
Univariate Algebraic Kernel and Application to

Arrangements

Sylvain Lazard1, Luis Peñaranda1, and Elias Tsigaridas2

1 INRIA Nancy - Grand Est, LORIA, France.
2 INRIA Sophia-Antipolis - Méditerranée, France.

FirstName.LastName@inria.fr

Abstract. We present a cgal-based univariate algebraic kernel, which
provides certi�ed real-root isolation of univariate polynomials with in-
teger coe�cients and standard functionalities such as basic arithmetic
operations, greatest common divisor (gcd) and square-free factorization,
as well as comparison and sign evaluations of real algebraic numbers.
We compare our kernel with other comparable kernels, demonstrating
the e�ciency of our approach. Our experiments are performed on large
data sets including polynomials of high degree (up to 2 000) and with
very large coe�cients (up to 25 000 bits per coe�cient).
We also address the problem of computing arrangements of x-monotone
polynomial curves. We apply our kernel to this problem and demonstrate
its e�ciency compared to previous solutions available in cgal.

1 Introduction

Implementing geometric algorithms robustly is known to be a di�cult task for
two main reasons. First, all degenerate situations have to be handled and second,
algorithms often assume a real-RAM model (a random-access machine where
each register can hold a real number and each arithmetic operation has unit
cost) which is not realistic in practice. In recent years, the paradigm of exact
geometric computing has arisen as a standard for robust implementations [24].
In this paradigm, geometric queries, also called predicates, such as �is a point
inside, outside or on a circle?�, are made exactly using, usually, either (i) exact
arithmetic combined, for e�ciency, with interval arithmetic on doubles or (ii)
interval arithmetic on arbitrary-�xed-precision �oating-point numbers combined
with separation bounds; on the other hand, geometric constructions, such as the
circle through three points or points of intersection between two curves, may be
approximated.

We address here one recurrent di�culty arising when implementing algo-
rithms dealing, in particular, with curved objects. Such algorithms usually re-
quire evaluating, manipulating and solving systems of polynomials equations and
comparing their roots. One of the most critical parts of dealing with polynomials
or polynomial systems is the isolation of the real roots and their comparison.

We restrict here our attention to the case of univariate polynomials and
address this problem in the context of cgal, a C++ Computational Geometry



Algorithms Library, which is an open source project and became a standard for
the implementation of geometric algorithms [4].

Cgal is designed in a modular fashion following the paradigm of generic

programming. Algorithms are typically parameterized by a traits class which
encapsulates the geometric objects, predicates and constructions used by the
algorithm. Algorithms can thus typically be implemented independently of the
type of input objects. For instance, the core of a line-sweep algorithm for com-
puting arrangements of plane curves [7] can be implemented independently of
whether the curves are lines, line segments, or general curves; on the other hand,
the elementary operations that depend on the type of the objects (such as, com-
paring x-coordinates of points of intersection) are implemented separately in
traits classes. Similarly, the model of computation, such as exact arbitrary-length
integer arithmetic or approximate �xed-precision �oating-point arithmetic, are
encapsulated in the concept of kernel. An implementation is thus typically sep-
arated in three or four layers, (i) the geometric algorithm which relies on (ii) a
traits class, which itself relies on (iii) a kernel for elementary (typically geomet-
ric) operations. Cgal provides several prede�ned Cartesian kernels, for instance
allowing standard Cartesian geometric operations on inputs de�ned with dou-
bles and providing approximate constructions (i.e., de�ned with double) but
exact predicates. However, a kernel can also rely on (iv) a number type which
essentially encapsulates the type of number (such as, double, arbitrary-length
integers, intervals) and the associated arithmetic operations. A choice of traits
classes, kernels and number types is useful as it gives freedom to the users and
it makes it easier to compare and improve the various building blocks of an
implementation.

