Oth-
erwise, the endpoints of the Apollonius arc are: the inter-
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P
P ′

Q
Q′

V
V ′

θ
θ′

U
T

Figure 4: The radius of the Apollonius circle as we
move along the boundary

ftr

t

ftr

t

Figure 5: A sample graph of f

section of ǫ with Er and the endpoint of the visible arc which
lies on the opposite side of Et with respect to ǫ.

Proof. If ǫ does not intersect Er, then it leaves each
ellipse in a different hyperplane. In this case, a circle inter-
nally tangent to Et at t, cannot be tangent to Er as well.
Thus, according to the visibility property, the visible arc is
an Apollonius arc. If ǫ intersects Er, then a circle internally
tangent to Et at t can be tangent to Er at a point that lies
in the same hyperplane of ǫ as Et. Therefore, only the part
of the visible arc of Er that lies in the opposite hyperplane
is an Apollonius arc.

We thus computed arc (r1, r2) or (r1,∞) ∪ (−∞, r2) on
Er which contains only the tangency point of the Apollonius
circle, isolating it from the tangency points of non-external
bitangent circles.

Corollary 5.4. Given a point t0 on Et, it is possible to
determine the unique root ri of B(t0, r), from equation (9),
which lies on the Apollonius arc of Er with respect to t0.

Given a point (x(t), y(t)) on Et, the squared radius of the
Apollonius circle of Et, Er tangent to Et at that point is
denoted by ftr(t). From the above, it follows that: ftr(t) :=
`

v1(t, r̂) − x(t)
´2

+
`

v2(t, r̂) − y(t)
´2

, where r̂ is the root of
(9) that corresponds to the Apollonius circle, when we fix t.
Thus,

ftr(t) =
1

4
Pt(t)

„

Atr(t, r̂)

(1 + t2)(1 + r̂2)Dtr(t, r̂)

«2

. (10)

In the above equation, Pt(t) has no real roots, Atr is a bi-
variate polynomial of degree 2 in t and 4 in r and Dtr 6= 0,
unless the normals are parallel.

In the sequel, we assume that ftr(t) is defined on a contin-
uous interval (a, b) (left-hand side in fig. 5). If the interval
is of the form (−∞, a) ∪ (b,∞) (right-hand side of fig. 5),
then the problem is identical or easier.



Lemma 5.5. Function ftr(t) consists of two strictly mono-
tone parts, one decreasing and one increasing.

Proof. Although the proof can be intuitive, we provide
a more formal one. There exist two single points P and Q on
Et and Er respectively whose distance is minimal (fig. 4).
As we move from P to P ′ (in CW orientation), we have:

|−−→PV |+|−−→V Q| < |
−−−→
P ′V ′|+|

−−−→
V ′Q′|, since

−−−→
P ′V ′ and

−−−→
V ′Q′ cross the

tangent lines at P and Q respectively and angle θ′ = P̂ ′V ′Q′

is smaller than θ = P̂ V Q . Therefore the radius of the
Apollonius circle grows monotonically to infinity. The same
arguments can be used to show that the radius also grows
when we move in CCW orientation.

Fig. 5 shows a graph of f . The figure is correct in terms of
the function’s monotony. We have not proven the function’s
convexity, though this is suggested by numerical examples.
To compute a value of ftr(t) at a given point t we have to
determine r̂. First, we compute a proper Apollonius arc
(r1, r2) on the second ellipse. This is an isolating interval of
B(t, r) that contains root r̂ which corresponds to the Apol-
lonius circle. Now we can compute ftr from equation (10).

5.1 The tritangent circle
In the parametric space, the intersection of two bisectors

involves 3 variables, so in order to express the Voronoi cir-
cle, we need the intersection of three bisectors. The system
B(t, r) = B(t, s) = B(r, s) = 0 has a non-optimal mixed
volume of 432. We were not able to factor its resultant. We
solved this system with the SYNAPS package of multivariate
Bernstein subdivision in 3 msec to 1 min, depending on how
large the initial domain was.

As an alternative, we consider the system:

Q(t, r, s) = B(t, r) = B(t, s) = 0 (11)

Here, Q is the condition that makes the three normals of
each ellipse intersect at a single point. Q is a polynomial
of total degree 12, 4 in each variable t, r, s. Again, this
system has a mixed volume of 432. But now, we construct
a resultant matrix whose determinant is factored: We have
proven that there are factors which have no real roots, or
their roots correspond to the normals lying on the same
line. In every example we have tried, if we eliminate all
these factors at appropriate powers, we obtain a polynomial
of optimal degree (184) that contains all relevant roots. We
conjecture that this is the general case. Currently, we have
proven that the factors exist, but not with such exponent.

