
Quanti�er elimination for small degree polynomialsChrysida Galanaki1 and Elias Tsigaridas21 Dept. of Informatis and Teleommuniations, University of Athens, Greee.2 INRIA Méditerranée, and Laboratoire I3S CNRS and the University of Nie, Sophia-Antipolis Frane.hysida(AT)di.uoa.gr, elias.tsigaridas(AT)inria.frAbstrat. We present a speial purpose quanti�er elimination algorithm, whih an eliminate thequanti�er 9x, in the formula (9x 2 IR)[p(x) ^ g℄, where p(x) is a polynomial of degree � 4, and g is apolynomial inequality.Keywords: Quanti�er elimination, �rst order theory of reals, small degree polynomial equations1 IntrodutionThe problem of quanti�er elimination for the �rst-order theory of real numbers is an interesting hallenge,mostly beause it lies in the intersetion of many areas of mathematis and theoretial omputer siene.Sine the problem proved deidable, due to a elebrated work of Tarksi [8℄(see also [7℄), a lot of e�ortswere put on the problem, e.g. [6, 1℄ and referenes therein. However, due to high omplexity of the generalproblem, several algorithms and variants were proposed for speial ases, e.g. [3, 11, 10, 5, 9, 4℄. In this notewe present a speial purpose algorithm for eliminating the quanti�er from the formula(9x 2 IR)[p(x) = 0 ^ (g(x)� 0)℄;where p, onsidered as a polynomial of degree � 4 w.r.t. x, with oe�ients that are polynomials inIR[y1; : : : ; yr℄, suh that the leading oe�ient is always non-zero, g is a polynomial in IR[y1; : : : ; yr; x℄,and � 2 f<;=; >g. It is without loss of generality to assume that the degree of g with respet to x is stritlysmaller than that of p.Our method is based on the method of virtual substitution [9℄, whih an treat in a formal and elegantway the ases where the degree of p is � 2. In these ases, roughly speaking, the real roots of p are omputedsine only square roots are involved, and their values are substituted in g. However, extending this methodto ubis and quarti is a very di�ult task, sine in this ase omputation of the real roots using radialsdemands omputations with omplex numbers and estimation of all the roots. Nevertheless, Weispfenning[10℄ treated the ubi ase, using the derivatives of p, but it is questionable whether and how his approahould be extended to the quartis.In what follows we will present an algorithm based on Sturm(-Habiht) sequenes, that an be extendedup to quintis. The novelty of our approah onsists of (i) representing the real roots of a polynomialin isolating interval representation, whih ould be omputed even in the ase of parametri oe�ients,and (ii) using Sturm-Habiht sequenes for sign evaluations, the good speialization properties of whihguarantee the orretness of our algorithm for any value of the input parameters. Last but not least, ifwe are able to treat the ase where p is a quarti, then we an extend the algorithm to treat ases, like(9x 2 IR)(9y 2 IR)[(p1(x; y) = 0 ^ p2(x; y) = 0) ^ (g(x; y)� 0)℄, where the total degree of p1 and p2 is 2.This is so beause the resultant of p1 and p2 w.r.t. x or y, is a quarti and we an ompute the real rootsof the system, whih are pairs of real algebrai numbers, in isolating interval representation, even in thease where the oe�ients of the polynomials of the system are parameters.The rest of the paper is strutured as follows. In the next setion we present in detail the quadrati ase,while Se. 3 presents the ubi and part of the results for the quarti.