Our Contributions. We present in this paper a cgal-compliant algebraic ker-
nel that provides real-root isolation of univariate integer polynomials and basic
operations, i.e. comparisons and sign evaluations, of real algebraic numbers. This
open-source kernel follows the cgal speci�cations for algebraic kernels [3]. The
root isolation is based on the interval Descartes algorithm [5] and uses the library
rs [19]. Moreover, our kernel provides various operations for polynomials, such
as gcd, which are crucial for manipulating algebraic numbers.

We compare our kernel with other comparable kernels and demonstrate the
e�ciency of our approach. We perform experiments on large data sets including
polynomials of high degree (up to 2 000) and with very large coe�cients (up to
25 000 bits per coe�cient).

Finally, we apply our kernel to the problem of computing arrangements of x-
monotone polynomial curves and demonstrate its e�ciency compared to previous
solutions available in cgal.

Related work. Combining algebra and geometry for manipulating non-linear
objects has been a long-standing challenge. Previous work includes, but it is not
limited to, mapc [14] a library for manipulating points that are de�ned alge-
braically and handling curves in the plane. More recently, the library exacus

[2], which handles curves and surfaces in computational geometry and supports
various algebraic operations, was developed and partially integrated into cgal.



The notion of algebraic kernel for cgal was proposed in 2004 [11]; in this work,
the underlying algebraic operations were based on the synaps library [15]. Sev-
eral methods and algebraic kernels have been developed since then.

One kernel was developed by Hemmer and Limbach [13] following the generic
programming paradigm using the C++ template mechanism. This kernel is tem-
plated by the representation of algebraic numbers and by the real root isolation
method, for which two classes have been developed; one is based on the Descartes
method and the other on the Bitstream Descartes method [9]. This approach has
the advantage to allow, in principle, using the best instances for both template
arguments.

Another kernel developed at inria relies on the synaps library [15]. In this
kernel there are several approaches concerning real root isolation, i.e., methods
based on Sturm subdivisions, sleeves approximations, continued fractions, and
a symbolic-numeric combination of the sleeve and continued fractions methods
(see [10]). Moreover, there are specialized methods for polynomials of degree less
or equal than four [21].

F
[[Luis says: Elias proposed the following for the next version: synaps is
currently integrated as the package realroot, in mathemagix3, which is
an open source e�ort for algebraic computations that combines symbolic
and numeric computations. ]]

Emiris et al. [10] presented some benchmarks of these various approaches in
these two kernels as well as some tests on the kernel we present here. The authors
mention that our kernel based on interval Descartes performs similarly to one
approach (refer to as ncf2) based on continued fractions [20] for coe�cients with
(very) large bitsize but ncf2 is more e�cient for small bitsize. They conclude
that, �rst, dedicated algorithms for polynomials of degree less than (or equal
to) four is always the most e�cient approach and, second, that ncf2 always
perform the best except for low-degree and high-bitsize polynomials, in which
case the kernel based on the Bitstream Descartes method performs the best. We
moderate here these conclusions.

The rest of the paper is structured as follows. In the next section we describe
our algebraic kernel. In Section 3, we present various experiments on the isolation
of real roots and on the comparison of algebraic numbers. In Section 4, we apply
our kernel to the problem of computing arrangements and compare it to previous
solutions available in cgal. We �nally conclude in Section 5.

2 Univariate algebraic kernel

We describe here our implementation of our univariate algebraic kernel. The two
main requirements of the cgal speci�cations, which we describe here, are the
isolation of real roots and their comparison. We also describe our implementation
of two operations, the gcd computation and the re�nement of isolating intervals,
that are both needed for comparing algebraic numbers.
3 http://www-sop.inria.fr/galaad/mathemagix/



Preliminaries. The kernel handles univariate polynomials and algebraic num-
bers. The polynomials have integer coe�cients and are represented by arrays
of gmp arbitrary-length integers [12]. We implemented in the kernel the basic
functions for polynomials. An algebraic number that is a root of a polynomial F
is represented by F and an isolating interval, that is an interval containing this
root but no other root of F . We implemented intervals using the mpfi library
[16], which represents intervals with two mpfr arbitrary-�xed-precision �oating-
point numbers [17]; note that mpfr is developed on top of the gmp library for
multi-precision arithmetic [12].