For (11), PHCpack took about a minute to solve with
10-bit coefficients, two times slower than in the implicit ap-
proach. We now turn to a subdivision method which is
faster. We actually solve only for t, but we show that if we
know t with sufficient precision, then we are able to answer
κ3. The idea is that we slide an Apollonius circle tangent
to two ellipses, trying to make it tangent to the third one as
well. This is implemented by successively smaller intervals
on the first ellipse, which define the point of tangency on
this ellipse and, moreover, allow us to compute the points
of tangency on the other ellipses.

The Voronoi circle is the circle which is externally bitan-
gent to Et, Er, Es at the same time. The tangency point of
the Voronoi circle on Et can be defined by the condition:

Strs(t) = 0, where Strs(t) = ftr(t) − fts(t).

Figure 6: Starting intervals for t, r, s (and region of
the Voronoi vertex)

We factor this polynomial as follows:

Strs(t) =
Pt(t)(Q1 −Q2)(Q1 +Q2)

4
ˆ

(1 + t2)(1 + r2)(1 + s2)Dtr(t, r)Dts(t, s)
˜2

(12)
where Q1 and Q2 are functions of (t, r, s).

We use a customized bisection to find a root of Strs(t).
We only need to solve Q1 −Q2 and Q1 +Q2, since the rest
of the terms in (12) are always positive.6 In fact, we only
solve Q1 −Q2, because Q = (Q1 −Q2)/(1 +w2

1). However,
we still need Q1 +Q2 to determine the sign of Strs.

Now we determine starting intervals for the subdivision.
Consider the complements ǫ1, ǫ2 of the supporting hyper-
planes of the two external bitangents of two ellipses E1, E2

and a query ellipse E that does not intersect the other two.
Let |ǫi| = 0 or 1 depending on whether E ∩ ǫi = ∅ or not.
Let C be the interior of the convex hull of E1, E2. Then,
the number of Voronoi circles is |ǫ1| + |ǫ2|, if E ∩ C = ∅, or
2 − |ǫ1| − |ǫ2|, otherwise.

So, we can find a starting interval that contains the tan-
gency point of the Voronoi circle. In the case where two
Voronoi circles exist, we assume that we know in advance
which one we want and therefore we pick a proper sub-
interval. We end up with an interval that contains only
one Voronoi circle, and hence Strs has a unique root in the
starting interval.

We express the Voronoi circle between Et, Er, Es implic-
itly by an interval containing t, such that (x(t), y(t)) is the
tangency point on Et. Note that this interval might contain
tangency points of other non-external tritangent circles. We
start by the initial interval [a, b] that contains the tangency
point of the Voronoi circle and later, if necessary, we subdi-
vide this interval by bisection. Let Atrs denote an enclosing
interval [a, b] where the tangency point on Et of the Voronoi
circle of Et, Er and Es lies. The subdivision operator (∗) is
defined as follows:

Atrs ∗ Atrs :=

8

<

:

[a+b
2
, a+b

2
], if Strs(

a+b
2

) = 0,
[a, a+b

2
], if Strs(a)Strs(

a+b
2

) < 0,
[a+b

2
, b], otherwise.

We denote multiple subdivisions by the power operator.
(Atrs)

k represents an interval [a, b] that has been subdivided
k times and its length is 2−k(b− a).

5.2 Deciding κ3

This subsection shows how the above algorithm decides
κ3 and establishes its exactness.

6These two polynomials appear because we took the differ-
ence of squared functions.



t

ftr(t) fts(t)

fth(t)

(Atrh)m(Atrs)
n

Figure 7: Deciding κ3

Given ellipses Et, Er, Es we want to determine the relative
position of ellipse Eh with respect to the Voronoi circle of the
first 3. The answer of κ3 is False, True, or 0, depending
on whether Eh is outside, intersects the open Voronoi disk,
or is externally tangent to the Voronoi circle of Et, Er, Es.

Lemma 5.6. Let x ∈ [a, b] be the root of Strs(x). If
Strh(x) > 0, then Eh intersects the Voronoi circle of the
other 3 ellipses. If Strh(x) < 0, then Eh lies outside the
Voronoi circle. Otherwise, Eh is externally tangent to this
circle.