(1) � < 0 fg f+1g(2) � = 0 f2g 1 = � a12a2 f+1; 0;+1g(3) � > 0 f1; 1g 1 �= [f; (�1;� a12a2 )℄ f+1; 0;�1; 0;+1g2 �= [f; (� a12a2 ;+1)℄Table 1. IDS of a quadrati polynomial2 Quadrati polynomialsLet Isolation and Disrimination System (IDS) of a polynomial p 2 IR[x℄ be the �nite sequene of di�erentvalues of sgn(p(x)), as x ranges from �1 to +1, and the isolating interval representation of its real roots,e.g. [2℄. This representation is one of representations of real algebrai numbers and it onsists of an intervalthat ontains the real root and a square-free polynomial that has only this real number, as a real root inthis interval.2.1 IDSLet p = a2x2 + a1x+ a0 be a quadrati polynomial, where for reason of simpliity, we assume that a2 > 0.The IDS of p appears in Tab. 1, where � = a21 � 4a0a2 is its disriminant. The seond olumn ontainspolynomial inequalities that the oe�ients of the polynomial should satisfy, so that the �nite sequene ofdi�erent values of sgn(p(x)) is that of the last olumn. In the third olumn there are the multipliities ofthe real roots, and in the fourth their isolating interval representation, if any. We say that p is of type 1, T1,if its disriminant is negative, that is it has no real roots. In this ase sgn(f(x)) = +1, for all x 2 IR.The IDS allows us, given a quadrati polynomial with parametri oe�ients, to determine quanti�erfree formulae Ti(a2; a1; a0), where 1 � i � 3, that hold in IR, if and only if the polynomial is of type i.Lemma 1. Let p = a2x2 + a1x + a0, with parametri oe�ients, a2 > 0 and � = a21 � 4a0a2. Then(i) p of type 1 , T1 , � < 0, (ii) p of type 2 , T2 , � = 0, and (iii) p of type 3 , T3 , � > 0.Slightly modi�ations are needed in the ase where a2 < 0. If a2 = 0, we refer the reader to [5℄ for anextended study.2.2 Sign evaluationAssume that we have a polynomial p 2 IR[x℄, with positive leading oe�ient, of degree 2, and of some type(either 1, 2 or 3). Assume further a univariate polynomial g with parametri oe�ients. Our purpose is toompute quanti�er free formulae for the sign of g evaluated over a real root of p. To be more onrete, wewant to ompute quanti�er free formulae  d;n;i;j;�, where� d is the degree of p.� n = deg(g) � 1,� i = real root type of f from IDS (refer to Tab. 1),� j = root index of f (either 1 or 2), and� � 2 f�1; 0;+1g, s.t � = sign(g(j)).When p is T1 the problem is trivial. Moreover, it is without loss of generality to assume that the degree ofg is � 2. Thus we have the following ases: 2



� Let deg(g) = 0, i.e. g = b0. If p is either T2 or T3, then 2;0;?;?;�1 := b0 < 0; 2;0;?;?;0 := b0 = 0; 2;0;?;?;+1 := b0 > 0;where the question-mark means that the formula holds for any legal value.� Let deg(g) = 1, i.e. g = b1x+ b0, and let � = � a12a2 and � = � b0b1 .If p is T2, it has one double real root, whih is  = � a12a2 (Tab. 1). In this ase sign(g()) = sign(g(� a12a2 )) =sign(�b1a1 + 2 b0a2) = g[�=x℄, and  2;1;2;1;�1 := g[�=x℄ < 0; 2;1;2;1;0 := g[�=x℄ = 0; 2;1;2;1;+1 := g[�=x℄ > 0:If f is T3, then we proeed as follows. The isolating interval representation of the �rst real root is1 �= (f; (�1;� a12a2 )). If � b0b1 � � a12a2 , g[�=x℄ � 0, then sign(g(1)) = �1. Otherwise sign(g(1)) =� sign(f(� b0b1 )) = �f [�=x℄. Hene, 2;1;3;1;�1 := g[�=x℄ � 0 _ (g[�=x℄ > 0 ^ f [�=x℄ < 0); 2;1;3;1;0 := g[�=x℄ > 0 _ f [�=x℄ = 0; 2;1;3;1;+1 := g[�=x℄ > 0 _ f [�=x℄ > 0:The representation of the seond root is 2 �= [f; (� a12a2 ;1)℄. Now, if � b0b1 � � a12a2 , g[�=x℄ � 0, thensign(g()) = 1. Otherwise, sign(g()) = � sign(f(� b0b1 )) = �f [�=x℄. Hene, 2;1;3;2;�1 := g[�=x℄ < 0 _ f [�=x℄ > 0; 2;1;3;2;0 := g[�=x℄ < 0 _ f [�=x℄ = 0; 2;1;3;2;+1 := g[�=x℄ � 0 _ (g[�=x℄ < 0 ^ f [�=x℄ < 0):2.3 The general aseNow we onsider (9x 2 IR)[p(x) := a2 x2 + a1 x+ a0 = 0 ^ (g(x)� 0)℄, �;where a2 > 0, � 2 f>;=; <g, g is a polynomial of degree at most 1, with positive leading oe�ient, and �is quanti�er free formula. The other ases, that is when a2 � 0 and/or deg(g) > 2 ould be treated similarly.Using the results of the previous setions, and the notation that if � =<, resp. = or >, then s = �1, resp.0 or 1, it holds that � = ((b1 = 0) ^ ( 2;0;?;?;�))_((b1 6= 0) ^ ((T2 ^  2;1;2;1;�) _ (T3 ^  2;1;3;1;� ^  2;1;3;2;�))):3 Cubi polynomialsTo treat the ase of the ubi we work as in the ase of the quadrati polynomial. The IDS of the ubi ouldbe seen at Tab. 2. To onstrut the quanti�er free elimination formulae,  , that orrespond to the sign of3



