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ABSTRACT
Shapley’s discounted stochastic games, Everett’s recursive
games and Gillette’s undiscounted stochastic games are clas-
sical models of game theory describing two-player zero-sum
games of potentially infinite duration. We describe algo-
rithms for exactly solving these games. When the number
of positions of the game is constant, our algorithms run in
polynomial time.

Categories and Subject Descriptors
F.2.1 [Theory of Computing]: Analysis of Algorithms—
Numerical Algorithms and Problems

General Terms
Algorithms, Theory

1. INTRODUCTION
Shapley’s model of finite stochastic games [20] is a classical

model of game theory describing two-player zero-sum games
of (potentially) infinite duration. Such a game is given by a
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finite set of positions 1, . . . , N , with an mk ×nk reward ma-
trix (ak

ij) associated to each position k, and an mk×nk tran-

sition matrix (pklij ) associated to each pair of positions k and
l. The game is played in rounds, with some position k be-
ing the current position in each round. At each such round,
Player I chooses an action i ∈ {1, 2, . . . , mk} while simulta-
neously, Player II chooses an action j ∈ {1, 2, . . . , nk}, after
which the (possibly negative) reward ak

ij is paid by Player

II to Player I, and with probability pklij the current position
becomes l for the next round.

During play of a stochastic game, a sequence of rewards is
paid by Player II to Player I. There are three standard ways
of associating a payoff to Player I from such a sequence,
leading to three different variants of the stochastic game
model:

Shapley games. In Shapley’s original paper, the payoff
is simply the sum of rewards. While this is not well-defined
in general, in Shapley’s setting it is required that for all po-
sitions k,

∑
l p

kl
ij < 1, with the remaining probability mass

resulting in termination of play. Thus, no matter which ac-
tions are chosen by the players, play eventually ends with
probability 1, making the payoff well-defined except with
probability 0. We shall refer to this original variant of the
stochastic games model as Shapley games. Shapley observed
that an alternative formulation of this payoff criterion is to
require

∑
l
pklij = 1, but discounting rewards, i.e., penalizing

a reward accumulated at time t by a factor of γt where γ is
a discount factor strictly between 0 and 1. Therefore, Shap-
ley games are also often referred to as discounted stochastic
games. Using the Banach fixed point theorem in combina-
tion with the von Neumann minimax theorem for matrix
games, Shapley showed that all Shapley games have a value,
or, more precisely, a value vector, one value for each posi-
tion. Also, the values can be guaranteed by both players
by a stationary strategy, i.e., a strategy that associates a
fixed probability distribution on actions to each position and
therefore does not take history of play into account.

Gillette games. Gillette [14] requires that for all k, i, j,∑
l
pklij = 1, i.e., all plays are infinite. The total payoff to

Player I is lim infT→∞(
∑T

t=1 ri)/T where rt is the reward
collected at round t. Such games are called undiscounted
or limiting average stochastic games. In this paper, for co-
herence of terminology, we shall refer to them as Gillette
games. It is much harder to see that Gillette games have



values than that Shapley games do. In fact, it was open for
many years if the concrete game The Big Match with only
three positions that was suggested by Gillette has a value.
This problem was resolved by Blackwell and Ferguson [5],
and later, Mertens and Neyman [17] proved in an ingenious
way that all Gillette games have value vectors. However,
the values can in general only be approximated arbitrar-
ily well by strategies of the players, not guaranteed exactly,
and non-stationary strategies (taking history of play into ac-
count) are needed even to achieve such approximations. In
fact, The Big Match proves both of these points.

Everett games. Of generality between Shapley games
and Gillette games is the model of recursive games of Ev-
erett [13]. We shall refer to these games as Everett games,
also to avoid confusion with the largely unrelated notion of
recursive games of Etessami and Yannakakis [11]. In Ev-
erett’s model, we have ak

ij = 0 for all i, j, k, i..e, rewards
are not accumulated during play. For each particular k, we
can have either

∑
l
pklij < 1 or

∑
l
pklij = 1. In the former

case, a prespecified payoff bkij is associated to the termina-
tion outcome. Payoff 0 is associated with infinite play. The
special case of Everett games where bkij = 1 for all k, i, j
has been studied under the name of concurrent reachabil-
ity games in the computer science literature [9, 6, 16, 15].
Everett showed that Shapley games can be seen as a spe-
cial case of Everett games. Also, it is easy to see Everett
games as a special case of Gillette games. It was shown in
Everett’s original paper that all Everett games have value
vectors. Like Gillette games, the values can in general only
be approximated arbitrarily well, but unlike Gillette games,
stationary strategies are sufficient for guaranteeing such ap-
proximations.

For formal definitions and proofs of some of the facts
above, see Section 2.

Our Results
In this paper we consider the problem of exactly solving
Shapley, Everett and Gillette games, i.e., computing the
value of a given game. The variants of these two problems
for the case of perfect information (a.k.a. turn-based) games
are well-studied by the computer science community, but not
known to be polynomial time solvable: The tasks of solving
perfect information Shapley, Everett and Gillette games and
the task of solving Condon’s simple stochastic games [8] are
polynomial time equivalent [1]. Solving simple stochastic
games in polynomial time is by now a famous open prob-
lem. As we consider algorithms for the more general case
of imperfect information games, we, unsurprisingly, do not
come up with polynomial time algorithms. However, we
describe algorithms for all three classes of games that run
in polynomial time when the number of positions is con-
stant and our algorithms are the first algorithms with this
property. As the values of all three kinds of games may
be irrational but algebraic numbers, our algorithms output
real algebraic numbers in isolating interval representation,
i.e., as a square-free polynomial with rational coefficients for
which the value is a root, together with an (isolating) inter-
val with rational endpoints in which this root is the only
root of the polynomial. To be precise, our main theorem is:
For any constant N , there is a polynomial time algorithm
that takes as input a Shapley, Everett or Gillette game with
N positions and outputs its value vector using isolating in-
terval encoding. Also, for the case of a Shapley games, an

optimal stationary strategy for the game in isolating interval
encoding can be computed in polynomial time. Finally, for
Shapley as well as Everett games, given an additional in-
put parameter ǫ > 0, an ǫ-optimal stationary strategy using
only (dyadic) rational valued probabilities can be computed
in time polynomial in the representation of the game and
log(1/ǫ).

We remark that when the number of positions N is con-
stant, what remains to vary is (most importantly) the num-
ber of actions m for each player in each position and (less im-
portantly) the bitsize τ of transition probabilities and pay-
offs. We also remark that Etessami and Yannakakis [12]
showed that the bitsize of the isolating interval encoding
of the value of a discounted stochastic game as well as the
value of a recursive game may be exponential in the number
of positions of the game and that Hansen, Koucký and Mil-
tersen [16] showed that the bitsize of an ǫ-optimal strategy
for a recursive game using binary representation of proba-
bilities may be exponential in the number of positions of the
game. Thus, merely from the size of the output to be pro-
duced, there can be no polynomial time algorithm for the
tasks considered in the theorem without some restriction on
N . Nevertheless, the time complexity of our algorithm has
a dependence on N which is very bad and not matching the
size of the output. For the case of Shapley games, the expo-

nent in the polynomial time bound is O(N)N
2

while for the
case of Everett games and Gillette games, the exponent is

NO(N2). Thus, getting a better dependence on N is a very
interesting open problem.