Proof. If Strh(x) > 0, then there exists a bitangent cir-
cle of Et, Eh tangent at point x of Et, which lies inside
the Voronoi circle of Et, Er, Es. Therefore, Eh intersects
the Voronoi circle. If Strh(x) < 0, then the external bitan-
gent circle of Et on x and of Eh contains the Voronoi circle.
Therefore, Eh lies outside the Voronoi circle. If Strh(x) = 0,
the two Voronoi circles coincide; this is a degerate configu-
ration.

Observe that there is a neighborhood U of x where
sgn(Strh(u)) = sgn(Strh(x)), ∀u ∈ U . In our implementa-
tion, to find U , it suffices that we have separated the roots of
Strs,Strh. Fig. 7 shows an example where the query ellipse
intersects the Voronoi circle.

We now establish the exactness of our algorithm, by com-
puting the number of bits that suffice in order to certify the
predicate. We shall use the system from sec. 4, defined after
(8), because it has optimal mixed volume: ∆1(v1, v2, q) =
∆2(v1, v2, q) = ∆3(v1, v2, q) = q − v2

1 − v2
2 + s = 0. Let us

eliminate v1, v2, q; the resultant R(s) is of degree 184 in s
and has coefficient bit size 3 · 56 · τ∆ = 168τ∆ [11]. Here 56
equals the mixed volume of the system ∆i,∆j , q−v2

1−v2
2 +s,

if we consider s as a parameter, and τ∆ denotes the bit size
of the coefficients of ∆i, where 1 ≤ i, j ≤ 3 and i 6= j.

The minimum distance between two roots of a polyno-
mial P (i.e. separation bound) of degree d and bit size τ is

sep(P ) ≥ d−(d+2)/2(d+ 1)(1−d)/22τ(1−d) [27], thus the num-
ber of bits that we need in order to compute s is no more
than 1389 + 30744 τ∆.

In order to compare two radii s1 and s2, which are roots
of polynomials R1 and R2 respectively, we need a bound for
|s1−s2|. Notice that |s1−s2| ≥ sep(R1R2), where the poly-
nomial R1R2 has degree 368, since we multiply two polyno-
mials of degree 184, and coefficient bit size 8 + 336τ∆. The
latter follows since we multiply two polynomials of bit size
168τ∆, so their product has, in the worst case, a coefficient
of magnitude 184 ·22·168τ∆ , or of bit size ⌈lg 184+2 ·168τ∆⌉.

We conclude [27] that the number of bits sufficient to com-
pare two roots of R1 and R2 and thus to compare the two
radii s1 and s2 is 1508 + 30324τ∆, which corresponds to
sep(R1R2) divided by 2.

This bound is close to tight, since the polynomials R1 and
R2 are obtained as resultants of systems with optimal mixed
volume, thus their degree is 184 and they are irreducible in
the general case. Moreover the separation bound is tight
(up to some constants), namely the worst case separation
bound can be attained by Mignotte’s polynomials [27].

If the ellipses are given parametrically, in order to com-
pute the implicit representation (3), the bit size increases by
a factor of 6. If the input coefficients have τ bits, then τ∆ =
6τ . If the order of convergence of our method is φ, then the
number of iterations needed for κ3 is logφ (1508 + 181944τ ).

6. CONFLICT REGION TYPE (κ4)
This predicate takes as input ellipses Et, Er, Es, Eh and

determines the type of conflict of ellipse Eq with the Voronoi
edge whose vertices are the centers of the Voronoi circles de-
fined by Et, Er, Es and Et, Er, Eh respectively. The conflict
region is the set of points V on the Voronoi edge where
an Apollonius circle of Et, Er centered at V intersects Eq,
and it may fall into one of 6 cases [12, 20]: NoConflict,

Interior, 123-Vertex, 124-Vertex, TwoVertices, En-

tireEdge (fig. 8).
As in the previous section we estimate t3, t4, such that

t3 ∈ Atrs, t4 ∈ Atrh be the tangency points of the two
Voronoi circles and assume t3 < t4. Then, table 1 shows
how we can decide κ4 by applying κ3. The case t3 > t4 is
treated symmetrically.

