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tionThe problem of quanti�er elimination for the �rst-order theory of real numbers is an interesting 
hallenge,mostly be
ause it lies in the interse
tion of many areas of mathemati
s and theoreti
al 
omputer s
ien
e.Sin
e the problem proved de
idable, due to a 
elebrated work of Tarksi [8℄(see also [7℄), a lot of e�ortswere put on the problem, e.g. [6, 1℄ and referen
es therein. However, due to high 
omplexity of the generalproblem, several algorithms and variants were proposed for spe
ial 
ases, e.g. [3, 11, 10, 5, 9, 4℄. In this notewe present a spe
ial purpose algorithm for eliminating the quanti�er from the formula(9x 2 IR)[p(x) = 0 ^ (g(x)� 0)℄;where p, 
onsidered as a polynomial of degree � 4 w.r.t. x, with 
oe�
ients that are polynomials inIR[y1; : : : ; yr℄, su
h that the leading 
oe�
ient is always non-zero, g is a polynomial in IR[y1; : : : ; yr; x℄,and � 2 f<;=; >g. It is without loss of generality to assume that the degree of g with respe
t to x is stri
tlysmaller than that of p.Our method is based on the method of virtual substitution [9℄, whi
h 
an treat in a formal and elegantway the 
ases where the degree of p is � 2. In these 
ases, roughly speaking, the real roots of p are 
omputedsin
e only square roots are involved, and their values are substituted in g. However, extending this methodto 
ubi
s and quarti
 is a very di�
ult task, sin
e in this 
ase 
omputation of the real roots using radi
alsdemands 
omputations with 
omplex numbers and estimation of all the roots. Nevertheless, Weispfenning[10℄ treated the 
ubi
 
ase, using the derivatives of p, but it is questionable whether and how his approa
h
ould be extended to the quarti
s.In what follows we will present an algorithm based on Sturm(-Habi
ht) sequen
es, that 
an be extendedup to quinti
s. The novelty of our approa
h 
onsists of (i) representing the real roots of a polynomialin isolating interval representation, whi
h 
ould be 
omputed even in the 
ase of parametri
 
oe�
ients,and (ii) using Sturm-Habi
ht sequen
es for sign evaluations, the good spe
ialization properties of whi
hguarantee the 
orre
tness of our algorithm for any value of the input parameters. Last but not least, ifwe are able to treat the 
ase where p is a quarti
, then we 
an extend the algorithm to treat 
ases, like(9x 2 IR)(9y 2 IR)[(p1(x; y) = 0 ^ p2(x; y) = 0) ^ (g(x; y)� 0)℄, where the total degree of p1 and p2 is 2.This is so be
ause the resultant of p1 and p2 w.r.t. x or y, is a quarti
 and we 
an 
ompute the real rootsof the system, whi
h are pairs of real algebrai
 numbers, in isolating interval representation, even in the
ase where the 
oe�
ients of the polynomials of the system are parameters.The rest of the paper is stru
tured as follows. In the next se
tion we present in detail the quadrati
 
ase,while Se
. 3 presents the 
ubi
 and part of the results for the quarti
.



(1) � < 0 fg f+1g(2) � = 0 f2g 
1 = � a12a2 f+1; 0;+1g(3) � > 0 f1; 1g 
1 �= [f; (�1;� a12a2 )℄ f+1; 0;�1; 0;+1g
2 �= [f; (� a12a2 ;+1)℄Table 1. IDS of a quadrati
 polynomial2 Quadrati
 polynomialsLet Isolation and Dis
rimination System (IDS) of a polynomial p 2 IR[x℄ be the �nite sequen
e of di�erentvalues of sgn(p(x)), as x ranges from �1 to +1, and the isolating interval representation of its real roots,e.g. [2℄. This representation is one of representations of real algebrai
 numbers and it 
onsists of an intervalthat 
ontains the real root and a square-free polynomial that has only this real number, as a real root inthis interval.2.1 IDSLet p = a2x2 + a1x+ a0 be a quadrati
 polynomial, where for reason of simpli
ity, we assume that a2 > 0.The IDS of p appears in Tab. 1, where � = a21 � 4a0a2 is its dis
riminant. The se
ond 
olumn 
ontainspolynomial inequalities that the 
oe�
ients of the polynomial should satisfy, so that the �nite sequen
e ofdi�erent values of sgn(p(x)) is that of the last 
olumn. In the third 
olumn there are the multipli
ities ofthe real roots, and in the fourth their isolating interval representation, if any. We say that p is of type 1, T1,if its dis
riminant is negative, that is it has no real roots. In this 
ase sgn(f(x)) = +1, for all x 2 IR.The IDS allows us, given a quadrati
 polynomial with parametri
 