Prior to our work, algorithms for solving stochastic games
relied either on generic reductions to decision procedures for
the first order theory of the reals [12, 7], or, for the case of
Shapley games and concurrent reachability games on value
or strategy iteration [19, 6]. For all these algorithms, the
complexity is at least exponential even when the number of
positions is a constant and even when only a crude approx-
imation is required [15]. Nevertheless, as is the case for the
algorithms based on reductions to decision procedures for
the first order theory of the reals, our algorithms rely on the
theory of semi-algebraic geometry [2], but in a more indirect
way as we explain below.

Our algorithms are based on a simple recursive bisection
pattern which is in fact a very natural and in retrospect un-
surprising approach to solving stochastic games. However,
in order to set the parameters of the algorithm in a way
that makes it correct, we need separation bounds for val-
ues of stochastic games of given type and parameters; lower
bounds on the absolute value of games of non-zero value.
Such bounds are obtained by bounding the algebraic degree
and coefficient size of the defining univariate polynomial and
applying standard arguments, so the task at hand boils down
to determining as good bounds on degree and coefficient size
as possible; with better bounds leading to faster algorithms.
To get these bounds, we apply the general machinery of real
algebraic geometry and semi-algebraic geometry following
closely the techniques of the seminal work of Basu, Pollack
and Roy [2]. That is, for each of the three types of games,
we describe how for a given game G to derive a formula in
the first order theory of the real numbers uniquely defining
the value of G. This essentially involves formalizing state-
ments proved by Shapley, Everett, and Mertens and Neyman
together with elementary properties of linear programming.
Now, we apply the powerful tools of quantifier elimination [2,



Theorem 14.16] and sampling [2, Theorem 13.11] to show the
appropriate bounds on degree and coefficient size. We stress
that these procedures are only carried out in our proofs; they
are not carried out by our algorithms. Indeed, if they were,
the time complexity of the algorithms would be exponen-
tial, even for a constant number of positions. While pow-
erful, the semi-algebraic approach has the disadvantage of
giving rather imprecise bounds. Indeed, as far as we know,
all published versions of the quantifier elimination theorem
and the sampling theorem have unspecified constants (“big-
Os”), leading to unspecified constants in the code of our
algorithms. Only for the case of Shapley games, are we able
to do somewhat better, their mathematics being so simple
that we can avoid the use of the general tools of quantifier
elimination and sampling and instead base our bounds on
solutions to the following very natural concrete problem of
real algebraic geometry that can be seen as a very special
case of the sampling problem: Given a system of m polyno-
mials in n variables (where m is in general different from
n) of degree bounded by d, whose coefficients have bitsizes
at most τ , and an isolated (in the Euclidean topology) real
root of the system, what is an upper bound on its algebraic
degree as a function of d and n? What is a bound on the
bitsizes of the coefficients of the defining polynomial? Basu,
Pollack and Roy [2, Corollary 13.18] stated the upper bound
O(d)k on the algebraic degree as a corollary of the sampling
theorem. We give a constructive bound of (2d + 1)n on the
algebraic degree and we derive an explicit bound on the co-
efficients of the defining polynomial. We emphasize that our
techniques for doing this are standard in the context of real
algebraic geometry; in particular the deformation method
and u-resultants are used. However, we find it surprising
that (to the best of our knowledge) no explicit constant for
the big-O was previously stated for this very natural prob-
lem. Also, we do not believe that (2d+1)n is the final answer
and would like to see an improvement. We hope that by stat-
ing some explicit bound we will stimulate work improving
it. We note that for the case of isolated complex roots, ex-
plicit bounds appeared recently, see Emiris, Mourrain and
Tsigaridas [10] and references therein.

The degree bounds for the algebraic problem lead to up-
per bounds on the algebraic degree of the values of Shapley
games as a function of the combinatorial parameters of the
game. We also provide corresponding lower bounds. As
these bounds may be of independent interest, we state them
explicitly: The value of any Shapley game with N positions,
m actions for each player in each position, and rational pay-
offs and transition probabilities, is an algebraic number of
degree at most (2m+5)N . Also, for any N,m ≥ 1 there ex-
ists a game with these parameters such that its value is an al-
gebraic number of degree mN−1. The lower bound strength-
ens a result of Etessami and Yannakakis [12] who considered

the case of m = 2 and proved a 2Ω(N) lower bound. For the
more general case of Everett games and Gillette games, we
are only able to get an upper bound on the degree of the form

mO(N2) and consider getting improved bounds for this case
an interesting problem (we have no lower bounds better than
for the case of Shapley games). As explained above, replac-
ing the big-Os with explicit constants requires “big-O-less”
versions of the quantifier elimination theorems and sampling
theorems of semi-algebraic geometry. We acknowledge that
it is a straightforward but also probably quite work-intensive
task to understand exactly which constants are implied by

existing proofs. Clearly, we would be interested in such re-
sults, and are encouraged by recent work of the real algebraic
geometry community [3] essentially providing a big-O-less
version of the very related Theorem 13.15 of Basu, Pollack
and Roy. We do hypothesize that the constants will be much
worse that the constant of our big-O-less version of Corol-
lary 13.18 of Basu, Pollack and Roy and that merely stating
some constants would stimulate work improving them.

As a final byproduct to our techniques, we give a new
upper bound on the complexity of the strategy iteration al-
gorithm for concurrent reachability games [6] that matches
the known lower bound [15]. We show: The strategy im-
provement algorithm of Chatterjee, de Alfaro and Henzinger
[6] computes an ǫ-optimal strategy in a concurrent reachabil-
ity game with N actions, m actions for each player in each

position after at most (1/ǫ)m
O(N)

iterations. Prior to this
paper only a doubly exponential upper bound on the com-
plexity of strategy iteration was known, even for the case of
a constant number of positions [15]. The proof uses a known
connection between the patience of concurrent reachability
games and the convergence rate of strategy iteration [15]
combined with a new bound on the patience proved using a
somewhat more clever use of semi-algebraic geometry than
in the work leading to the previous bound [16].

Structure of this extended abstract
Section 2 contains background material and notation. Sec-
tion 3 contains a description of our algorithms. Section 4
contains the upper bounds on degree of values and lower
bounds on coefficient sizes of defining polynomials and re-
sulting separation bounds of values needed for the algorithm,
for the case of Shapley and Everett games. Here, also the
consequences of our results for the strategy improvement al-
gorithm for concurrent reachability are explained. Details
for the case of Gillette games, a proof of our big-O-less ver-
sion of Corollary 13.18 of Basu, Pollack and Roy, and our
construction of a Shapley game with value of high degree
can be found in the full version of the paper.