Root isolation. For isolating the real roots of univariate polynomials with integer
coe�cients, we developed an interface with the library rs [19]. This library
is written in C and is based on Descartes' rule for isolating the real roots of
univariate polynomials with integer coe�cients.

We brie�y detail here the general design of the rs library; see [18] for de-
tails. Rs is based on an algorithm known as interval Descartes [5]; namely, the
coe�cients of the polynomials obtained by changes of variable, sending inter-
vals [a, b] onto [0,+∞], are only approximated using interval arithmetic when
this is su�cient for determining their signs. Note that the order in which these
transformations are performed in rs is important for memory consumption. The
intervals and operations on them are handled by the mpfi library.

Algebraic number comparison. As mentioned above, one of the main require-
ments of the cgal algebraic kernel speci�cations is to compare two algebraic
numbers r1 and r2. If we are lucky, their isolating intervals do not overlap and
the comparison is straightforward. This is, of course, not always the case. If we
knew that they were not equal, we could re�ne both isolating intervals until they
are disjoint. Hence, the problem reduces to determining whether the algebraic
numbers are equal or not.

To do so, we compute the square-free factorization of the gcd of the polyno-
mials associated to the algebraic numbers. The roots of this gcd are the common
roots of both polynomials. We calculate the intersection, I, of the isolating in-
tervals of r1 and r2. The gcd has a root in this interval if and only if r1 = r2.

To determine whether the gcd has a root in interval I, it su�ces to check the
sign of the gcd at the endpoints of I: if they are di�erent or one of them is zero,
the gcd has a root in I and r1 = r2; otherwise, r1 6= r2 and we can re�ne both
intervals until they are disjoint.

Gcd computations. Computing greatest common divisors between two polyno-
mials is not a di�cult task, however, it is not trivial to do so e�ciently. A naive
implementation of the Euclidean algorithm works �ne for small polynomials but
the intermediate coe�cients su�er an exponential grow in size, which is not man-
ageable for medium to large size polynomials. We thus implemented a modular

gcd function. We did not use some existing implementations mainly for e�ciency
because converting polynomials from one representation to another is substan-
tially costly as soon as the degree and bitsize are large. Our function calculates
the gcd of polynomials modulo some prime numbers and reconstructs later the
result with the help of the Chinese remainder theorem. (See e.g., [23] for details.)



Re�ning isolating intervals. As we mentioned before, re�ning the interval repre-
senting an algebraic number is critical for comparing such numbers. We provide
two approaches for re�nement.

Both approaches require that the polynomial associated to the algebraic num-
ber is square free. The �rst step thus consists of computing the square-free part
of the polynomial (by computing the gcd of the polynomial and its derivative).

Our �rst approach is a simple bisection algorithm. It consists in calculating
the sign of the polynomial associated to the algebraic number at the endpoints
and midpoint of the interval. Depending on these signs, we re�ne the isolating
interval to its left of right half.

Our second approach is a quadratic interval re�nement [1]. Roughly speaking,
this method splits the interval in many parts and, based on a linear interpolation,
guesses in which one the root lies. If the guess is correct, the algorithm divides
in the next re�nement step the interval in more parts and, if not, in less.

Unfortunately, even with our careful implementation this approach turns
out to be, on average, only just a bit faster than the bisection approach. Our
experiments showed that the bottleneck of the re�nement is the evaluation of
polynomials.