(1) �1 < 0 ^ P = 0 f1; 1; 1g 1 �= �h; (�1;� 2a23a3 )�2 = � 2a23a3 f�1; 0;+1; 0;�1; 0;+1g3 �= �h; (� 2a23a3 ;+1)�(2) �1 < 0 ^ P < 0 f1; 1; 1g 1 �= �f; (�1;� W2�2 )�2 �= �f; (� W2�2 ;� a23a3 )� f�1; 0;+1; 0;�1; 0;+1g3 �= �f; (� 2a23a3 ;+1)�(3) �1 < 0 ^ P > 0 f1; 1; 1g 1 �= �f; (�1;� a23a3 )�2 �= �f; (� a23a3 ;� W2�2 )� f�1; 0;+1; 0;�1; 0;+1g3 �= �f; (� W2�2 ;+1)�(4) �1 > 0 ^ a0 = 0 f1g 1 = 0 f�1; 0;+1g(5) �1 > 0 ^ a0 < 0 f1g 1 �= (f; (0;+1)) f�1; 0;+1g(6) �1 > 0 ^ a0 > 0 f1g 1 �= (f; (�1; 0)) f�1; 0;+1g(7) �1 = 0 ^�2 6= 0 f1; 2g 1 = min��W2�2 ; �a2�2+a3Wa3�2 	 f�1; 0;�1; 0;+1g2 = max��W2�2 ; �a2�2+a3Wa3�2 	 f�1; 0;+1; 0;+1g(8) �1 = 0 ^�2 = 0 f3g 1 = � 2a23a3 f�1; 0;+1gTable 2. The IDS of the ubi.the evaluations of a polynomial g over the roots of p, we will use signed polynomial remainder sequenes,and to be more spei� Sturm-Habiht sequenes [1℄. Now, it is without loss of generality to assume thatthe degree of g is at most 2. By SR(P;Q) we denote the signed polynomial remainder sequene of P andQ, by SR(P;Q ; a) the evaluation of the sequene over a number a, and by var[SR(P;Q ; a)℄ the numberof the sign variations of the evaluated sequene. We need the following lemmaLemma 2 (Shwartz-Sharir). Let P;Q 2 IR[x℄ be (relatively prime) polynomials. If a < b are bothnon-roots of P and  ranges over the roots of P in [a; b℄, thenvar[SR(P;Q ; a)℄� var[SR(P;Q ; b)℄ =X sign (P 0()Q()):where P 0 is the derivative of P .Notie that, if P has only one real root in [a; b℄, then the previous lemma omputes sign(Q()).The idea is the following. We want to ompute sign(), where  is a real root of f , whih we havein isolating interval representation. We an ompute symbolially the two evaluated sequenes of Lem. 2,and we an onsider all the possible sign variations. This will give us all the possible formulae  . Tomake this more lear, let  �= (f; (a; b)), where f = a3x3 + a2x2 + a1x + a0, g = b2x2 + b1x + b0, anda3b2 6= 0. We pre-ompute the Sturm-Habiht sequenes for symboli values of the oe�ients. That is, let
SR(p; g) = (SR2;SR2;SR1;SR0), where