2. PRELIMINARIES

(Parameterized) Matrix Games
A matrix game is given by a real m× n matrix A of payoffs
aij . When Player I plays action i ∈ {1, 2, . . . , m} and Player
II simultaneously plays action j ∈ {1, 2, . . . , n}, Player I
receives a payoff aij from Player II. A strategy of a player
is a probability distribution over the player’s actions, i.e.
a stochastic vector. Given strategies x and y for the two
players, the expected payoff to player I is xTAy. We denote
by val(A) the maximin value of the game. As is well-known
the value as well as an optimal mixed strategy for Player I
can be found by the following linear program, in variables
x1, . . . , xm and v. By fn we denote the vector of dimension
n with all entries being 1.

max v
s.t. fnv − AT p ≤ 0

x ≥ 0
fT
mx = 1

(1)

The following easy lemma of Shapley is useful.



Lemma 1 ([20], equation (2)). Let A = (aij) and B =
(bij) be m× n matrix games. Then

| val(A)− val(B)| ≤ max
i,j
|aij − bij |

In the following we will find it convenient to use terminology
of Bertsimas and Tsitsiklis [4]. We say that a set of linear
constraints are linearly independent if the corresponding co-
efficient vectors are linearly independent.

Definition 2. Let P be a polyhedron in Rn defined by
linear equality and inequality constraints and let x ∈ Rn.

1. x is a basic solution if all equality constraints of P
are satisfied by x, and there are n linearly independent
constraints of P that are satisfied with equality by x.

2. x is a basic feasible solution (bfs) if x is a basic so-
lution and furthermore satisfies all the constraints of
P .

The polyhedron defined by LP (1) is given by 1 equality
constraint and n+m inequality constraints, in m + 1 vari-
ables. Since the polyhedron is bounded, the LP obtains its
optimum value at a bfs. To each bfs, (x, v), we may thus
associate a set of m+1 linearly independent constraints such
that turning all these constraints into linear equations yields
a linear system where (x, v) is the unique solution. Further-
more we may express this solution using Cramer’s rule. We
order the variables as x1, . . . , xm, v, and we also order the
constraints so that the equality constraint to be last one.
Let B be a set of m + 1 constraints of the linear program,
including the equality constraint. We shall call such a set B
a potential basis set. Define MA

B to be the (m+1)× (m+1)
matrix consisting of the coefficients of the constraints in B.
The linear system described above can thus be succinctly
stated as follows:

MA
B

[
x
v

]
= em+1 .

We summarize the discussion above by the following lemma.

Lemma 3. Let v ∈ R and x ∈ Rm be given.

1. The pair (x, v)T is a basic solution of (1) if and only if
there is a potential basis set B such that det(MA

B ) 6= 0
and (x, v)T = (MA

B )−1em+1.

2. A pair (x, v)T is a bfs of (1) if and only if there is a
potential basis set B such that det(MA

B ) 6= 0, (x, v)T =
(MA

B )−1em+1, x ≥ 0 and fnv − ATx ≤ 0.

By Cramer’s rule we find that xi = det((MA
B )i)/det(M

A
B )

and v = det((MA
B )m+1)/det(M

A
B ). Here (MA

B )i is the ma-
trix obtained from MA

B by replacing column i with em+1.
We shall be interested in parameterized matrix games. Let

A be a mapping from RN to m× n matrix games. Given a
potential basis set B we will be interested in describing the
sets of parameters for which B gives rise to a bfs as well as an
optimal bfs for LP (1). We let FA

B denote the set of w ∈ RN

such that B defines a bfs for the matrix game A(w), and
we let OA

B denote the set of w ∈ RN such that B defines an
optimal bfs for the matrix game A(w). Let B1 ⊆ {1, . . . , n}
be the set of indices out of the first n constraints that are not
in B. Similarly, let B2 ⊆ {1, . . . ,m} be the indices out of
the next m constraints that are not in B. We may describe

the set FA
B as a union FA+

B ∪ FA−
B . Here FA+

B is defined to
be the set of parameters w that satisfy the following m+ 1
inequalities:

det(M
A(w)
B ) > 0 ,

det((M
A(w)
B )m+1)−

m∑

i=1

aij det(((M
A(w)
B )i)) ≤ 0 for j ∈ B1,

det((M
A(w)
B )i) ≥ 0 for i ∈ B2.

The set FA−
B is defined analogously, by reversing all inequal-

ities above. With these in place we can describe OA
B as the

sets of parameters w ∈ FA
B for which

det((M
A(w)
B )m+1) = val(A(w)) det(M

A(w)
B ) .

Shapley and Everett games
We will define stochastic games in a general form, follow-
ing Everett [13], to capture both Shapley games as well as
Everett games (but not Gillette games) as direct specializa-
tions. For that purpose a stochastic game Γ is specified as
follows. We let N denote the number of positions, numbered
{1, . . . , N}. In every position k, the two players havemk and
nk actions available, numbered {1, . . . ,mk} and {1, . . . , nk}.
If at position k Player I chooses action i and Player II si-
multaneously chooses action j, Player I receives reward ak

ij

from player II. After this, with probability skij ≥ 0 the game
stops, in which case Player I receives an additional reward
bkij from player II. With probability pklij , play continues at

position l. We demand skij +
∑N

l=1 p
kl
ij = 1 for all positions

k and all pairs of actions (i, j). A strategy of a player is
an assignment of a probability distribution on the actions
of each position, for each possible history of the play, a his-
tory being the sequence of positions visited so far as well
as the sequences of actions played by both players in those
rounds. A strategy is called stationary if it only depends on
the current position.

Given a pair of strategies x and y as well as a starting
position k, let ri be the random variable denoting the reward
given to Player I during round i (if play has ended we define
this as 0). We define the expected total payoff by τk(x, y) =
limn→∞ E

[∑n

i=1 ri
]

, where the expectation is taken over
actions of the players according to their strategies x and y,
as well as the probabilistic choices of the game (In the special
cases of Shapley and Everett games the limit always exist).
We define the lower value, vk, and upper value, vk, of the
game Γ, starting in position k by vk = supx infy τ

k(x, y),
and vk = infy supx τ

k(x, y). In case that vk = vk we define
this as the value vk of the game, starting at position k.
Assuming Γ has a value, starting at position k, we say that
a strategy x is optimal for Player I, starting at position k if
infy τ

k(x, y) = vk, and for a given ǫ > 0, we say the strategy
x is ǫ-optimal starting at position k, if infy τ

k(x, y) ≥ vk−ǫ .
We define the notions of optimal and ǫ-optimal analogously
for Player II.

A Shapley game [20] is a special case of the above de-
fined stochastic games, where skij > 0 and bkij = 0 for all
positions k and all pairs of actions (i, j). Given valuations
v1, . . . , vN for the positions and a given position k we define
Ak(v) to be the mk × nk matrix game where entry (i, j) is

ak
ij+

∑N

l=1 p
kl
ijvl. The value iteration operator T : RN → RN

is defined by T (v) =
(
val(A1(v)), . . . , val(AN(v))

)
. The fol-



lowing theorem of Shapley characterizes the value and opti-
mal strategies of a Shapley game.