3 Kernel benchmarks

In this section, we analyze the running time of the two main functions of our
algebraic kernel, that (i) isolate the roots of a polynomial and (ii) compare
two algebraic numbers that is, compare the roots of two polynomials. We also
compare the performance of our kernel with the one based on the Bistream
Descartes method [9] and developed by Hemmer and Limbach [13] (referred
to as mpii's kernel)4 and with a kernel based on continued fractions [20] and
developed on top of the synaps library [15] (referred to as synaps' kernel).

All tests were ran on a single-core 3.2 GHz Intel Pentium 4 with 2 Gb of
RAM and 2048 kb of cache memory, using 64-bit Linux.

Root isolation.We consider two suites of experiments in which we either �x the
degree of the polynomials and vary the bitsize of the coe�cients or the converse;
see Figs. 1 and 2. In each experiment, we report the running time for isolating
all the roots per polynomial, averaged over di�erent trials, for our kernel, mpii's
and synaps' kernel.

Varying bitsize. We study here polynomials with rather low degree (12) but
with no complex root and polynomials with reasonably large degree (100) with
random coe�cients (and thus with few real roots).

The �rst test sets comes from [13]. See Fig. 1. It consists of polynomials
of degree 12, each one being the product of six degree-two polynomials with

4 We parameterized mpii's kernel to use Bitstream Descartes as root isolator,
algebraic_real_bfi_rep as algebraic number representation and core integers and
rationals to represent the coe�cients of the polynomials and the isolation bounds of
algebraic numbers, respectively. The choice of core (vs. leda) was induced by the
need of testing the kernels in the same conditions, that is, relying on gmp.



0 400 800 1200 1600 2000
coe�cient bitsize

0

1

2

3

4

is
o
la
t
io
n
t
im

e
[m

s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(a)

0 10000 20000 30000 40000 50000
coe�cient bitsize

0

10

20

30

40

is
o
la
t
io
n
t
im

e
[m

s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(b)

Fig. 1. Running time for isolating all the real roots of degree 12 polynomials with 12
real roots in terms of the maximum bitsize of their coe�cients.

0 5000 10000 15000 20000 25000
coe�cient bitsize

0

50

100

150

200

250

is
o
la
t
io
n
t
im

e
[m

s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(a)

0 10 20 30 40 50
d

0

1

2

3

4

5

6

is
o
la
t
io
n
t
im

e
[s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(b)
Fig. 2. Running time for isolating all the real roots of (a) degree 100 polynomials in
terms of the maximum bitsize of their coe�cients and (b) Mignotte polynomials of the
form f = xd − 2(kx− 1)2 in terms of the degree d.

two roots, at least one of them in the interval [0, 1]; every polynomial thus has
12 real roots. We vary the maximum bitsize of all the coe�cients of the input
polynomial from 100 to 50 000 and average each test over 250 trials.

Secondly, we consider random polynomials with constant degree 100 and co-
e�cients with varying bitsize. See Fig. 2(a). Note that such random polynomials
have few roots: the expected number of real roots of a polynomial of degree d
with coe�cients independently chosen from the standard normal distribution
is 2

π ln(d) + C + 2
πd + O(1/d2) where C ≈ 0.625735 [8]; this gives, for degree

100 an average of about 3.6 roots (note that this bound matches extremely well
experimental observations). We vary the maximum bitsize of all the coe�cients
from 2 000 to 25 000 and average each test over 100 trials.

Varying degree. We consider two sets of experiments in which we study random
polynomials and Mignotte polynomials (which have two very close roots).

We �rst consider polynomials with random coe�cients of �xed bitsize for
various values between 32 and 1 000. We then vary the degree of the polynomials
from 100 to 2 000 and average our experiments over 100 trials (see Fig. 3). Note
that the above formula gives an expected number of roots varying from 3.6 to



0 500 1000 1500 2000
polynomial degree

0

5

10

15

20

25

is
o
la
t
io
n
t
im

e
[s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(a)

0 500 1000 1500 2000
polynomial degree

0

10

20

30

40

50

60

70

is
o
la
t
io
n
t
im

e
[s
]

Our kernel
MPII's kernel
SYNAPS' kernel

(b)

Fig. 3. Running time for isolating all the real roots of random polynomials with coef-
�cients of bitsize (a) 32 and (b) 1000, and depending on the degree.

