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Abstract. We study bounds on real eigenvalues of interval matrices, and our aim is to develop
fast computable formulae that produce as-sharp-as-possible bounds. We consider two cases: general
and symmetric interval matrices. We focus on the latter case, since on one hand such interval
matrices have many applications in mechanics and engineering, and on the other many results from
classical matrix analysis could be applied to them. We also provide bounds for the singular values of
(generally non-square) interval matrices. Finally, we illustrate and compare the various approaches
by a series of examples.
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1. Introduction. Many real-life problems suffer from diverse uncertainties, for
example due to data measurement errors. Considering intervals instead of fixed real
numbers is one possible way to tackle such uncertainties. In this paper, we study real
eigenvalues of matrices, the entries of which vary simultaneously and independently
inside some given intervals. The set of all possible eigenvalues forms a finite union of
several compact real intervals, e.g. [18, 23], and our aim is to compute as-sharp-as-
possible bounds for these intervals.

The problem of computing lower and upper bounds for the eigenvalue set is well-
studied, e.g. [3, 10, 17, 27, 28, 29, 30, 32]. In the past and recent years some effort
was made in developing and extending diverse inclusion sets for eigenvalues [8, 22]
like Gerschgorin discs or Cassini ovals. Even though such inclusion sets are more or
less easy to compute and can be extended to interval matrices, the intervals that they
produce are big over-estimations of the actual ones.

The interval eigenvalue problem has a lot of applications in the field of mechanics
and engineering. Let us mention for instance automobile suspension system [27], mass
structures [26], vibrating systems [11], principal component analysis [12], and robotics
[5]. In many cases, the properties of a system is given by the eigenvalues (or singular
values) of a Jacobian matrix. A modern approach is to consider that the parameters
of this matrix vary in a set of continuous states; hence it is useful to consider this
matrix as an interval matrix. The propagation of an interval representation of the
parameters in the matrix allows us to bound the properties of the system over all its
states. This is useful for designing a system, as well as to certify its performance.

Our goal is to revise and improve the existing formulae for bounding eigenvalues
of interval matrices. We focus on algorithms that are useful from a practical point
of view; meaning that sometimes we sacrifice the accuracy of the results for speed.
Nevertheless, the bounds that we derive are sharp enough for almost all practical pur-
poses and are excellent candidates for initial estimate for various iterative algorithms
[17].
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Malostranské nám. 25, 11800, Prague, Czech Republic, e-mail: milan.hladik@matfyz.cz

‡INRIA Sophia-Antipolis Méditerranée, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis
Cedex, France, e-mail: FirstName.LastName@sophia.inria.fr

1



2 Hlad́ık et al.

We assume that the reader is familiar with the basics of interval arithmetic,
otherwise we refer the reader to e.g. [2, 14, 24]. An interval matrix is defined as

A := [A,A] = {A ∈ R
m×n; A ≤ A ≤ A},

where A, A ∈ R
m×n, A ≤ A, are given matrices. By

Ac :=
1

2
(A + A), A∆ :=

1

2
(A − A)

we denote the midpoint and the radius of A, respectively. A symmetric interval
matrix is defined as

A
S := {A ∈ A | A = AT }.

By an inner approximation of a set S we mean any subset of S, and by an outer
approximation of S we mean a set containing S as a subset. Our aim is to develop
formulae for calculating an outer approximation of the eigenvalue set of an (general
or symmetric) interval matrix. Moreover, the following notation will used through
the paper:

|v| = max{−v, v} magnitude (absolute value) of an interval v;

|A| magnitude (absolute value) of an interval ma-
trix A, i.e., |A|ij = |Aij |;

diag(v) a diagonal matrix with entries v1, . . . , vn;

‖A‖p = maxx6=0
‖Ax‖p

‖x‖p
matrix p-norm;

κp(A) = ‖A‖p‖A
−1‖p condition number (in p-norm);

σmax(A) maximal singular value of a matrix A;

ρ(A) spectral radius of a matrix A;

λRe(A) real part of an eigenvalue of a matrix A;

λIm(A) imaginary part of an eigenvalue of a matrix A.

The paper consists of two parts: the first is devoted to general interval matri-
ces, and the second to symmetric interval matrices. Symmetry causes dependency
between interval quantities, but—on the other hand—stronger theorems are applica-
ble. Moreover, bounds of singular values of interval matrices could be obtained as
corollaries.

