Quantifier elimination for small degree polynomials
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Abstract. We present a special purpose quantifier elimination algorithm, which can eliminate the
quantifier 3z, in the formula (3z € R)[p(z) A g], where p(z) is a polynomial of degree < 4, and g is a
polynomial inequality.
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1 Introduction

The problem of quantifier elimination for the first-order theory of real numbers is an interesting challenge,
mostly because it lies in the intersection of many areas of mathematics and theoretical computer science.
Since the problem proved decidable, due to a celebrated work of Tarksi [8](see also [7]), a lot of efforts
were put on the problem, e.g. [6,1] and references therein. However, due to high complexity of the general
problem, several algorithms and variants were proposed for special cases, e.g. [3,11,10,5,9,4]. In this note
we present a special purpose algorithm for eliminating the quantifier from the formula

(3z € R)[p(z) = 0 A (g(2) 0 0)],

where p, considered as a polynomial of degree < 4 w.r.t. z, with coefficients that are polynomials in
R[yi,-..,Yr], such that the leading coefficient is always non-zero, g is a polynomial in Rlyi,..., ¥, z],
and o € {<,=, >}. It is without loss of generality to assume that the degree of g with respect to z is strictly
smaller than that of p.

Our method is based on the method of wirtual substitution [9], which can treat in a formal and elegant
way the cases where the degree of p is < 2. In these cases, roughly speaking, the real roots of p are computed
since only square roots are involved, and their values are substituted in g. However, extending this method
to cubics and quartic is a very difficult task, since in this case computation of the real roots using radicals
demands computations with complex numbers and estimation of all the roots. Nevertheless, Weispfenning
[10] treated the cubic case, using the derivatives of p, but it is questionable whether and how his approach
could be extended to the quartics.

In what follows we will present an algorithm based on Sturm(-Habicht) sequences, that can be extended
up to quintics. The novelty of our approach consists of (i) representing the real roots of a polynomial
in isolating interval representation, which could be computed even in the case of parametric coefficients,
and (ii) using Sturm-Habicht sequences for sign evaluations, the good specialization properties of which
guarantee the correctness of our algorithm for any value of the input parameters. Last but not least, if
we are able to treat the case where p is a quartic, then we can extend the algorithm to treat cases, like
(3z € R)(Jy € R)[(p1(z,y) = 0 A pa(z,y) = 0) A (g(z,y) 0 0)], where the total degree of p; and p, is 2.
This is so because the resultant of p; and p, w.r.t. z or y, is a quartic and we can compute the real roots
of the system, which are pairs of real algebraic numbers, in tsolating interval representation, even in the
case where the coefficients of the polynomials of the system are parameters.

The rest of the paper is structured as follows. In the next section we present in detail the quadratic case,
while Sec. 3 presents the cubic and part of the results for the quartic.



(1)|]A < 0|{} {+1}

(2)|A=0[{2} |n1=-7> {+1,0,+1}

(3)]A > 0[{1, 1}|71 = [f, (-0, —55=)]|{+1,0,-1,0, +1}
Y2 = [f: (_;Tg: +°O)]

Table 1. IDS of a quadratic polynomial

2 Quadratic polynomials

Let Isolation and Discrimination System (IDS) of a polynomial p € IR[z] be the finite sequence of different
values of sgn(p(z)), as z ranges from —oo to 400, and the isolating interval representation of its real roots,
e.g. [2]. This representation is one of representations of real algebraic numbers and it consists of an interval
that contains the real root and a square-free polynomial that has only this real number, as a real root in
this interval.

2.1 IDS

Let p = asz? + a1z + ag be a quadratic polynomial, where for reason of simplicity, we assume that as > 0.
The IDS of p appears in Tab. 1, where A = a? — 4aga;, is its discriminant. The second column contains
polynomial inequalities that the coefficients of the polynomial should satisfy, so that the finite sequence of
different values of sgn(p(z)) is that of the last column. In the third column there are the multiplicities of
the real roots, and in the fourth their isolating interval representation, if any. We say that p is of type 1, T,
if its discriminant is negative, that is it has no real roots. In this case sgn(f(z)) = +1, for all z € R.

The IDS allows us, given a quadratic polynomial with parametric coefficients, to determine quantifier
free formulae T;(a2, a1, ap), where 1 <z < 3, that hold in IR, if and only if the polynomial is of type :.

Lemma 1. Let p = axz? + a1z + ag, with parametric coefficients, a; > 0 and A = a2 — 4apay. Then
(t)poftype 1 & Ty & A<O, (12) p of type 2 & To & A =0, and (1z) p of type 8 & T5 & A > 0.