Theorem 4 (Shapley). The value iteration operator
T is a contraction mapping with respect to supremum norm.
In particular, T has a unique fixed point, and this is the
value vector of the stochastic game Γ. Let x∗ and y∗ be the
stationary strategies for Player I and player II where in po-
sition k an optimal strategy in the matrix game Ak(v∗) is
played. Then x∗ and y∗ are optimal strategies for player I
and player II, respectively, for play starting in any position.

An Everett game [13] is a special case of the above defined
stochastic games, where ak

ij = 0 for all k, i, j. In contrast to

Shapley games, we may have that skij = 0 for some k, i, j.
Everett points out that his games generalize the class of
Shapley games. Indeed, we can convert Shapley game Γ
to Everett game Γ′ by letting bkij = ak

ij/s
k
ij , recalling that

skij > 0.
Given valuations v1, . . . , vN for the positions and a given

position k we define Ak(v) to be the mk × nk matrix game

where entry (i, j) is skijb
k
ij +

∑N

l=1 p
kl
ijvl. The value map-

ping operator M : RN → RN is then defined by M(v) =(
val(A1(v)), . . . , val(AN(v))

)
. Define relations < and 4 on

RN as follows:

u < v if and only if

{
ui > vi if vi > 0

ui ≥ vi if vi ≤ 0
, for all i .

u 4 v if and only if

{
ui < vi if vi < 0

ui ≤ vi if vi ≥ 0
, for all i .

Next, we define the regions C1(Γ) and C2(Γ) as follows:

C1(Γ) = {v ∈ R
N |M(v) < v},

C2(Γ) = {v ∈ R
N |M(v) 4 v}.

A critical vector of the game is a vector v such that v ∈
C1(Γ) ∩ C2(Γ). That is, for every ǫ > 0 there exists vectors
v1 ∈ C1(Γ) and v2 ∈ C2(Γ) such that ‖v − v1‖2 ≤ ǫ and
‖v − v1‖2 ≤ ǫ.

The following theorem of Everett characterizes the value
of an Everett game and exhibits near-optimal strategies.

Theorem 5 (Everett). There exists a unique critical
vector v for the value mapping M , and this is the value vec-
tor of Γ. Furthermore, v is a fixed point of the value map-
ping, and if v1 ∈ C1(Γ) and v2 ∈ C2(Γ) then v1 ≤ v ≤ v2.
Let v1 ∈ C1(Γ). Let x be the stationary strategy for player I,
where in position k an optimal strategy in the matrix game
Ak(v1) is played. Then for any k, starting play in position
k, the strategy x guarantees expected payoff at least v1,k for
player I. The analogous statement holds for v2 ∈ C2(Γ) and
Player II.

Gillette Games
While the payoffs in Gillette’s model of stochastic games
cannot be captured as a special case of the general formal-
ism above, the general setup is the same, i.e., the parameters
N,mk, nk, a

k
ij , p

kl
ij is as above and the game is played as in

the case of Shapley games and Everett games. In Gillette’s
model, we have bkij = 0 and skij = 0 for all k, i, j. The
payoff associated with an infinite play of a Gillette game is

by definition lim infT→∞(
∑T

t=1 ri)/T where rt is the reward
collected at round t. Upper and lower values are defined
analogously to the case of Everett and Shapley games, but
with the expectation of the payoff defined in this way re-
placing τk(x, y). Again, the value of position k is said to
exist if its upper and lower value coincide. An Everett game
can be seen as a special case of a Gillette game by replac-
ing each termination outcome with final reward b with an
absorbing position in which the reward b keeps recurring.
The central theorem about Gillette games is the theorem of
Mertens and Neyman [17], showing that all such games have
a value. The proof also yields the following connection to
Shapley games that is used by our algorithm: For a given
Gillette game Γ, let Γλ be the Shapley game with all stop
probabilities skij being λ and each transition probability be-
ing the corresponding transition probability of Γ multiplied
by 1 − λ. Let vk be the value of position k in Γ and let vkλ
be the value of position k in Γλ. Then, the following holds.

Theorem 6 (Mertens and Neyman).

vk = lim
λ→0+

λvkλ

Real Algebraic Numbers
Let p(x) ∈ Z[x] be a polynomial with integer coefficients

of degree d. Write p(x) =
∑d

i=1 aix
i, with ad 6= 0. The

content cont(p) of p is defined by cont(p) = gcd(a0, . . . , ad).
We say that p is primitive if cont(p) = 1. We can view the
coefficients of p as a vector a ∈ Rd+1. We then define the
length |p| of p by |p| = ‖a‖2 as well as the height |p|∞ of p
by |p|∞ = ‖a‖∞.

An algebraic number α ∈ C is a root of a polynomial in
Q[x]. The minimal polynomial of α is the unique monic
polynomial in q ∈ Q[x] of least degree with q(α) = 0. Given
an algebraic number α with minimal polynomial q, there is
a minimal integer k ≥ 1 such that p = kq ∈ Z[x]. In other
words p is the unique polynomial in Z[x] of least degree with
p(α) = 0, cont(p) = 1 and positive leading coefficient. We
extend the definitions of degree and height to α from p. The
degree deg(α) of α is defined by deg(α) = deg(p) and height
|α|∞ of α is defined by |α|∞ = |p|∞.

Theorem 7 (Kannan, Lenstra and Lovász). There
is an algorithm that computes the minimal polynomial of a
given algebraic number α of degree n0 when given as input
d and H such that deg(α) ≤ d and |α|∞ ≤ H and α such
that |α− α| ≤ 2−s/(12d), where

s = ⌈d2/2 + (3d+ 4) log2(d+ 1) + 2d log2(H)⌉ .

The algorithm runs in time polynomial in n0, d and logH.

3. ALGORITHMS
In this section we describe our algorithms for solving Shap-

ley, Everett and Gillette games. The algorithms for Shapley
and Everett games proceed along the same lines, using the
fact that Shapley games can be seen as a special case of
Everett games explained above. The algorithm for Gillette
games is a reduction to the case of Shapley games using The-
orem 6. We proceed by first constructing the algorithms for
Everett and Shapley games and explain the algorithm for
Gillette games at the end of this section.



Reduced games
Let Γ be an Everett game with N + 1 positions. Denote
by V (Γ) the critical vector of Γ. Given a valuation v for
position N + 1 we consider the reduced game Γr(v) with N
positions, obtained from Γ in such a way that whenever the
game would move to position N+1, instead the game would
stop and player 1 would receive a payoff v.

Denote by V r(v) the critical vector of the game Γr(v). We
have the following basic lemma shown by Everett.

Lemma 8. For every δ > 0, for all v and for all positions
k: (V r(v))k − δ ≤ (V r(v − δ))k ≤ (V r(v))k ≤ (V r(v +
δ))k ≤ (V r(v))k + δ. In particular, V r(v) is a continuous
monotone function of v in all components. The first and
last inequalities are strict inequalities, unless (V r(v))k = v.

Let Ṽ (v) denote the value val(AN+1(V r(v), v)) of the pa-
rameterized game for position N + 1, where the first N po-
sitions are given valuations according to V r(v) and position
N + 1 is given valuation v.

Lemma 9. Denote by v∗ component N+1 of V (Γ). Then
the following equivalences hold.