2. General interval matrix. Let A be a square interval matrix and

Λ := {λ ∈ R; Ax = λx, x 6= 0, A ∈ A}

be the set of all real eigenvalues of matrices in A. This set is a finite union of compact
real intervals. The compactness comes from the fact that the, real or complex, eigen-
values depend continuously on matrix entries [18, 23], and the image of a compact
set under a continuous function is again a compact set. The finiteness follows from
Theorem 3.4. in [29] due to Rohn. It states that every boundary eigenvalue λ ∈ ∂Λ
is attained for a matrix A ∈ A, which is of the form

A = Ac − diag(y)A∆ diag(z),

where y, z ∈ {±1}n. Therefore there are finitely many boundary eigenvalues in Λ and
hence also intervals.
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Computation of the real eigenvalue set is considered a very difficult task. Even
checking whether 0 ∈ Λ is an NP-hard problem, since it is equivalent to checking
regularity of the interval matrix A; which is known to be an NP-hard problem [25].
Therefore, we focus on a fast computation of initial (hopefully sharp enough) outer
approximation of Λ.

For other approaches that estimate Λ, we refer the reader to [10, 27, 32].
Some methods do not calculate bounds for the real eigenvalues of A; instead they

compute bounds for the real parts of the complex eigenvalues. Denote the set of all
possible real parts by

Λr := {λRe ∈ R; Ax = λx, x 6= 0, A ∈ A}

As Λ ⊆ Λr, any outer approximation to Λr works for Λ as well.
Let us recall a method proposed in [30, Theorem 2] that we will improve in the

sequel:
Theorem 2.1 (Rohn, 1998). Let

Sc :=
1

2

(

Ac + AT
c

)

, S∆ :=
1

2

(

A∆ + AT
∆

)

.

Then Λr ⊆ λ
0 := [λ0, λ0], where

λ0 = λmin(Sc) − ρ(S∆), λ0 = λmax(Sc) + ρ(S∆),

and λmin(Sc), λmax(Sc) denotes the minimal and maximal eigenvalue of Sc, respec-
tively.

In most of the cases, the previous theorem provides a good estimation of the
eigenvalue set Λ (cf. [17]). However, its main disadvantage is the fact that it pro-
duces non-empty estimations, even in the case where the eigenvalue set is empty. To
overcome this drawback we propose an alternative approach that utilizes Bauer–Fike
theorem [13, 18, 33]:

Theorem 2.2 (Bauer–Fike, 1960). Let A,B ∈ R
n×n and suppose that A is diago-

nalizable, that is, V −1AV = diag(µ1, . . . , µn) for some V ∈ C
n×n and µ1, . . . , µn ∈ C.

For every (complex) eigenvalue λ of A + B, there exists an index i ∈ {1, . . . , n} such
that

|λ − µi| ≤ κp(V ) · ‖B‖p.

For almost all practical cases the 2-norm seems to be the most suitable choice.
In what follows we will use the previous theorem with p = 2.

Proposition 2.3. Let Ac be diagonalizable, i.e., V −1AcV is diagonal for some
V ∈ C

n×n. Then Λr ⊆ (
⋃n

i=1 λi), where for each i = 1, . . . , n,

λi = λRe
i (Ac) −

√

(

κ2(V ) · σmax(A∆)
)2

− λIm
i (Ac)2, (2.1)

λi = λRe
i (Ac) +

√

(

κ2(V ) · σmax(A∆)
)2

− λIm
i (Ac)2, (2.2)

provided that
(

κ2(V ) · σmax(A∆)
)2

≥ λIm
i (Ac)

2; otherwise λi = ∅ for i = 1, . . . , n.
Proof. Every A ∈ A can be written as A = Ac + A′, where |A′| ≤ A∆ (where the

inequality applies element-wise). Bauer–Fike theorem with 2-norm implies that for
each complex eigenvalue λ(A) there is some complex eigenvalue λi(Ac) such that

|λ(A) − λi(Ac)| ≤ κ2(V ) · ‖A′‖2 = κ2(V ) · σmax(A
′).
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As |A′| ≤ A∆, we have σmax(A
′) ≤ σmax(A∆). Hence

|λ(A) − λi(Ac)| ≤ κ2(V ) · σmax(A∆).

Thus all complex eigenvalues of all matrices A ∈ A lie in the circles having the
centers in λi(Ac)-s with corresponding radii κ2(V ) · σmax(A∆). The formulae (2.1)–
(2.2) represent an intersection of these circles with the real axis.

Notice that both a pair of complex conjugate eigenvalues λi(Ac) and λj(Ac) yields
the same interval λi = λj , so it suffices to consider only one of them.

Proposition 2.3 is a very useful tool for estimate Λ in the case where the “large”
complex eigenvalues of Ac, have also large imaginary parts. It is neither provably
better, nor provably worse than Rohn’s theorem; see Example 2.7. Therefore it is
advisable, in practice, to use both of them.