SR3 = f
SR2 = h22x2 + h21x+ h20
SR1 = h11x+ h10
SR0 = h0and h22 = K1h21 = K2h20 = K3h11 = �K1K7 +K2K6h10 = �K1K4 +K3K6h0 = �K1K7K5 +K1K4K8 �K6K3K8 +K6K2K5 �K7K2K4 +K3K724



(1) �1 > 0 ^ T > 0 ^�2 > 0 f1; 1; 1; 1g(2) �1 > 0 ^ (T � 0 _�2 � 0) fg(3) �1 < 0 f1; 1g(4) �1 = 0 ^ T > 0 f2; 1; 1g(5) �1 = 0 ^ T < 0 f2g(6) �1 = 0 ^ T = 0 ^�2 > 0 ^ R = 0 f2; 2g(7) �1 = 0 ^ T = 0 ^�2 > 0 ^ R 6= 0 f3; 1g(8) �1 = 0 ^ T = 0 ^�2 < 0 fg(9) �1 = 0 ^ T = 0 ^�2 = 0 f4gTable 3. Part of the IDS of the quartiwhere Ki; 1 � i � 8 elements of the Bézout matrix of p and g, whih isBézout(f; g) = 0BB�K1 K2 K3K6 K7 K4K7 K8 K51CCA = 0BB� b2 b1 b0a3b1 � b2a2 b0a3 � b2a1 �b2a0b0a3 � b2a1 b0a2 � b2a0 � a1b1 �a0b11CCANow we observe that0BB�a3 a2 a1 a00 h22 h21 h200 0 h11 h100 0 0 h0 1CCA0BB�a
3

b
3

a
2

b
2

a b1 1 1CCA = 0BB�SR3(a) SR3(b)
SR2(a) SR2(b)
SR1(a) SR1(b)
SR0 SR0 1CCA = (M1 M2: )or in a more ompat formsign(g()) = [var(M1)� var(M2)℄ � [sign(f(a) � f(b))℄:We (pre-)ompute all the possible sign ombinations, there are � 2�35 = 486, and derive the orrespondingformulae  2;?;?;f�1;0;�1g. Nevertheless, we are not sure that all the onditions are realizable. There aretehniques to further simplify these formulae.It is important to state that the previous tehnique ould be applied, only in the ase where we haveisolating intervals for the real roots, even in the ase where the oe�ients of the polynomials are parameters.This is exatly the use-fullness of the IDS.The IDS of the quarti is a little more ompliated, and we omit its detailed presentation for reasons ofspae. Part of it ould be seen in Tab. 3, where (�1 = A3 � 27B2), and�2 = b2 � a; �3 = 2 � bd; T = �9W 21 + 27�2�3 � 3W3�2;A =W3 + 3�3; �4 = d2 � e; T1 = �W3�2 � 3W 21 + 9�2�3;B = �dW1 � e�2 � �3; W1 = ad� b; T2 = AW1 � 9 bB;W2 = be� d; W3 = ae� bd; R = aW1 + 2b�2:Aknowledgments The seond author is partially supported by ontrat ANR-06-BLAN-0074 "Deotes".We thank prof. Volker Weispfenning for various disussions on the subjet.Referenes1. S. Basu, R. Pollak, and M-F.Roy. Algorithms in Real Algebrai Geometry, volume 10 of Algorithms andComputation in Mathematis. Springer-Verlag, 2nd edition, 2006.5
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