5.5. We observe that the running time is almost independent of the bitsize in
the considered range.

Finally, we test Mignotte polynomials, that is polynomials of the form xd −
2(kx − 1)2. Such polynomials are known to be challenging for Descartes algo-
rithms because two of their roots are very close to each other; the isolating in-
tervals for these two roots are thus very small. For these tests, we used Mignotte
polynomials with coe�cients of bitsize 50, with varying degree d from 5 to 50.
See Fig. 2(b). We averaged the running time over 5 trials for each degree. We
observed essentially no di�erence between our kernel and MPII's one; they take
roughly 0.2 and 5.5 seconds for Mignotte polynomials of degree 20 and 50, respec-
tively. However, synaps' kernel is much more e�cient as the continued fractions
algorithm is not so a�ected by the closeness of the roots.

Discussion. We observe (Fig. 1(a)) that synaps' kernel is more e�cient than
both our and mpii's kernel in the case of polynomials of small degree (e.g.,
twelve) and small to moderately large coe�cients (up to 2 000 bits per coef-
�cient). However, for extremely large coe�cients mpii's kernel is substantially
more e�cient (by a factor of up to 3 for coe�cients of up to 50 000 bits) than
both our and synaps' kernels, which perform similarly.

For polynomials of reasonable large degree, both our and synaps' kernels
are much more e�cient that mpii's kernel; furthermore these two kernels behave
similarly for degrees up to 1 500 and our kernel becomes more e�cient for higher
degrees (by a factor 2 for degree 2 000).

We also observe that the running time is highly dependent of the various
settings. For instance, our kernel is up to 5 times slower when using approximate
evaluation for high-degree and high-bitsize polynomials. Also, mpii's kernel is in
some cases about 10 times slower when changing the arithmetic kernel to leda,
the representation of algebraic numbers and some internal algorithms such as
the re�nement function. This explains why our benchmarks on both mpii's and
synaps' kernels are substantially better than in Emiris et al. experiments [10].



0 500 1000 1500 2000 2500 3000
coe�cient bitsize

0

250

500

750

1000

c
o
m
p
a
r
is
o
n
t
im

e
[m

s
]

Our bisection
MPII's quadratic

MPII's bisection

(a)

0 500 1000 1500 2000 2500 3000
coe�cient bitsize

0

250

500

750

1000

c
o
m
p
a
r
is
o
n
t
im

e
[m

s
]

Our bisection
MPII's quadratic

MPII's bisection

(b)

Fig. 4. Running time for comparing two distinct close roots of two almost identical
polynomials of degree 20 with (a) no common roots and (b) a common factor of de-
gree 10.

We also observe that the running time of mpii's kernel is unstable in our
experiments (Figs. 1 and 2(a)); surprisingly, this instability occurs when the
experiments are performed on a 64-bits architecture, but it is stable on 32-bits
architecture as shown in previous experiments [10].

Comparison of algebraic numbers. We consider three suites of experiments
for comparing algebraic numbers; see Fig. 4. Recall that an algebraic number
ρ is here represented by a polynomial F that vanishes at ρ and an isolating
interval containing ρ but no other root of F . Recall also that the comparison of
two algebraic numbers is done by (i) testing whether the intervals are disjoint;
if so, report the ordering, otherwise (ii) compute the gcd of the two polynomials
and test whether the gcd vanishes in the intersection of the two intervals; if so,
report the equality of the numbers, otherwise (iii) re�ne the intervals until they
are disjoint.

First, we analyze the cost of trivial comparisons that is, when the two inter-
vals are disjoint. For that we compare the roots of two random polynomials. We
observe that, as expected, the comparison time is negligible and independent of
both the degree of the polynomials and the bitsize of their coe�cients.