Proposition 2.3 can be applied only if Ac be diagonalizable. For the case Ac is
defective we can build upon a generalization of the Bauer-Fike Theorem, which is due
to Chu [6, 7]. We present its special form.

Theorem 2.4 (Chu, 1986). Let A,B ∈ R
n×n and let V −1AV = J be the Jordan

canonical form of A. Denote by p the maximal dimension of the Jordan’s blocks in J .
Then for every (complex) eigenvalue λ of A + B, there is i ∈ {1, . . . , n} such that

|λ − λi(A)| ≤ max {Θ2,Θ
1

p

2 },

where

Θ2 =

√

p(p + 1)

2
· κ2(V ) · ‖B‖2.

Proceeding in the similar manner as in the proof of Proposition 2.3 we obtain the
following general result for interval matrices.

Proposition 2.5. Let V −1AcV = J be the Jordan canonical form of Ac, and let
p be the maximal dimension of the Jordan’s blocks in J . Denote

Θ2 =

√

p(p + 1)

2
· κ2(V ) · σmax(A∆), Θ = max {Θ2,Θ

1

p

2 }.

Then Λ ⊆ (
⋃n

i=1 λi), where for each i = 1, . . . , n,

λi = λRe
i (Ac) −

√

Θ2 − λIm
i (Ac)2,

λi = λRe
i (Ac) +

√

Θ2 − λIm
i (Ac)2,

provided that Θ2 ≥ λIm
i (Ac)

2; otherwise λi = ∅.
This result is applicable for any interval matrix A. In our experience, Rohn’s

bounds are usually more narrow when the input intervals of A are wide. On the other
hand, this formula is better as long as the input intervals are narrow; cf. Example 2.8.

We present one more improvement for computing bounds of Λ, that is based on
a theorem by Horn & Johnson [19]:

Theorem 2.6. Let A ∈ R
n×n. Then

λmin

(

A + AT

2

)

≤ λRe(A) ≤ λmax

(

A + AT

2

)
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for every (complex) eigenvalue λ(A) of the matrix A.
The theorem says that any upper or lower bound of the eigenvalue set of the

symmetric interval matrix 1
2
(A + A

T )S is also a bound of Λr. Symmetric interval
matrices are in details studied in Section 3 and the results obtained there can be
used here to bound Λ via Theorem 2.6. Note that in this way, Rohn’s bounds from
Theorem 3.1 yield the same bounds as that from Theorem 2.1. Note also that if the
interval matrix A is pointed (i.e., A = A) then Theorems 2.1 and 2.6 yield the same
range.

In the sequel we present two examples that utilize the bounds of the previous
propositions. We should mention that the purpose of all the examples in present paper
is to illustrate the proposed bounds; hence no verified computations were carried out,
as it should always be the case for real life applications.

Example 2.7. Let

A =













[−5,−4] [−9,−8] [14, 15] [4.6, 5] [−1.2,−1]
[17, 18] [17, 18] [1, 2] [4, 5] [10, 11]

[17, 17.2] [−3.5,−2.7] [1.9, 2.1] [−13,−12] [6, 6.4]
[18, 19] [2, 3] [18, 19] [5, 6] [6, 7]
[13, 14] [18, 19] [9, 10] [−18,−17] [10, 11]













.

Rohn’s theorem provides the outer approximation Λ ⊆ [−22.104, 35.4999]. Now we
utilize Proposition 2.3. The eigenvalues of Ac are:

−15.8973, −4.0671, 15.1215 + 15.9556 i, 15.1215 − 15.9556 i, and 20.7214,

while κ2(V ) · σmax(A∆) = 8.5887. Hence

λ1 = [−24.486,−7.30853], λ2 = [−12.6559, 4.5216],

λ3 = λ4 = ∅, λ5 = [12.1327, 29.3101].

The resulting outer approximation of Λ is a union of two intervals, i.e.

[−24.486, 4.5216] ∪ [12.1327, 29.3101].

Proposition 2.5 yields the same result since the eigenvalues of Ac are mutually differ-
ent.

If we take into account the results of all the methods, and we consider the intersec-
tion of the corresponding intervals, we obtain a sharper result, i.e. [−22.104, 4.5216]∪
[12.1327, 29.3101].

To estimate the quality of the aforementioned results, it is worth noticing that the
exact description of the real eigenvalue set of A could be obtained using the algorithm
in [17], and it is

Λ = [−17.5116,−13.7578] ∪ [−6.7033,−1.4582] ∪ [16.7804, 23.6143].