Slightly modifications are needed in the case where a; < 0. If ay = 0, we refer the reader to [5] for an
extended study.

2.2 Sign evaluation

Assume that we have a polynomial p € IR[z], with positive leading coefficient, of degree 2, and of some type
(either 1, 2 or 3). Assume further a univariate polynomial g with parametric coefficients. Our purpose is to
compute quantifier free formulae for the sign of g evaluated over a real root of p. To be more concrete, we
want to compute quantifier free formulae 94 5 ; ;,o, Where

— d is the degree of p.

n =deg(g) <1,

1 = real root type of f from IDS (refer to Tab. 1),
— j = root index of f (either 1 or 2), and

— o€ {-1,0,+1}, s.t o = sign(g(vy;)).

When p is T7 the problem is trivial. Moreover, it is without loss of generality to assume that the degree of
g is < 2. Thus we have the following cases:



— Let deg(g) =0, i.e. g =bo. If p is either T, or T3, then

12,0,2,2,—1 := by <0,
P20,2,2,0 = bp =0,
Y2,0,2,2,41 = bo > 0,

where the question-mark means that the formula holds for any legal value.

— Let deg(g) =1,ie. g=biz + by, and let a = — 2L and B = —Z—“.

2!12
ai

If pis T?, it has one double real root, which is ¥ = — 32 (Tab. 1). n this case sign(g(7)) = sign(g(—32)) =
sign(—bia1 + 2boas) = g[a/z], and

Y2,1,2,1,-1 1= gla/z] <O,
Y2,1,2,10 = gla/z] =0,
Y2,1,2,1,41 1= gla/z] > 0.
If f is T3, then we proceed as follows. The isolating interval representation of the first real root is
v = (f,(—oo,—z‘%)). If —Z—‘l’ > —2% & gla/z] < 0, then sign(g(y1)) = —1. Otherwise sign(g(y1)) =
— sign(f(—%2)) = —f[B/a]. Hence,

Pa,1,3,1,—1 = gla/z] <OV (g[e/z] > 0 A f[B/z] < 0),
1/)2,1,3,1,0 = g[a/m] >0V f[ﬁ/m] =0,
¥a,1,3,1,41 = gleJz] >0V f[B/z] > 0.

The representation of the second root is v = [f, (=22, 00)]. Now, if —Z—‘l’ < —3& & gla/z] >0, then

2!12 ’

sign(g(v)) = 1. Otherwise, sign(g(v)) = — sign(f(—:—g)) = —f[B/z]. Hence,

1,[12)1)3)2),1 = g[a/m] <0V f[,B/l’] > 0,
P21320 = gla/z] <OV f[B/z] =0,
Pa,1,3,.2,41 = glafz] >0V (g[e/z] < OA f[B/z] < 0).

2.3 The general case

Now we consider
(3z € R)[p(z) == azz® + a1z +ap = 0A (g(z) 0 0)] & &,

where a; >0, 0 € {>,=,<}, g is a polynomial of degree at most 1, with positive leading coefficient, and &
is quantifier free formula. The other cases, that is when a; < 0 and/or deg(g) > 2 could be treated similarly.
Using the results of the previous sections, and the notation that if 0 =<, resp. = or >, then s = —1, resp.
0 or 1, it holds that

$ = ((br = 0) A (¥2,0,2,2,0))
\

(b1 ZO)A (T2 AN21,20,0) V (T3 Atha,1,3,1,0 AP2,1,3,2,0)))-

3 Cubic polynomials

To treat the case of the cubic we work as in the case of the quadratic polynomial. The IDS of the cubic could
be seen at Tab. 2. To construct the quantifier free elimination formulae, ¢, that correspond to the sign of



(1|41 <0AP=0 [{1,1,1}{1: = (h, (—00, —322))
Yo = — 222 {-1,0,+1,0,—1,0, +1}
Vs = (h)( %1+°O))
Y2 = (f:(_%y_;%)) {_1)01+110)_1)0)+1}
V3 = (fy(_%)_‘_ooﬁ
(3) A1 <OAP>0 {111)1} "= (fy(_oo)_%))
Y2 = (f:(_%)_%)) {_1)01+110)_1)0)+1}
s & (f:(_QVAV27+°O))
(4)]A1 >0Aap =0 {1} 1 =0 {—1,0,+1}
(5)[4: > 0/ a0 <O {1} |1 = (£,(0, 7)) {=1,0,+1}
(6)[4: > 0na0 >0 {1} |7 = (f,(~0,0)) {-1,0,+1}
(7)|A1 =0A As #0[{1,2} fyl:min{;xg,%j':ﬂ:v {-1,0,-1,0,+1}
Y2 = max {%, 77'12‘1323;“3 {-1,0,+1,0,+1}
(8)|A1 =0A Ay =0[{3} 7= {—1,0,+1}