1. Suppose v∗ > 0 and v ≥ 0. Then, Ṽ (v) > v ⇔ v < v∗.

2. Suppose v∗ < 0 and v ≤ 0. Then, Ṽ (v) < v ⇔ v∗ < v.

Proof. We prove only the first equivalence. The proof
of the second equivalence is analogous. Assume first that

Ṽ (v) > v. Since Ṽ is continuous we can find z ∈ C1(Γ
r(v))

such that val(AN+1(z, v)) > v as well. This implies that
(z, v) ∈ C1(Γ) and by definition of C1(Γ) we obtain that

v ≤ v∗. By Theorem 5, Ṽ (v∗) = val(AN+1(V r(v∗), v∗)) =

val(AN+1(V (Γ))) = v∗. Since Ṽ (v) > v we have v < v∗.
The other part of the equivalence was shown by Everett

as a part of his proof of Theorem 5. We present the ar-
gument for completeness. Everett in fact shows that v∗

is the fixpoint of Ṽ of minimum absolute value. That is,

Ṽ (v∗) = v∗ and whenever Ṽ (v) = v we have |v| ≥ |v∗|. Now
assume that v < v∗, and let δ = v∗ − v. From Lemma 8 we

have Ṽ (v) = Ṽ (v∗ − δ) ≥ Ṽ (v∗) − δ = v∗ − δ = v. Since
v ≥ 0, from minimality of |v∗| we have the strict inequality

Ṽ (v) > v.

Recursive bisection algorithm
Based on Lemma 9 we may construct an idealized bisection
algorithm Bisect (Algorithm 1) for approximating the last
component of the critical vector, unrealistically assuming we
can compute the critical vector of a reduced game exactly.
For convenience and without loss of generality, we will as-
sume throughout that the payoffs in the game Γ we consider
have been normalized to belong to the interval [−1, 1]. The
correctness of the algorithm follows directly from Lemma 9.
Given that we have obtained a sufficiently good approxima-
tion for the last component of the critical vector we may
reconstruct the exact value using Theorem 7. What “suf-
ficiently good” means depends on the algebraic degree and
size of coefficients of the defining polynomial of the algebraic
number to be given as output, so we shall need bounds on
these quantities for the game at hand.

To get an algorithm implementable as a Turing machine
we will have to compute with approximations throughout
the algorithm but do so in a way that simulates Algorithm 1

Algorithm 1: Bisect(Γ, k)

Input: Game Γ with N + 1 positions, all payoffs
between -1 and 1, accuracy parameter k ≥ 2.

Output: v such that |v − v∗| ≤ 2−k.

1: if Ṽ (0) = 0 then

2: return 0
3: else

4: vl ← 0

5: vr ← sgn(Ṽ (0))
6: for i← 1 to k − 1 do

7: v ← (vl + vr)/2

8: if |Ṽ (v)| > |v| then

9: vl ← v
10: else

11: vr ← v

12: return (vl + vr)/2

Algorithm 2: ABisect(Γ, k)

Input: Game Γ with N + 1 positions, m actions per
player in each position, all payoffs rationals
between -1 and 1 and of bitsize L, accuracy
parameter k ≥ 2.

Output: v such that |v − v∗| < 2−k.
1: ǫ← sep(N,m,L, 0)/5

2: v ← val(AN+1([AVal(V r(0), ⌈− log ǫ⌉)]⌈− log ǫ⌉, 0))
3: if |v| ≤ 2ǫ then

4: return 0
5: else

6: vl ← 0
7: vr ← sgn(v)
8: for i← 1 to k − 1 do

9: v ← (vl + vr)/2
10: ǫ← sep(N,m,max(L, i), i)/5
11: v′ ←

val(AN+1([AVal(V r(v), ⌈− log ǫ⌉)]⌈− log ǫ⌉, v))
12: if |v′| > |v| then
13: vl ← v
14: else

15: vr ← v

16: return (vl + vr)/2

Algorithm 3: AVal(Γ, k)

Input: Game Γ with N positions, payoffs between -1
and 1, accuracy parameter k ≥ 2.

Output: Value vector v such that |vi − v∗i | < 2−k for
all positions i.

1: if N = 0 then

2: return The empty vector
3: else

4: for i← 1 to N do

5: vi = ABisect(Γ, k), where position i is swapped
with position N

6: Return v



exactly, i.e., so that the same branches are followed in the
if-statements of the algorithm. For this, we need separation
bounds for values of stochastic games. Fortunately, these
follow from the bounds on degree and coefficient size needed
anyway to apply Theorem 7. Consider a class C of Everett
games (In fact C will be either all Everett games or the subset
consisting of Shapley games). Let sep(N,m,L, j) denote
a positive real number so that if v is the value of game
Γ ∈ C with N positions, m actions to each player in every
position, and every rational occurring in the description in
the game having bitsize at most L, and v is not an integer
multiple of 2−j , then v differs by at least sep(N,m,L, j) from
every integer multiple of 2−j . Also, we let [v]k denote the
function that rounds all entries in the vector v to the nearest
integer multiple of 2−k. Our modified algorithm ABisect (for
approximate Bisect) is given as Algorithm 2. The procedure
AVal invoked in the code simply computes approximations
to the values of all positions in a game using ABisect.

The correctness of ABisect follows from the correctness
of Bisect by observing that the former emulates the latter,
in the sense that the same branches are followed in the if-
statements. For the latter fact, Lemma 1 and Lemma 9 are
used.

The complexity of the algorithm is estimated by the in-
equalities TAVal(N,m,L, k) ≤ NTABisect(N,m,L, k) and
TABisect(N,m,L, k) ≤ ⌈− log ǫ⌉ (TLP(m + 1, ⌈− log ǫ⌉)
+ TAVal(N − 1,m,max{L, k}, ⌈− log ǫ⌉) where ǫ = sep(N −
1, m,max{L, k}, k)/5.

Plugging in the separation bound for Shapley games of
Proposition 14, we get a concrete algorithm without un-
specified constants. Also, to get an algorithm that outputs
the exact algebraic answer in isolating interval encoding we
need to call the algorithm with parameter k appropriately
chosen to match the quantities stated in Theorem 7, tak-
ing into account the degree and coefficient bounds given in
Proposition 14. Finally, plugging in a polynomial bound for
TLP, the above recurrences is now seen to yield a polyno-
mial time bound for constant N . However, the exponent

in this polynomial bound is O(N)N
2

, i.e., the complexity is
doubly exponential in N . We emphasize that the fact that
the exact value is reconstructed in the end only negligibly
changes the complexity of the algorithm compared to letting
the algorithm return a crude approximation. Indeed, an ap-
proximation algorithm following our approach would have
to compute with a precision in its recursive calls similar to
the precision necessary for reconstruction. Only for games
with only one position (and hence no recursive calls) would
an approximation version of ABisect be faster.

For the case of Everett games, the degree, coefficient and
separation bounds of Proposition 18 similarly yields the exis-
tence of a polynomial time algorithm for the case of constant

N , with an exponent of NO(N2).