Example 2.8. Let A = [Ac − A∆;Ac + A∆], where

Ac =









4 6 13 1
−4 −5 −16 −4
1 2 6 1
0 −2 −10 −1









,
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and all entries of A∆ equals ε. The eigenvalues of Ac are 1 ± 2 i (both are double).

Let ε = 0.01. Rohn’s theorem leads to the outer approximation [−11.9445, 13.8445].
Proposition 2.3 is not applicable as Ac is defective. Using Proposition 2.5 we calculate
p = 2 and Θ = 1.0612 and conclude that Λ = ∅, i.e., no matrix A ∈ A has any real
eigenvalue.

For ε = 1, the Rohn’s outer approximation is [−15.9045, 17.8045], but Proposi-
tion 2.5 results in [−105.102, 107.102].

3. Symmetric interval matrix. Let A ∈ R
n×n be a real symmetric matrix. It

has n real eigenvalues, which are in decreasing order (including multiplicities):

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

Let A
S be a symmetric interval matrix and denote by

λi(A
S) :=

{

λi(A) | A ∈ A
S
}

the set of the i-th eigenvalues. Each of these sets is a compact real interval; this is
due to the continuity of the eigenvalue function, and the compactness and convexity
of A

S [16]. It can happen that the sets λi(A
S) and λj(A

S), where i 6= j, overlap.

Our aim is to compute as-sharp-as-possible bounds of the eigenvalue sets. The
upper bound λu

i (AS), i ∈ {1, . . . , n}, is any real number satisfying λu
i (AS) ≥ λi(A

S).
Lower bounds λl

i(A
S) for λi(A

S), i ∈ {1, . . . , n}, can be computed as upper bounds
of −A

S , so we omit their treatment.

The symmetric case is very important for the real-life applications as symmetric
matrices appear very often in engineering problems. Under the concept of interval
computations, symmetry induces dependencies between the matrix elements, which
are hard to deal with in general. The straightforward approach would be to “forget”
the dependencies and apply the methods from the previous section to obtain bounds
on eigenvalues. Unfortunately, these bounds are far from being sharp, since the loss
of dependency implies a big overestimation on the computed intervals.

We should mention that there are very few theoretical results concerning sym-
metric interval matrices. Let us only mention that it is not known how to compute
all the exact boundary points of the eigenvalues set. Such a result could be of ex-
tremely practical importance since it can be used for testing the accuracy of existing
approximation algorithms. In this line of research, let us mention the work of Deif
[10] and Hertz [15, 16]. The former provides an exact description of eigenvalues set,
but it works only under some not-easy-to-verify assumptions on sign pattern invari-
ance of eigenvectors; the latter, see also [31], proposes a formula for computing the
exact extremal values λ1(A

S), λ1(A
S), λn(AS) and λn(AS), which consists of 2n−1

iterations. Theoretical results could also be found in the work of Qiu & Wang [28].
However, some of them turned out to be incorrect [34].

Since the exact problem of computing the eigenvalue set(s) is a difficult one,
several approximation algorithms were developed in the recent years. An evolution
strategy method by Yuan et al. [34] yields inner approximation of the eigenvalues set.
By means of matrix perturbation theory, Qiu et al. [26] proposed an algorithm for ap-
proximate bounds, and Leng & He [21] for outer approximation. Outer approximation
was also given by Beaumont [4]; he used a polyhedral approximation of eigenpairs and
an iterative improvement. Kolev [20] developed an outer approximation algorithm for
general case with non-linear dependencies.
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3.1. Basic bounds. The following theorem (without proof) appeared in [31];
to make the paper self-contained, we present its proof.

Theorem 3.1. It holds that

λi(A
S) ⊆ [λi(Ac) − ρ(A∆), λi(Ac) + ρ(A∆)].

Proof. By Weyl’s theorem [13, 18, 23, 33], for any symmetric matrices B,C ∈
R

n×n it holds

λi(B) + λn(C) ≤ λi(B + C) ≤ λi(B) + λ1(C) ∀i = 1, . . . , n.

Particularly, for every A ∈ A in the form of A = Ac + A′, A′ ∈ [−A∆, A∆], we have

λi(A) = λi(Ac + A′) ≤ λi(Ac) + λ1(A
′) ≤ λi(Ac) + ρ(A′) ∀i = 1, . . . , n.

As |A′| ≤ A∆, we get ρ(A′) ≤ ρ(A∆), whence

λi(A) ≤ λi(Ac) + ρ(A∆).

Working similarly, we can prove that λi(A) ≥ λi(Ac) − ρ(A∆).

The bounds obtained by the previous theorem are usually quite sharp. However,
the main drawback is, that all the produced intervals λi(A

S), 1 ≤ i ≤ n, have the
same width.