oe�
ients, to determine quanti�erfree formulae Ti(a2; a1; a0), where 1 � i � 3, that hold in IR, if and only if the polynomial is of type i.Lemma 1. Let p = a2x2 + a1x + a0, with parametri
 
oe�
ients, a2 > 0 and � = a21 � 4a0a2. Then(i) p of type 1 , T1 , � < 0, (ii) p of type 2 , T2 , � = 0, and (iii) p of type 3 , T3 , � > 0.Slightly modi�
ations are needed in the 
ase where a2 < 0. If a2 = 0, we refer the reader to [5℄ for anextended study.2.2 Sign evaluationAssume that we have a polynomial p 2 IR[x℄, with positive leading 
oe�
ient, of degree 2, and of some type(either 1, 2 or 3). Assume further a univariate polynomial g with parametri
 
oe�
ients. Our purpose is to
ompute quanti�er free formulae for the sign of g evaluated over a real root of p. To be more 
on
rete, wewant to 
ompute quanti�er free formulae  d;n;i;j;�, where� d is the degree of p.� n = deg(g) � 1,� i = real root type of f from IDS (refer to Tab. 1),� j = root index of f (either 1 or 2), and� � 2 f�1; 0;+1g, s.t � = sign(g(
j)).When p is T1 the problem is trivial. Moreover, it is without loss of generality to assume that the degree ofg is � 2. Thus we have the following 
ases: 2



� Let deg(g) = 0, i.e. g = b0. If p is either T2 or T3, then 2;0;?;?;�1 := b0 < 0; 2;0;?;?;0 := b0 = 0; 2;0;?;?;+1 := b0 > 0;where the question-mark means that the formula holds for any legal value.� Let deg(g) = 1, i.e. g = b1x+ b0, and let � = � a12a2 and � = � b0b1 .If p is T2, it has one double real root, whi
h is 
 = � a12a2 (Tab. 1). In this 
ase sign(g(
)) = sign(g(� a12a2 )) =sign(�b1a1 + 2 b0a2) = g[�=x℄, and  2;1;2;1;�1 := g[�=x℄ < 0; 2;1;2;1;0 := g[�=x℄ = 0; 2;1;2;1;+1 := g[�=x℄ > 0:If f is T3, then we pro
eed as follows. The isolating interval representation of the �rst real root is
1 �= (f; (�1;� a12a2 )). If � b0b1 � � a12a2 , g[�=x℄ � 0, then sign(g(
1)) = �1. Otherwise sign(g(
1)) =� sign(f(� b0b1 )) = �f [�=x℄. Hen
e, 2;1;3;1;�1 := g[�=x℄ � 0 _ (g[�=x℄ > 0 ^ f [�=x℄ < 0); 2;1;3;1;0 := g[�=x℄ > 0 _ f [�=x℄ = 0; 2;1;3;1;+1 := g[�=x℄ > 0 _ f [�=x℄ > 0:The representation of the se
ond root is 
2 �= [f; (� a12a2 ;1)℄. Now, if � b0b1 � � a12a2 , g[�=x℄ � 0, thensign(g(
)) = 1. Otherwise, sign(g(
)) = � sign(f(� b0b1 )) = �f [�=x℄. Hen
e, 2;1;3;2;�1 := g[�=x℄ < 0 _ f [�=x℄ > 0; 2;1;3;2;0 := g[�=x℄ < 0 _ f [�=x℄ = 0; 2;1;3;2;+1 := g[�=x℄ � 0 _ (g[�=x℄ < 0 ^ f [�=x℄ < 0):2.3 The general 
aseNow we 
onsider (9x 2 IR)[p(x) := a2 x2 + a1 x+ a0 = 0 ^ (g(x)� 0)℄, �;where a2 > 0, � 2 f>;=; <g, g is a polynomial of degree at most 1, with positive leading 
oe�
ient, and �is quanti�er free formula. The other 
ases, that is when a2 � 0 and/or deg(g) > 2 
ould be treated similarly.Using the results of the previous se
tions, and the notation that if � =<, resp. = or >, then s = �1, resp.0 or 1, it holds that � = ((b1 = 0) ^ ( 2;0;?;?;�))_((b1 6= 0) ^ ((T2 ^  2;1;2;1;�) _ (T3 ^  2;1;3;1;� ^  2;1;3;2;�))):3 Cubi
 polynomialsTo treat the 
ase of the 
ubi
 we work as in the 
ase of the quadrati
 polynomial. The IDS of the 
ubi
 