Computing strategies
We now consider the task of computing ǫ-optimal strate-
gies to complement our algorithm for computing values. For
Shapley games the situation is simple. By Theorem 4, once
we have obtained the value v∗ of the game, we can obtain
exactly optimal stationary strategies x∗ and y∗ by finding
optimal strategies in the matrix games Ak(v∗). Also, if we
only have an approximation ṽ to v∗, such that ‖v∗−ṽ‖∞ ≤ ǫ,
consider the stationary strategies x̃∗ and ỹ∗ given by opti-
mal strategies in the matrix games Ak(ṽ). In every round

of play, these strategies may obtain ǫ less than the optimal
strategies. But this deficit is discounted in every round by
a factor 1 − λ where λ = min(skij) > 0 is the minimum
stop probability. Hence x̃ and ỹ are in fact (ǫ/λ)-optimal
strategies.

For Everett games the situation is more complicated, since
the actual values v∗ may in fact give absolutely no informa-
tion about ǫ-optimal strategies. We shall instead follow the
approach of Everett and show how to find points v1 ∈ C1 and
v2 ∈ C2 that are ǫ-close to v∗. Then, using Theorem 5 we
can compute ǫ-optimal strategies by finding optimal strate-
gies in the matrix games Ak(v1) and Ak(v2), respectively.

Let Γ be an Everett game with N + 1 positions. We first
describe how to exactly compute v1 ∈ C1, given the abil-
ity to exactly compute the values; the case of v2 ∈ C2 is
analogous. Let v∗ be the critical vector of Γ. In case that
v∗i ≤ 0 for all i, then by definition of C1 we have v∗ ∈ C1.
Otherwise at least one entry of v∗ is positive, so assume
v∗N+1 > 0. As in Section 3 we consider the reduced game
Γr(v), taking payoff v for position N + 1. By Lemma 9,

whenever 0 ≤ v < v∗N+1 we have Ṽ (v) > v. Suppose in fact

that we pick v so that v∗N+1−v ≤ ǫ/2. Now let δ = v−Ṽ (v).

Recall Ṽ (v) = val(AN+1(V r(v), v)). Now recursively com-
pute z ∈ C1(Γ

r(v)) such that ‖V r(v) − z‖∞ ≤ min(δ/2, ǫ).
Then by Lemma 1 we have that |val(AN+1(V r(v), v)) −
val(AN+1(z, v))| ≤ δ/2, which means val(AN+1(z, v)) > v.
This means that v1 = (z, v) ∈ C1, and by our choices we
have ‖v1−v∗‖∞ ≤ ǫ, as desired. We now have an exact rep-
resentation of an algebraic vector v1 in C1, ǫ-approximating
the critical vector. The size of the representation in isolat-
ing interval representation is polynomial in the bitsize of Γ
(for constant N). From this we may compute the optimal
strategies of Ak(v1) which also form an ǫ-optimal strategy
of Γ. The polynomial size bound on v1 implies that all non-
zero entries in this strategy have magnitude at least 2−l

where l is polynomially bounded in the bitsize of Γ. We
now show how to get a rational valued 2ǫ-optimal strategy
in polynomial time. For this, we apply a rounding scheme
described in Lemmas 14 and 15 of Hansen, Koucký and Mil-
tersen [16]. For each position, we now round all probabilities,
except the largest, upwards to L significant digits where L
is a somewhat larger polynomial bound than l, while the
largest probability at each position is rounded downwards
to L significant digits. Using Lemma 14 (see also the proof
of Lemma 15) of Hansen, Koucký and Miltersen [16], we can
set L so that the resulting strategy is 2ǫ-optimal in Γ. This
concludes the description of the procedure.

The case of Gillette games
To compute the value of a given Gillette game, we proceed
as follows (only a sketch is provided in this version of the
paper). First, using Theorem 6 and general statements of
semi-algebraic geometry, we may prove degree, coefficient
size and separation bounds for the values of Gillette games.

Next, statements of semi-algebraic geometry [2, Theorem
13.15] allow us to extract from Theorem 6 for a given ǫ an
explicit upper bound on the value of λ necessary for vkλ to
approximate vk within ǫ. The expression for such λ is of

the form λǫ = ǫτm
O(N2)

. Our algorithm proceeds simply
by setting ǫ so small that an ǫ-approximation to the value
allows an exact reconstruction of the value using Theorem
7. Such ǫ can be computed as we have derived degree and



coefficient bounds for the value of the Gillette game at hand.
We then run our previously constructed algorithm on the
Shapley game Γλ, where λ = λǫ.

4. DEGREE AND SEPARATION BOUNDS

Shapley Games
Our bounds on degree, coefficient size, and separation for
Shapley games is a reduction to the following theorem for
which we give a proof in the full version of the paper. As
mentioned in the introduction, it is a strengthened (“big-O-
less”) version of Corollary 13.18 of Basu, Pollack and Roy.

Theorem 10. Consider a polynomial system,

g1(x1, . . . , xn) = · · · = gm(x1, . . . , xn) = 0,

with polynomials of degree at most d and integer coefficients
of magnitude at most 2τ , i.e. ‖gi‖∞ ≤ 2τ .

Then, the coordinates of isolated real solutions of the sys-
tem are real algebraic numbers of degree at most (2d + 1)n,
and their defining polynomials have coefficients of bitsize at
most 2n(τ + 4n lg(dm))(2d+ 1)n−1.

We also need the following simple facts.

Proposition 11 ([2], Proposition 8.12). Let M be an
m × m matrix, whose entries are integer polynomials in
variables x1, . . . , xn of degree at most d and coefficients of
bitsize at most τ . Then det(M), as a polynomial in vari-
ables x1, . . . , xn is of degree at most dm and has coefficients
of bitsize at most (τ + bit(m))m + nbit(md + 1), where
bit(z) = ⌈lg z⌉.

The following lemma is due to Cauchy (see e.g., Yap [21,
Lemma 6.7]).

Lemma 12. Let f ∈ Z[x]. For any non-zero root γ of f
we have:

(2‖f‖∞)−1 ≤ |γ| ≤ 2‖f‖∞ .

Denote by B(v, ǫ) the ball around v ∈ RN of radius ǫ > 0,
{v′ ∈ RN | ‖v − v′‖2 ≤ ǫ}.

Theorem 13. Let Γ be a Shapley game, with N positions.
Assume that in position k, the two players have mk and
nk actions available. Assume further that all payoffs and
probabilities in Γ are rational numbers with numerators and
denominators of bitsize at most τ .

Then there is a system S of polynomials in variables v1,
. . . , vN , for which the value vector v∗ of Γ is an isolated root.
Furthermore the system S consists of at most

∑N

k=1

(
nk+mk

mk

)

polynomials, each of degree at most m+2 and having integer
coefficients of bitsize at most 2(N + 1)(m+ 1)2τ + 1, where
m = maxN

k=1 (min(nk, mk)).