The following proposition provides an upper bound for the largest eigenvalue of
A

S , that is an upper bound for the right endpoint of λ1(A
S). Even though the

formula is very simple and the bound is not very sharp, there are cases that it yields
better bound than the one by Rohn’s theorem. In particular it provides better bounds
for non-negative interval matrices, and for interval matrices as the ones we consider
in Section 3.3 and have the form [−A∆, A∆].

Proposition 3.2. It holds

λ1(A
S) ≤ λ1(|A|).

Proof. Using the well-known Courant–Fischer theorem [13, 18, 23, 33], we have
for every A ∈ A

λ1(A) = max
xT x=1

xT Ax ≤ max
xT x=1

|xT Ax|

≤ max
xT x=1

|x|T |A||x| ≤ max
xT x=1

|x|T |A||x|

= max
xT x=1

xT |A|x = λ1(|A|).

In the same way we can compute a lower bound for the eigenvalue set of A:
λn(AS) ≥ −λ1(|A|). However, this inequality is not so useful in practice.

3.2. Interlacing approach, direct version. The approach that we propose in
this section is based on Cauchy’s interlacing property for eigenvalues of a symmetric
matrix [13, 18, 23, 33].
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Theorem 3.3 (Interlacing property, Cauchy, 1829). Let A ∈ R
n be a symmetric

matrix and let Ai be a matrix obtained from A by removing the i-th row and column.
Then

λ1(A) ≥ λ1(Ai) ≥ λ2(A) ≥ λ2(Ai) ≥ · · · ≥ λn−1(Ai) ≥ λn(A).

We develop two methods based on the interlacing property; the direct and the
indirect one. These methods are useful as long as the intervals λi(A

S), i = 1, . . . , n,
do overlap, or as long as there is a narrow gap between them. Overlapping happens,
for example, when there are multiple eigenvalues in A

S . If none of the previous cases
occur, then the bounds are not so sharp; see Example 3.6.

The first method uses the interlacing property directly. Bounds on the eigenvalues
of the principal minor A

S
i are also bounds on the eigenvalues of matrices in A

S

(except for λ1(A
S) and λn(AS)). The basic idea is to compute the bounds recursively.

However, such a recursive algorithm would be of exponential complexity. Therefore,
we propose a simple local search approach that requires only a linear number of
iterations and the results of which are quite satisfactory. It consists of selecting the
most promising principal minor Ai and recursively using only this. To obtain even
better results in practice, we apply this procedure in the reverse order, as well. That
is we begin with some diagonal element aii of A

S , which is a matrix one-by-one, and
iteratively increase its dimension until we obtain A

S .

The algorithmic scheme is presented in Algorithm 1. We often need to compute
an upper bound λu

1 (BS) for the maximal eigenvalue of any matrix in B
S (steps 3 and

12). For this purpose we can call Theorem 3.1, Proposition 3.2, or, to obtain the best
results, we choose the minimum of the two. Notice that the algorithm computes only
upper bounds for λi(A

S), i = 1, . . . , n. Lower bounds for λi(A
S), i = 1, . . . , n, can

be obtained by calling the algorithm using −A
S as input matrix.

Algorithm 1 (Interlacing approach for upper bounds, direct version)

1: B
S := A

S ;
2: for k = 1, . . . , n do

3: compute λu
1 (BS);

4: λu
k(AS) := λu

1 (BS);
5: select the most promising index i ∈ {1, . . . , n − k + 1};
6: remove the i-th row and the i-th column from B

S ;
7: end for

8: put I = ∅;
9: for k = 1, . . . , n do

10: select the most promising index i ∈ {1, . . . , n} \ I, and put I := I ∪ {i};
11: let B

S be a sub-matrix of A
S restricted to the rows and columns indexed by I;

12: compute λu
1 (BS);

13: λu
n−k+1(A

S) := min
{

λu
n−k+1(A

S), λu
1 (BS)

}

;
14: end for

15: return λu
k(AS), k = 1, . . . , n.

An important ingredient of the algorithm is the selection of the index i, in steps
5 and 10. We describe the selection for step 5; for step 10 we work similarly. In the
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essence, there are two basic choices:

i := arg min
j=1,...,n−k+1

λu
1 (BS

j ), (3.1)

and

i := arg min
j=1,...,n−k+1

∑

r,s 6=j

|Br,s|
2. (3.2)

In both cases we select an index i so that to possibly minimize λ1(B
S
i ).

The first formula requires more computations than the second one, but yields
the optimal index in more cases than the second one. The latter is based on the
well-known result [18, 33] that the square of the Frobenius norm of a normal matrix
(i.e., the sum of squares of its entries) equals the sum of squares of its eigenvalues.
Therefore, the most promising index is the one that maximizes the sum of squares of
the absolute values (magnitudes) of the removed components.