Table 2. The IDS of the cubic.

the evaluations of a polynomial g over the roots of p, we will use signed polynomial remainder sequences,
and to be more specific Sturm-Habicht sequences [1]. Now, it is without loss of generality to assume that
the degree of g is at most 2. By SR(P, Q) we denote the signed polynomial remainder sequence of P and
@, by SR(P,@; a) the evaluation of the sequence over a number a, and by VAR[SR(P, @ ; a)] the number
of the sign variations of the evaluated sequence. We need the following lemma

Lemma 2 (Schwartz-Sharir). Let P,Q € IR[z] be (relatively prime) polynomzals. If a < b are both
non-roots of P and 7y ranges over the roots of P wn [a,b], then

VAR[SR(P, Q; a)] — VAR[SR(P,Q; b)] = > _sign (P'(7)Q(7)).
Y

where P’ is the derivative of P.

Notice that, if P has only one real root in [a, b], then the previous lemma computes sign(Q(7)).

The idea is the following. We want to compute sign(vy), where <y is a real root of f, which we have
in isolating interval representation. We can compute symbolically the two evaluated sequences of Lem. 2,
and we can consider all the possible sign variations. This will give us all the possible formulae 3. To
make this more clear, let v & (f,(a,b)), where f = a3z® + a2% + a1z + ag, g = b2z? + by + by, and
azby # 0. We pre-compute the Sturm-Habicht sequences for symbolic values of the coefficients. That is, let
SR(p, g) = (SR2,SR», SRy, SRy), where

SRz = f
SRy = ho22? + ho1z + hoo
SRi = hi1z + hio

SRy = hg
and
hay = K1
ha1 = K>
hao = K3

hi1 = —K1K7 + K2 Kg
hio = =K1Ky + K3Kg



(1) A1 >0AT >0AA; >0 {1,1,1,1}

(2) A1 >0A(T <0V A, <0) {}

(3) A1 <0 {1,1}
(4) A1 =0AT >0 {2,1,1}
(5) A1 =0AT <0 {2}

(6) AL =0AT =0AA;>0AR=0{2,2}
(7) AL =0AT =0AAs >0AR#0{3,1}
(8) A1 =0AT=0AA2<0 {}
(9) A1 =0AT=0AA2=0 {4}

Table 3. Part of the IDS of the quartic

where K;,1 < ¢ < 8 elements of the Bézout matrix of p and g, which is

Kl K2 Kg b2 bl bO
BéZO'th(f, g) = Ke K7 K4 = G,3b1 — b2a2 boG,g — b2a1 —bgao
K7 Kg Ks boaz — baay boaz — baag — a1by —agb;
Now we observe that
as as a1 Qo 83 b3 SR3(a) SRg(b)
0 hos har b a2 b? SRs(a) SRz (b
22 121 1420 — 2( ) 2( ) — (Ml M2)
0 0 h11 th a b SRl (a) SRl(b)
0 0 0 hg 11 SRo SRo

or in a more compact form

sign(g(7)) = [VAR(M:) — VAR(M:)] - [sign(f(a) — f(b))]-

We (pre-)compute all the possible sign combinations, there are < 2 x 3% = 486, and derive the corresponding
formulae 322 (—1,0,—1}. Nevertheless, we are not sure that all the conditions are realizable. There are
techniques to further simplify these formulae.

It is important to state that the previous technique could be applied, only in the case where we have
isolating intervals for the real roots, even in the case where the coefficients of the polynomials are parameters.
This is exactly the use-fullness of the IDS.

The IDS of the quartic is a little more complicated, and we omit its detailed presentation for reasons of
space. Part of it could be seen in Tab. 3, where (A; = A® — 27B?), and

Az = bz — ac, Ag = 62 — bd, T = —9W12 + 27A2A3 — 3W3A2,
A :W3 -|-3A3, A4 :dz—ce, T1 :—W3A2—3W12+9A2A3,
B :—dwl—eAg—CAg, Wl :ad—bc, T2:AW1—9bB,

Wy = be — cd, W3 =ae —bd, R =alW;+ 2bA,.
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