The (degenerate) case where t3 = t4 implies there is a
unique Voronoi circle tangent to the 4 given ellipses, which
can be detected by κ3. Then, the Voronoi edge degenerates
to a vertex and κ4 reduces to κ3 with arguments any 3 of the
4 ellipses and Eq. The possible outcomes are NoConflict,

EntireEdge.

case 1,2 Eq is outside both Voronoi circles. It lies in the region
between the Voronoi circles and ellipses Et, Er, iff the
tangency points of the Voronoi circles (there are two
of them) of Et, Er, Eq lie in [t3, t4] (Interior). Other-
wise, Eq does not conflict with the bisector
(NoConflict). Note that it is not possible to have
both κ3 equal to 0.

case 3,4 The query ellipse conflicts with only one of the Voronoi
circles, namely Et, Er, Es (or Et, Er, Eh). The cen-
ter of the (unique) Voronoi circle of Et, Er, Eq lies on
the Voronoi edge, therefore the predicate answers 123-

Vertex (or 124-Vertex), respectively.

case 5,6 Eq conflicts with both Voronoi circles. It has no com-
mon points with the region between Et, Er, Es, Eh, iff
the tangency points of the Voronoi circles of Et, Er, Eq

lie in [t3, t4]. In this case, there is a part of the Voronoi
edge that does not conflict with Eq (TwoVertices).
Otherwise, Eq conflicts with the entire edge
(EntireEdge).

7. EXACT IMPLEMENTATION
We report on our implementations in C++ and Maple,

and illustrate them with a series of experiments. We offer



case κ3(Et, Er, Es, Eq) condition κ3(Et, Er, Eh, Eq) κ4

1
0 ∨ False

(Atrq)
k ∩ [t3, t4] = ∅

0 ∨ False
NoConflict

2 (Atrq)
k ⊆ [t3, t4] Interior

3 True (⇒ (Atrq)
k ⊆ [t3, t4]) 0 ∨ False 123-Vertex

4 0 ∨ False (⇒ (Atrq)
k ⊆ [t3, t4]) True 124-Vertex

5
True

(Atrq)
k ⊆ [t3, t4]

True
TwoVertices

6 (Atrq)
k ∩ [t3, t4] = ∅ EntireEdge

Table 1: Deciding κ4

(1)-NoConflict (3)-123-Vertex (5)-TwoVertices

(2)-Interior (4)-124-Vertex (6)-EntireEdge

Figure 8: All cases of κ4, where the query ellipse is shaded

some comparison with existing generic algebraic software for
κ3. All tests ran on a P4 2.6GHz-CPU with 1GB of RAM,
using Debian Linux with a 2.6.10 kernel.

We have implemented predicates κ1, κ2 in C++ using the
specialized algorithms of [13, 14], which are implemented in
the SYNAPS library [24].

The real algebraic numbers are in isolating interval rep-
resentation, that is by a square free integer polynomial and
an interval with rationals endpoints. Since predicates κ1

and κ2 involve computations with real algebraic number of
degree up to 4 we used the implementation based on the
algorithms of [13], which avoids subdividisions both for real
solving and comparison.

We used extended integer arithmetic from gmp. We also
performed tests with the CGAL filtered type Lazy exact nt,
but the results were not better. The reason is that the size
of the various quantities is rather large and the filter almost
always failed. This implies that geometric filters may be
used, cf. sec. 8.

For each test we randomly generated 1000 instances (point
and 2 ellipses, or 3 ellipses), with the coefficients uniformly
distributed between 1 and 2B , B ∈ {10, 30, 100, 300}. Table
2 summarizes average timings; for κ1 and κ2 runtimes grow
sub-quadratically in B. Note that for κ2 half of the time is
spent for the solution of the bivariate system and the other
half is spent for the computation of the the relative position
of the third ellipse.

B predicate κ1[ms] predicate κ2[ms]
10 0.45 6.15
30 0.94 16.46
100 3.68 73.21
300 17.3 396.82

Table 2: Timings from our implementation in C++
utilising the implicit approach

The implementation of κ3 with parametric ellipses was
done in Maple 9. We have implemented a small algebraic
number package that performs exact univariate real root iso-
lation, comparison and sign evaluation of univariate (bivari-
ate) expressions over one (two) algebraic number(s), using
Sturm sequences and interval arithmetic over Q.