The selection rule (3.1) causes a quadratic time complexity of Algorithm 1 with
respect to the number of calculations of spectral radii or eigenvalues. Using the
selection rule (3.2) results only a linear number of such calculations.

3.3. Interlacing approach, indirect version. The second method uses also
the interlacing property, and is based on the following idea. Every matrix A ∈ A

S

can be written as A = Ac + Aδ with Aδ ∈ [−A∆, A∆]S . We compute the eigenvalues
of the real matrix Ac, and bounds on eigenvalues of matrices in [−A∆, A∆]S , and we
“merge” them to obtain bounds on eigenvalues of matrices in A

S . For the “merging”
step we use a theorem for perturbed eigenvalues.

The algorithm is presented in Algorithm 2. It returns only upper bounds λu
i (AS),

i = 1, . . . , n for λi(A
S), i = 1, . . . , n, since lower bounds are computable likewise. The

bounds required in step 2 are computed using Algorithm 1.
The following theorem due to Weyl [18, 33] gives very nice formulae for the eigen-

values of a matrix sum, which we use in step 4 of Algorithm 2.
Theorem 3.4 (Weyl, 1912). Let A,B ∈ R

n×n be symmetric matrices. Then

λr+s−1(A + B) ≤ λr(A) + λs(B) ∀r, s ∈ {1, . . . , n}, r + s ≤ n + 1,

λr+s−n(A + B) ≥ λr(A) + λs(B) ∀r, s ∈ {1, . . . , n}, r + s ≥ n + 1.

Algorithm 2 (Interlacing approach for upper bounds, indirect version)

1: Compute eigenvalues λ1(Ac) ≥ · · · ≥ λn(Ac);
2: compute bounds λu

1

(

[−A∆, A∆]S
)

, . . . , λu
n

(

[−A∆, A∆]S
)

;
3: for k = 1, . . . , n do

4: λu
k(AS) := min

i=1,...,k

{

λi(Ac) + λu
k−i+1

(

[−A∆, A∆]S
)}

;

5: end for

6: return λu
k(AS), k = 1, . . . , n.

3.4. Diagonal maximization. In this subsection we show that the largest
eigenvalues are achieved when the diagonal entries of A ∈ A

S are the maximum
ones. Therefore, we can fix them and consider only a subset of A ∈ A

S . Similar
results can be obtained for the smallest eigenvalues.
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Lemma 3.5. Let i ∈ {1, . . . , n}. Then there is some matrix A ∈ A
S with diagonal

entries Aj,j = Aj,j such that λi(A) = λi(A
S).

Proof. Let A′ ∈ A
S be such that λi(A

′) = λi(A
S). Such a matrix always exists,

since λi(A
S) is defined as the maximum of a continuous function on a compact set.

We define A ∈ A
S as follows: Aij := A′

ij if i 6= j, and Aij := Aij if i = j. By the
Courant–Fischer theorem [13, 18, 23, 33], we have

λi(A
′) = max

V ⊆Rn; dim V =i
min

x∈V ; xT x=1
xT A′x

≤ max
V ⊆Rn; dim V =i

min
x∈V ; xT x=1

xT Ax

= λi(A).

Hence λi(A) = λi(A)′ = λi(A
S).

This lemma implies that for computing upper bounds λu
i (AS) of λi(A

S), i =
1, . . . , n, it suffices to consider only the symmetric interval matrix A

S
r ⊆ A

S defined
as

A
S
r := {A ∈ A

S | Aj,j = Aj,j ∀j = 1, . . . , n}.

To this interval matrix we can apply all the algorithms developed in the previous
subsections. The resulting bounds are sometimes sharper and sometimes not so sharp;
see Examples 3.6–3.7. So the best possible results are obtained by using all the
methods together.

3.5. Singular values. Let A ∈ R
m×n and denote q := min{m,n}. By σ1(A) ≥

· · · ≥ σn(A) we denote the singular values of A. It is well known [13, 18, 23] that the
singular values of A are identical with the q largest eigenvalues of the Jordan–Wielandt
matrix

(

0 AT

A 0

)

,

which is symmetric. Consider an interval matrix A ⊂ R
m×n. By σi(A) := {σi(A) |

A ∈ A}, i = 1, . . . , q, we denote the singular value sets of A. The problem of
approximating the singular value sets was considered e.g. in [1, 9]. Deif’s method [9]
produces exact singular value sets, but only under some assumption that are generally
difficult to verify. Ahn & Chen [1] presented a method for calculating the largest
possible singular value σ1(A). It is a slight modification of [15] and its time complexity
is exponential (2m+n−1 iterations). They also proposed a lower bound calculation for
the smallest possible singular value σn(A) by means of interval matrix inversion.