Proof. Let v∗ ∈ Rn be the fixpoint of T given by The-
orem 4. For all positions k, and for all potential basis sets
Bk corresponding to the parameterized matrix game Ak we

consider the closures OAk

Bk
of the sets OAk

Bk . Since there are
finitely many positions and for each position finitely many
potential basis sets, we may find ǫ > 0 such that whenever

B(v∗, ǫ)∩OAk

Bk
6= ∅ we have v∗ ∈ OAk

Bk
for all positions k and

all potential basis sets Bk. For a given position k, let Bk be

the set of such potential basis sets. Then, for every Bk ∈ Bk

define the polynomial

PBk (w) = det((M
Ak(w)

Bk
)mk+1)− wk det(M

Ak(w)

Bk
) .

Let P be the system of polynomials consisting of all such
polynomials for all positions k. We claim that v∗ is an iso-
lated root of the system P . First we show that v∗ is in
fact a solution. Consider any position k and any polynomial

PBk ∈ P . By construction we have v∗ ∈ OAk

Bk
, and we may

thus find a sequence (wi)∞i=1 in OAk

Bk converging to v∗. Since

for every i, wi ∈ OAk

Bk we have that det((M
Ak(wi)
B )m+1) −

val(Ak(wi)) det(M
A(wi)
B ) = 0, and thus by continuity of

the functions det, val, and the entries of Ak, we obtain

det((M
Ak(v∗)
B )m+1) − val(Ak(v∗)) det(M

Ak(v∗)
B ) = 0. But

val(Ak(v∗)) = v∗k and hence PBk (v∗) = 0.
Next we show that v∗ is unique. Indeed, suppose that

v′ ∈ B(v∗, ǫ) is a solution to the system P . For each posi-
tion k pick a potential basis set Bk such that Bk describes
an optimal bfs for Ak(v′). Now since v′ ∈ B(v∗, ǫ) as well

as v′ ∈ OAk

Bk we have by definition that Bk ∈ Bk and hence
PBk ∈ P . As a consequence v′ must be a root of PBk .
Now, since Bk in particular is a basic solution we have

det(M
Ak(v′)

Bk
) 6= 0. Combining these two facts we obtain

v′k = det((M
Ak(v′)

Bk
)mk+1)/det(M

Ak(v′)

Bk
) ,

and since Bk is an optimal bfs for Ak(v′) we have that
val(Ak(v′))k = v′k. Since this holds for all k, we obtain
that v′ is a fixpoint of T , and Theorem 4 then gives that
v′ = v∗.

To get the system S we take (smallest) integer multiples
of the polynomials in S such that all polynomials have in-
teger coefficients. For a given position k, we have

(
nk+mk

mk

)

potential basis sets, giving the bound on the number of poly-
nomials. Assume now that mk ≤ nk (In case mk > nk we
can consider the dual of the linear program in lemma 3).
Fix a potential basis set Bk.

Using Proposition 11 the degree of PBk (w) is at most 1+
(mk + 1). Further to bound the bitsize of the coefficients,
note that using linearity of the determinant we may multiply

each row of the matrices (M
Ak(w)

Bk
)mk+1 and M

Ak(w)

Bk
by the

product of the denominators of all the coefficients of entries

in the same row in the matrix M
Ak(w)

Bk
. This product is an

integer of bitsize at most (N + 1)(mk + 1)τ . Hence, doing
this, both matrices will have entries where all the coefficients
are integers of bitsize at most (N+1)(mk+1)τ as well. Now
by Proposition 11 again the bitsize of the coefficients of both
determinants is at most

((N + 1)(mk + 1)τ + bit(mk))(mk + 1) +N bit(mk + 2) ≤

2(N + 1)(mk + 1)2τ

From this the claimed bound follow.

We can now state the degree and separation bounds for
Shapley games.

Proposition 14. Let Γ be a Shapley game with N posi-
tions and m actions for each player in each position and all
rewards and transition probabilities being rational numbers
with numerators and denominators of bitsize at most τ . Let



v be the value of Γ. Then, v is of algebraic degree at most
(2m+ 5)N and the defining polynomial of v has coefficients
of bitsize at most 21m2N2τ (2m+5)N−1. Finally, if v is not
an integer multiple of 2−k, it differs from any such multiple

by at least 2−22m2N2τ(2m+5)N−1−k(2m+5)N−1.

Proof. From Theorem 13 the value of Γ is among the
isolated real solutions of a system of

∑N

i=1

(
2m
m

)
≤ 4m poly-

nomials, of degree at most m+2 and bitsize at most 2(N +
1)(m+1)2τ+1 ≤ 4Nm2τ . Theorem 10 implies that the alge-
braic degree of the solutions is (2(m+1)+1)N = (2m+5)N

and the defining polynomial has coefficients of magnitude at

most 2(8m
2N2τ+8Nm+5N lg(m))(2m+5)N−1

≤ 221m
2N2τ(2m+5)N−1

.
Let the defining polynomial be A(v). To compute a lower

bound on the difference between a root of A and a number
2−k, it suffices to apply the map v 7→ v+2−k to A and com-
pute a lower bound for the roots of the shifted polynomial.
The shifted polynomial has also degree (2m + 5)N , but its
maximum coefficient bitsize is bounded by 21m2N2τ (2m+
5)N−1 + k(2m + 5)N + 4 lg(2m + 5)N ≤ 22m2N2τ (2m +
5)N−1 + k(2m + 5)N . By applying Lemma 12 we get the
result.

Everett Games
Theorem 15. Let Γ be an Everett game, with N posi-

tions. Assume that in position k, the two players have mk

and nk actions available. Assume further that all payoffs
and probabilities in Γ are rational numbers with numerators
and denominators of bitsize at most τ .

Then there is a quantified formula with N free variables
that describes whether a vector v∗ is the value vector of
Γ. The formula has two blocks of quantifiers, where the
first block consists of a single variable and the second block
consists of 2N variables. Furthermore the formula uses at
most (2N + 3) + 2(m + 2)

∑N

k=1

(
nk+mk

mk

)
different polyno-

mials, each of degree at most m + 2 and having coefficients
of bitsize at most 2(N + 1)(m + 2)2 bit(m)τ , where m =
maxN

k=1 (min(nk,mk)).

Proof. By Theorem 5 we may express the value vec-
tor v∗ by the following first-order formula with free vari-
ables v: (∀ǫ)(∃v1, v2) (ǫ ≤ 0) ∨ (‖v − v1‖

2 < ǫ ∧ ‖v −
v2‖

2 < ǫ ∧ v1 ∈ C1(Γ) ∧ v2 ∈ C2(Γ)) . Here the expres-
sions v1 ∈ C1(Γ) and v2 ∈ C2(Γ) are a shorthands for the
quantifier free formulas of polynomial inequalities implied
by the definitions of C1(Γ) and C2(Γ). We provide the
details below for the case of C1(Γ). The case of C2(Γ) is
analogous. By definition v1 ∈ C1(Γ) means M(v1) < v1,
which in turn is equivalent to ∧N

k=1((val(A
k(v1)) > v1k ∧

v1k > 0) ∨ (val(Ak(v1)) ≥ v1k ∧ (v1k ≤ 0))). Now we
can rewrite the predicate val(Ak(v1)) > v1k to the follow-

ing expression: ∨Bk ((v1 ∈ FAk+
Bk

∧ det((M
Ak(v1)

Bk
)mk+1) >

v1k det(M
Ak(v1)