In order to decide the degenerate cases we have to go up to
the separation bound. This turned out to be quite impracti-
cal, because of the number of iterations needed. We suspect
a degeneracy if after a certain number of iterations, our al-
gorithm has not yet decided the predicate. Then, given the
ellipses Et, Er, Es and the query one Eh, we compute the
resultants of system (11) R1(t), R2(t), with respect to the
two triplets t, r, s and t, r, h. If all four ellipses share a com-
mon Voronoi circle, then R1 and R2 have a common root.
In this case G(t) = gcd(R1, R2) 6= 1. Given R1, R2 and
G, we isolate the roots of the polynomials and run our al-



gorithm with a better separation bound. This turned out
to work very well in practice. With 10-bit coefficients, the
computation of the resultant of (8) takes about 5 min with
interpolation, while of (11) it is computed within 10 sec
with two applications of Sylvester resultants. This shows
that the parametric system, not only provides a way to an-
swer κ3 with geometric arguments, but also allows faster
computation of the resultant.

We performed several preliminary experiments with dif-
ferent triplets of ellipses and circles. We consider a query
ellipse (or circle) with its centre moving along a line and
measure the time taken by κ3 to decide its relative position
with respect to the Voronoi circle. Among the various con-
figurations, there were both degenerate and non-degenerate
cases, although the former are very hard to generate for el-
lipses.

The ellipses have 10-bit coefficients in their parametric
form. Fig. 9 shows the 3 ellipses (or circles) and the query
one in its initial, middle and final position. In fig. 10 we
present the times for 3 test suites: The first two graphs in-
volve ellipses that do not share a common Voronoi circle with
the query one, which center moves along the line y = −x.
Notice that the time increases as we approach a degenerate
configuration. Although the hardest cases took about 5s,
in 90% of the cases we can decide in less than 2.5s. The
third graph involves circles, but as the query circle moves
along y = 0, a degenerate configuration is attained. In that
case the algorithm has to compute the resultants. This cor-
responds to the peak of the graph which is 30s after 100
iterations. In all other cases the timings are less than 3s.

Our implementations are exact but can also run with any
prescribed precision, e.g. for rendering purposes. In partic-
ular, a much faster execution is possible for the above al-
gorithms if we restrict ourselves to machine precision, as in
[18]. Fig. 11 presents experiments using machine precision
and 32 bit coefficients. With this inexact approach, we can
decide the predicate in less than two seconds in all cases.

8. FUTURE WORK
We are implementing our methods in C++, using Maple

as a testbed of ideas. Our final goal is a CGAL implemen-
tation. Working in C++ will allow us to use one of the
powerful interval arithmetic packages in C++.

We can speed up the subdivision process by noticing that
Strs is strictly monotone in the starting interval [a, b] and
that it has a unique simple real root in it. Since we can
not prove its convexity we can not guarantee the conver-
gence of a Newton-like subdivision, which has quadratic con-
vergence rate, but we can use Brent’s (also known as Van
Wijngaarden-Dekker-Brent’s) method which is superlinear
[9]. Let [a, b] be an interval during the subdivision process
and m = a+b

2
. The new endpoint, i.e. x, is given by the

following iterative scheme x = m + P
Q

, where R = Strs(m)
Strs(b)

,

S = Strs(m)
Strs(a)

, T = Strs(a)
Strs(b)

, P = S(T (R − T )(b − m) − (1 −
R)(m − a)) and Q = (T − 1)(R − 1)(S − 1). The term P

Q

corresponds to a correction factor. If x /∈ [a, b] then the new
estimation is m. This method is a combination of bisection
and inverse quadratic interpolation (similar to the secant
method) and ensures that the new estimation will always
lie between the interval [a, b]. The convergence rate of the
method is φ = 1.618 in general. Superlinear convergence is
important for obtaining the number of bits required in the
degenerate cases.
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Figure 11: Execution time of κ3 as function of the
position of the query ellipse’s (circle’s) center, using
machine precision

It is possible to certify our algorithm based on construc-
tive root separation bounds e.g. [10, 26], which should be
tighter than the static bounds now used.

We conclude with geometric constraints that permit to
derive bounds for the Voronoi vertex, thus speeding up the
subdivision.

Theorem 8.1. Circle C(V,
√
s) is externally tangent to a

given ellipse iff the coefficients of ϕ(λ) satisfy ∆ = 0 and
one of the following: Either V lies outside the closed disk
of T (x, y), defined in sec. 3, or V lies inside the closed disk
T (x, y) and E(v1, v2) > J1s. The latter means, for fixed s,
that V is outside the ellipse E−J1s = 0, which has the same
foci as E but different axes.

Proposition 8.2. Consider two ellipses E1, E2 and point
V outside of both. Let δ1 < δ2 be the distances between V
and the ellipses. Then the center of an external bitangent
circle does not lie in circle C(V, δ2−δ1

2
).
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