To get an outer approximation of the singular value set of A we can exhibit the
methods proposed in the previous subsections and apply them on eigenvalue set of
the symmetric interval matrix

(

0 A
T

A 0

)S

. (3.3)

Diagonal maximization (Subsection 3.4) has no effect, since the diagonal of the sym-
metric interval matrix (3.3) consists of zeros only. The other methods work well.
Even though they run very fast, they can be accelerated a bit, as some of them can be
slightly modified and used directly on A instead of (3.3). Particularly, Proposition 3.2
is easy to modify for singular values (σ1(A) ≤ σ1(|A|)), and the interlacing property
can be applied directly to A, cf. [13, 18, 19].
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3.6. Case of study. The aim of the following examples is to show that no
presented method is better than the others. In different situations, different variants
are the best.

Example 3.6. Consider the example given by Qiu et al. [26] (see also [34]):

A
S =









[2975, 3025] [−2015,−1985] 0 0
[−2015,−1985] [4965, 5035] [−3020,−2980] 0

0 [−3020,−2980] [6955, 7045] [−4025,−3975]
0 0 [−4025,−3975] [8945, 9055]









S

.

Proposition 3.2 yields the upper bound λu
1 (AS) = 12720.2273, which is—by chance—

the optimal value. The other outer approximations of the eigenvalues sets λi(A
S),

i = 1, . . . , n, are listed in the table below. The corresponding items are as follows:

(R) bounds computed by the Rohn’s theorem (Theorem 3.1);
(D1) bounds computed by Algorithm 1 with the index selection rule (3.1);
(D2) bounds computed by Algorithm 1 with the index selection rule (3.2);
(I1) bounds computed by Algorithm 2 with the index selection rule (3.1);
(I2) bounds computed by Algorithm 2 with the index selection rule (3.2);

(DD1) bounds computed by diagonal maximization by using Algorithm 1 and
the index selection rule (3.1);

(DI1) bounds computed by diagonal maximization by using Algorithm 2 and
the index selection rule (3.1);

(B) bounds obtained by using Theorem 3.1, Algorithm 1 and 2, and then
choosing the best ones; the index selection rule is (3.1);

(O) optimal bounds; they are known provided an inner and outer approxima-
tion (calculated or known from references) coincide; some of them are
determined according to Hertz [15, 16].

Table 3.1
Results for Example 3.6

[λl
1
(AS), λu

1
(AS)] [λl

2
(AS), λu

2
(AS)] [λl

3
(AS), λu

3
(AS)] [λl

4
(AS), λu

4
(AS)]

(R) [12560.6296, 12720.4331] [6984.5571, 7144.3606] [3309.9466, 3469.7501] [825.2597, 985.0632]

(D1) [8945.0000, 12720.2273] [4945.00000, 9055.0000] [2924.5049, 6281.7216] [825.2597, 3025.0000]

(D2) [8945.0000, 12720.2273] [2945.0000, 9453.4449] [1708.9320, 6281.7216] [825.2597, 3025.0000]

(I1) [12560.6296, 12720.4331] [6984.5571, 7144.3606] [3309.9466, 3469.7501] [825.2597, 985.0632]

(I2) [12560.6296, 12720.4331] [6984.5571, 7144.3606] [3309.9466, 3469.7501] [825.2597, 985.0632]

(DD1) [8945.0000, 12720.2273] [4965.0000, 9055.0000] [2950.0000, 6281.7216] [837.0637, 3025.0000]

(DI1) [12557.7243, 12723.3526] [6990.7616, 7138.1800] [3320.2863, 3459.4322] [837.0637, 973.1993]

(B) [12560.6296, 12720.2273] [6990.7616, 7138.1800] [3320.2863, 3459.4322] [837.0637, 973.1993]

(O) [12560.8377, 12720.2273] [7002.2828, 7126.8283] [3337.0785, 3443.3127] [842.9251, 967.1082]

Table 3.1 shows that the direct interlacing methods (D1), (D2) and (DD1) are not
effective; gaps between the eigenvalues sets λi(A

S), i = 1, . . . , n, are too wide. The
indirect interlacing methods (I1) and (I2) yield the same intervals as the Rohn method
(R). The indirect interlacing method using diagonal maximization is several times
better (e.g. for λl

4(A
S), λu

4 (AS)) and several times worse (e.g. for λl
1(A

S), λu
1 (AS))

than (R). The combination (B) of all the methods produces good outer approximation
of the eigenvalue set, particularly that of λ1(A

S).
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For this example, Qiu et al. [26] obtained the approximate values

λ1(A
S) ≈ 12588.29, λ1(A

S) ≈ 12692.77, λ2(A
S) ≈ 7000.195, λ2(A

S) ≈ 7128.723,

λ3(A
S) ≈ 3331.162, λ3(A

S) ≈ 3448.535, λ4(A
S) ≈ 826.7372, λ4(A

S) ≈ 983.5858.