ouldbe seen at Tab. 2. To 
onstru
t the quanti�er free elimination formulae,  , that 
orrespond to the sign of3



(1) �1 < 0 ^ P = 0 f1; 1; 1g 
1 �= �h; (�1;� 2a23a3 )�
2 = � 2a23a3 f�1; 0;+1; 0;�1; 0;+1g
3 �= �h; (� 2a23a3 ;+1)�(2) �1 < 0 ^ P < 0 f1; 1; 1g 
1 �= �f; (�1;� W2�2 )�
2 �= �f; (� W2�2 ;� a23a3 )� f�1; 0;+1; 0;�1; 0;+1g
3 �= �f; (� 2a23a3 ;+1)�(3) �1 < 0 ^ P > 0 f1; 1; 1g 
1 �= �f; (�1;� a23a3 )�
2 �= �f; (� a23a3 ;� W2�2 )� f�1; 0;+1; 0;�1; 0;+1g
3 �= �f; (� W2�2 ;+1)�(4) �1 > 0 ^ a0 = 0 f1g 
1 = 0 f�1; 0;+1g(5) �1 > 0 ^ a0 < 0 f1g 
1 �= (f; (0;+1)) f�1; 0;+1g(6) �1 > 0 ^ a0 > 0 f1g 
1 �= (f; (�1; 0)) f�1; 0;+1g(7) �1 = 0 ^�2 6= 0 f1; 2g 
1 = min��W2�2 ; �a2�2+a3Wa3�2 	 f�1; 0;�1; 0;+1g
2 = max��W2�2 ; �a2�2+a3Wa3�2 	 f�1; 0;+1; 0;+1g(8) �1 = 0 ^�2 = 0 f3g 
1 = � 2a23a3 f�1; 0;+1gTable 2. The IDS of the 
ubi
.the evaluations of a polynomial g over the roots of p, we will use signed polynomial remainder sequen
es,and to be more spe
i�
 Sturm-Habi
ht sequen
es [1℄. Now, it is without loss of generality to assume thatthe degree of g is at most 2. By SR(P;Q) we denote the signed polynomial remainder sequen
e of P andQ, by SR(P;Q ; a) the evaluation of the sequen
e over a number a, and by var[SR(P;Q ; a)℄ the numberof the sign variations of the evaluated sequen
e. We need the following lemmaLemma 2 (S
hwartz-Sharir). Let P;Q 2 IR[x℄ be (relatively prime) polynomials. If a < b are bothnon-roots of P and 
 ranges over the roots of P in [a; b℄, thenvar[SR(P;Q ; a)℄� var[SR(P;Q ; b)℄ =X
 sign (P 0(
)Q(
)):where P 0 is the derivative of P .Noti
e that, if P has only one real root in [a; b℄, then the previous lemma 
omputes sign(Q(
)).The idea is the following. We want to 
ompute sign(
), where 
 is a real root of f , whi
h we havein isolating interval representation. We 
an 
ompute symboli
ally the two evaluated sequen
es of Lem. 2,and we 
an 
onsider all the possible sign variations. This will give us all the possible formulae  . Tomake this more 
lear, let 
 �= (f; (a; b)), where f = a3x3 + a2x2 + a1x + a0, g = b2x2 + b1x + b0, anda3b2 6= 0. We pre-
ompute the Sturm-Habi
ht sequen
es for symboli
 values of the 
oe�
ients. That is, let
SR(p; g) = (SR2;SR2;SR1;SR0), where