Bk
))) ∨ ((v1 ∈ FAk−

Bk
∧ det((M

Ak(v1)

Bk
)mk+1) <

v1k det(M
Ak(v1)

Bk
))), where the disjunction is over all poten-

tial basis sets, and each of the expressions v1 ∈ FAk+
Bk

and

v1 ∈ FAk−

Bk
are shorthands for the conjunction of the mk +1

polynomial inequalities describing the corresponding sets.
By a similar analysis as in the proof of Theorem 13 we

get the following bounds, assuming without loss of gen-

erality that mk ≤ nk: The predicates v1 ∈ FAk+

Bk
and

v1 ∈ FAk−
Bk

can be written as a quantifier free formulas us-
ing at most mk + 1 different polynomials, each of degree at

most mk+2 and having coefficients of bitsize at most 2(N+
1)(mk + 2)2 bit(mk)τ . Also, the predicate val(Ak(v1)) >
v1k can be written as a quantifier free formula using at
most (mk +2)

(
nk+mk

mk

)
different polynomials, each of degree

at most mk + 2 and having coefficients of bitsize at most
2(N + 1)(mk + 2)2 bit(mk)τ .

Combining these further, for all positions we have the fol-
lowing statement (that shall be used also in our upper bound
for strategy iteration for concurrent reachability games).

Lemma 16. The predicate v1 ∈ C1(Γ) can be written as a

quantifier free formula using at most
∑N

k=1 1+(m+2)
(
nk+mk

mk

)

different polynomials, each of degree at most m+2 and hav-
ing coefficients of bitsize at most 2(N +1)(m+2)2 bit(m)τ ,
where m = maxN

k=1 (min(nk,mk)).

From this the statement of the theorem easily follows.

We now apply the machinery of semi-algebraic geome-
try to get the desired bounds on degree and the separation
bounds.

Lemma 17. Let α be a root of f ∈ Z[x], which is of degree
d and maximum coefficient bitsize at most τ . Moreover, let
g(α) = p(α)/q(α) where p, q ∈ Z[x] are of degree at most d,
have maximum coefficient bitsize at most τ , and q(α) 6= 0.
The minimal polynomial of g(α) is a univariate polynomial
of degree at most d and maximum coefficient bitsize at most
2dτ + 7d lg d.

Proof. The minimal polynomial of g(α) is among the
square-free factors of the following (univariate) resultant
with respect to y:

r(x) = resy(f(y), q(y)x− p(y)) ∈ Z[x].

The degree of r is bounded by d and its maximum coeffi-
cient bitsize is at most 2dτ + 5d lg d [2, Proposition 8.50].
Any factor of r has maximum coefficient bitsize at most
2dτ + 7d lg d, due to the Landau-Mignotte bound, see, e.g.,
Mignotte [18].

Proposition 18. Let v be the value of a position of an
Everett game with N positions, m actions for each player
in each position, and payoffs and transition probabilities be-
ing rational numbers with numerators and denominators of
bitsize at most τ . Then, v is an algebraic number of de-

gree at most mO(N2), and the bitsize of the coefficients of

its defining polynomial are upper bounded by τmO(N2). Fur-
thermore, if v is not a multiple of 2−j , it differs from any

such multiple by at least 2−max{τ,j}mO(N2)

.

Proof. We use Theorem 14.16 (Quantifier Elimination)
of Basu, Pollack and Roy [2] on the formula of Theorem 15
to find a quantifier free formula expressing that v is the
value vector of the game. Next, we use Theorem 13.11
(Sampling) of [2] to this quantifier free formula to find a
univariate representation of the value vector v. satisfying
the formula from Lemma 19. That is, we obtain poly-
nomials f, g0, . . . , g2N , with f and g0 coprime, such that
v = (g1(t)/g0(t), . . . , g2N (t)/g0(t)), where t is a root of f .

These polynomials are of degree mO(N2) and their coeffi-

cients have bitsize τmO(N2). We apply Lemma 17 to the uni-
variate representation to obtain the desired defining polyno-
mials. Finally, we obtain the separation bound using Lemma
12.



The above bounds lead to a setting of the parameters of
the algorithm in Section 3. We conclude this section by
explaining how the above technique also yields an improve-
ment on the analysis of the strategy improvement algorithm
for concurrent reachability games.

Let Γ be an Everett game, with N positions. Assume
that in position k, the two players have mk ≤ m and nk ≤
m actions available. Assume further that all payoffs and
probabilities in Γ are rational numbers with numerators and
denominators of bitsize at most τ . Further, let σ be a fixed
positive integer.

From Lemma 16 we get the following statement.

Lemma 19. There is a quantifier free formula with 2N
free variables v1 and v2 that expresses v1 ∈ C1(Γ), v2 ∈
C2(Γ), and ‖v1 − v2‖

2 ≤ 2−σ.

The formula uses at most (2N+1)+2(m+2)
∑N

k=1

(
nk+mk

mk

)

different polynomials, each of degree at most m+2 and hav-
ing coefficients of bitsize at most max(σ, 2(N +1)(m+2)τ ),
where m = maxN

k=1 (min(nk,mk)).

Theorem 20. Let Γ and σ be as above. Let ǫ = 2−σ.
Then there exists ǫ-optimal strategy of Γ where each probabil-
ity is a real algebraic number, defined by a polynomial of de-
gree mO(N) and maximum coefficient bitsize max(σ, τ )mO(N).

Proof. We use Theorem 13.11 of [2] to find a univariate
representation of the pair (v1, v2) satisfying the formula from
Lemma 19. That is we have polynomials f, g0, . . . , g2N , with
f and g0 coprime, such that the points (v1, v2) are given as
(g1(t)/g0(t), . . . , g2N(t)/g0(t)), where t is a root of f . These

polynomials are of degree mO(N) and their maximum coef-
ficient bitsize is max(σ, τ )mO(N).

Now consider the matrix games Ak(v1) for all positions
k. We find optimal strategies p1, . . . , pN that correspond to
basic feasible solutions of the linear program LP (1). No-
tice that the elements of these matrix games are rational
polynomial functions in g0, . . . , gN . By Lemma 3 we have

pki = det((MAk

Bk )i)/det(M
Ak

Bk ) for some potential basis sets

B1, . . . , Bk. Using Lemma 11, each pki is a rational polyno-
mial function in g0, . . . , gN of degree mO(N) and maximum
coefficient bitsize max(σ, τ )mO(N). Substituting the root t
of f using Lemma 17 we obtain the statement.

Using Lemma 12 we deduce:

Corollary 21. An Everett game with coefficient bitsize
bounded by τ has a 2−σ optimal strategy where the probabili-

ties are either zero or bounded from below by 2−max(σ,τ)mO(N)

.

We now apply Lemma 3 of Hansen, Ibsen-Jensen and Mil-
tersen [15] and conclude that value iteration and strategy
iteration on a deterministic concurrent reachability game
(where τ = O(1)) will compute an ǫ-optimal strategy after

at most ( 1
ǫ
)m

O(N)

iterations. This matches the lower bound
obtained by Hansen, Ibsen-Jensen and Miltersen [15].
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