However, these values form neither inner nor outer approximation of the eigenvalue
set. The method of Leng & He [21] based on matrix perturbation theory results in
bounds

λl
1(A

S) = 12550.53, λu
1 (AS) = 12730.53, λl

2(A
S) = 6974.459, λu

2 (AS) = 7154.459,

λl
3(A

S) = 3299.848, λu
3 (AS) = 3479.848, λl

4(A
S) = 815.1615, λu

4 (AS) = 995.1615.

In comparison to (B), they are not so sharp. The evolution strategy method proposed
by Yuan et al. [34] returns an inner approximation of the eigenvalues set, which is
equal to the optimal result (see (O) in the table) in this example.

Example 3.7. Consider the symmetric interval matrix

A
S =





[0, 2] [−7, 3] [−2, 2]
[−7, 3] [4, 8] [−3, 5]
[−2, 2] [−3, 5] [1, 5]





S

.

Following the notation used in Example 3.6 we display in Table 3.2 results obtained
by the presented methods.

Table 3.2
Results for Example 3.7

[λl
1
(AS), λu

1
(AS)] [λl

2
(AS), λu

2
(AS)] [λl

3
(AS), λu

3
(AS)]

(R) [−2.2298, 16.0881] [−6.3445, 11.9734] [−8.9026, 9.4154]

(D1) [4.0000, 15.3275] [−2.5616, 6.0000] [−8.9026, 2.0000]

(D2) [4.0000, 15.3275] [−2.5616, 6.0000] [−8.9026, 2.0000]

(I1) [−0.7436, 16.0881] [−3.3052, 10.4907] [−8.9026, 6.3760]

(I2) [−0.7436, 16.0881] [−3.3052, 10.4907] [−8.9026, 6.3760]

(DD1) [4.0000, 15.3275] [−2.0000, 6.0000] [−8.3759, 2.0000]

(DI1) [−0.9115, 16.3089] [−2.9115, 10.8445] [−8.3759, 6.7850]

(B) [4.0000, 15.3275] [−2.0000, 6.0000] [−8.3759, 2.0000]

(O) [6.3209, 15.3275] [?, ?] [−7.8184, 0.7522]

This example illustrates the case when direct interlacing methods (D1)–(D2) yield
better results than the indirect ones (I1)–(I2). The same is true for the diagonal
maximization variants (DD1) and (DI1). Rohn’s method (R) is not very effective
here. Optimal bounds are known only for λu

1 (AS) and λl
3(A

S).
Example 3.8.
Herein, we consider an example by Deif [9] on singular value sets of

A =





[2, 3] [1, 1]
[0, 2] [0, 1]
[0, 1] [2, 3]





Deif ’s method yields the following estimation of the singular value sets

σ1(A) ≈ [2.5616, 4.5431], σ2(A) ≈ [1.3134, 2.8541].
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Ahn & Chen [1] confirmed that σ1(A) = 4.5431, but the real value of σ2(A) must
be smaller. Namely, it is less or equal to one since σ2(A) = 1 for AT = ( 2 0 1

1 0 2 ).
Our approach using combination of all presented methods together results in an outer
approximation

σ1(A) ⊆ [2.0489, 4.5431], σ2(A) ⊆ [0.4239, 3.1817].

4. Conclusion and future work. In this paper we considered outer approx-
imations of the eigenvalue sets of general interval matrices and symmetric interval
matrices. For both cases, we presented several improvements. Computing sharp
outer approximations of the eigenvalue set of a general interval matrix is a difficult
problem. The proposed methods provide quite satisfactory results, as indicated by
Examples 2.7–2.8. Examples 3.6–3.8 demonstrate that we are able to bound quite
sharply the eigenvalues of symmetric interval matrices and the singular values of in-
terval matrices. Our bounds are quite close to the optimal ones. Nevertheless, as
suggested by one of the referees, it worths to explore the possibility to use a more
numerically stable decomposition than Jordan canonical form in Prop. 2.5.

At the current state, there is no algorithm that computes the best bounds in all
the cases. Since the computational cost of the presented algorithms is rather low, it
is advisable to use all of them in practice and select the best one depending on the
particular instance.

5. Acknowledgments. The authors thank Andreas Frommer and the anony-
mous referees for their valuable comments.
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