Second, we analyze the cost of comparing roots that are very close to each
other but whose associate polynomials have no common root. This case is ex-
pensive because we need to re�ne the intervals until they do not overlap; this
is, however, not the worst situation because the gcd of the two polynomials is 1
which is tested e�ciently with a modular gcd. We perform these experiments as
follows. We generate pairs of polynomials, one with random coe�cients and the
other by only adding 1 to one of the coe�cients of the �rst polynomial. Such
polynomials are such that the i-th roots of both polynomials are very close to
each other. We generate such pairs of polynomials with constant degree (equal
to 20) and vary the maximum bitsize of the coe�cients. As the bitsize increases,
the pairs of roots that are close become even closer and thus the comparison time
increases. The results of these experiments are presented in Fig. 4(a), which re-
ports the average running time for comparing two close roots. We show in this



�gure three curves, one corresponding to our bisection algorithm, and two cor-
responding the two re�nement methods implemented in the mpii's kernel: the
usual bisection and a quadratic re�nement algorithm.

Third, we consider the, a priori, most expensive scenario in which we compare
roots that are either equal or very close to each others and such that their
associate polynomials have some roots in common. In this case, we accumulate
the cost of computing a non-trivial gcd of the two polynomials with the cost of
re�ning intervals when comparing two non-equal roots. In practice, we generate
pairs of degree-20 polynomials each de�ned as the product of two degree-10
terms; one of these factors is random and common to the two polynomials; the
other factor is random in one of the polynomials and slightly modi�ed in the
other polynomial where, slightly modi�ed means, as above, that we add 1 to one
of the coe�cients. We then vary the maximum bitsize of the coe�cients.

Discussion. We see in Fig. 4 that the mpii's quadratic re�nement algorithm
largely outperforms the two bisection methods. However, our bisection method
is faster than mpii's one, by a factor up to 10. We also observed that the running
time for comparing equal roots is negligible compared to the cost of comparing
close but distinct roots. (The running time reported in Fig. 4(b) is actually the
total time for comparing all pairs of roots divided by the number of comparisons
of close but distinct roots.) This explains why our kernel behaves similarly in
Figs. 4(a) and 4(b). Overall, it appears that comparing algebraic numbers that
are very close is fairly time consuming and that the most time-consuming part
of the comparison is the evaluation of polynomials performed during the interval
re�nements.

4 Arrangements

As an example of possible bene�t of having e�cient algebraic kernels in cgal,
we used our implementation to construct arrangements of polynomial functions.
Wein and Fogel [22] provided a cgal package for calculating arrangements of
general curves which requires as parameter a traits class containing the data
structures to store the curves and various primitive operations, such as compar-
ing the relative positions of points of intersection. We implemented a traits class
which uses the functions of our algebraic kernel and compared its performance
with another traits classes which comes with cgal's arrangement package and
uses the Core library [6].

In order to generate challenging data sets we proceed as follows. First we
generate n random polynomials. To each of them we add 1 to the constant
coe�cient,m times, thus producing a data set of n(m+1) univariate polynomials.
Notice that the arrangement of the graphs of these polynomials is guaranteed
to be degenerate, i.e., there are intersections with the same x-coordinate. The
arrangements generated this way have four parameters: the number n of initial
polynomials, the number m of �shifts� that we perform, the degree d of the
polynomials, and the bitsize τ of their coe�cients. We ran experiments varying
the values of the last three of these parameters and setting n = 5.



0 200 400 600 800 1000
coe�cient bitsize

0

50

100

150

200

c
o
n
s
t
r
u
c
t
io
n
t
im

e
[s
]

Our kernel
CORE

(a)

0 40 80 120 160 200
degree

0

50

100

150

200

c
o
n
s
t
r
u
c
t
io
n
t
im

e
[s
]

Our kernel
CORE

(b)

Fig. 5. Arrangements of �ve polynomials, shifted four times each, (a) of degree 20 and
varying bitsize and (b) of bitsize 32 and varying degree.