SR3 = f
SR2 = h22x2 + h21x+ h20
SR1 = h11x+ h10
SR0 = h0and h22 = K1h21 = K2h20 = K3h11 = �K1K7 +K2K6h10 = �K1K4 +K3K6h0 = �K1K7K5 +K1K4K8 �K6K3K8 +K6K2K5 �K7K2K4 +K3K724



(1) �1 > 0 ^ T > 0 ^�2 > 0 f1; 1; 1; 1g(2) �1 > 0 ^ (T � 0 _�2 � 0) fg(3) �1 < 0 f1; 1g(4) �1 = 0 ^ T > 0 f2; 1; 1g(5) �1 = 0 ^ T < 0 f2g(6) �1 = 0 ^ T = 0 ^�2 > 0 ^ R = 0 f2; 2g(7) �1 = 0 ^ T = 0 ^�2 > 0 ^ R 6= 0 f3; 1g(8) �1 = 0 ^ T = 0 ^�2 < 0 fg(9) �1 = 0 ^ T = 0 ^�2 = 0 f4gTable 3. Part of the IDS of the quarti
where Ki; 1 � i � 8 elements of the Bézout matrix of p and g, whi
h isBézout(f; g) = 0BB�K1 K2 K3K6 K7 K4K7 K8 K51CCA = 0BB� b2 b1 b0a3b1 � b2a2 b0a3 � b2a1 �b2a0b0a3 � b2a1 b0a2 � b2a0 � a1b1 �a0b11CCANow we observe that0BB�a3 a2 a1 a00 h22 h21 h200 0 h11 h100 0 0 h0 1CCA0BB�a
3

b
3

a
2

b
2

a b1 1 1CCA = 0BB�SR3(a) SR3(b)
SR2(a) SR2(b)
SR1(a) SR1(b)
SR0 SR0 1CCA = (M1 M2: )or in a more 
ompa
t formsign(g(
)) = [var(M1)� var(M2)℄ � [sign(f(a) � f(b))℄:We (pre-)
ompute all the possible sign 
ombinations, there are � 2�35 = 486, and derive the 
orrespondingformulae  2;?;?;f�1;0;�1g. Nevertheless, we are not sure that all the 
onditions are realizable. There arete
hniques to further simplify these formulae.It is important to state that the previous te
hnique 
ould be applied, only in the 
ase where we haveisolating intervals for the real roots, even in the 
ase where the 
oe�
ients of the polynomials are parameters.This is exa
tly the use-fullness of the IDS.The IDS of the quarti
 is a little more 
ompli
ated, and we omit its detailed presentation for reasons ofspa
e. Part of it 
ould be seen in Tab. 3, where (�1 = A3 � 27B2), and�2 = b2 � a
; �3 = 
2 � bd; T = �9W 21 + 27�2�3 � 3W3�2;A =W3 + 3�3; �4 = d2 � 
e; T1 = �W3�2 � 3W 21 + 9�2�3;B = �dW1 � e�2 � 
�3; W1 = ad� b
; T2 = AW1 � 9 bB;W2 = be� 
d; W3 = ae� bd; R = aW1 + 2b�2:A
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