Fig. 5(a) shows the running time in terms of the bitsize τ for a data set where
d = 20 and m = 4 (giving 25 polynomials). Fig. 5(b) shows the running time
in terms of the degree d for a second data set where τ = 32 and m = 4. We
see from these experiments that running time using Core is considerably higher
than when using our kernel. We also make the following observations.

Fig. 5(a) shows that the running time depends on the bitsize. When we
change the bitsize of the coe�cients of the random polynomials, the size of the
arrangement does not change; that means that the number of comparisons and
root isolations the kernel must perform is roughly the same in all the arrange-
ments of the test suite. The isolation time for random polynomials does not
depend much on the bitsize (as shown in Fig. 2(a)), but the comparison time
does. It follows that the running time increases with the bitsize.

Fig. 5(b) shows that the running time depends also on the degree of the
input polynomials. As we saw in Section 3, the expected number of real roots
of a random polynomial depends on its degree. The size of the arrangement
thus increases with the degree of the input polynomials: each vertex is the root
of the di�erence between two input polynomials, therefore there will be more
vertices. Thus, when we increment the degree of the inputs, the number of com-
parisons and isolations increases; furthermore, the running time for each of these
operations increases with the degree of the input.

5 Conclusion

We presented a new cgal-compliant algebraic kernel that provides certi�ed
real-root isolation of univariate polynomials with integer coe�cients based on
the interval Descartes algorithm. This kernel also provides the comparison of
algebraic numbers and other standard functionalities.

We compared our kernel with other comparable kernels on large data sets
including, for the �rst time, polynomials of high degree (up to 2 000) and with
extremely large coe�cients (up to 25 000 bits per coe�cient). We demonstrated
the e�ciency of our approach and showed that it performs similarly, in most
cases, with one kernel based on the synaps library; more precisely, our kernel is



more e�cient for polynomials of very large degree (greater than 1 800) and less
e�cient for polynomials of very small degree and with small to moderate size
coe�cients. Also, our kernel is a lot more e�cient that the kernel developed at
mpii for polynomials of large degree (greater than 200); it is however less e�cient
for polynomials of small degree and with extremely large coe�cients.

Our tests indicate that the kernel developed at mpii appears to be less e�cient
than the other two for polynomials of large degree. However it should be stressed
that this kernel is the only one among the three that is templeted by the number
type of the coe�cients. Of course this does not imply that e�ciency is necessarily
lost by following the generic programming paradigm, but it does imply that, from
the user point of view, some substantial gain of e�ciency can sometimes be made
by using a kernel that does not follow this paradigm.

We also compared the performance of the kernels on the comparison of al-
gebraic numbers. We observed in these tests that the bisection algorithm runs
much faster when it is specialized on a number type since it allows for low level
optimizations, con�rming thus the assertion in the previous paragraph. On the
other hand, it becomes evident that the bisection method is not the most e�cient
algorithm when a large number of re�nements is needed, and mpii's quadratic
re�nement is the fastest method by far.

A fairly large choice of algebraic kernels and, in particular, of methods for
isolating the real roots of polynomials, is now available in Cgal. This allows,
in particular, to compare and improve the various methods. It appears that be-
tween the two big classes of methods, based on continued fractions and Descartes
algorithms, neither is clearly much better than the other. However, some sub-
stantial di�erences appear between the various implementations, but, of course,
it is always very di�cult to benchmark implementations. For instance, we ob-
served here that the running times are highly dependent of the various settings
and architectures.

Finally, we also address the problem of computing arrangements of x-monotone
polynomial curves. We apply our kernel to this problem and demonstrate its ef-
�ciency compared to previous solutions available in cgal.

Acknowledgments

The authors are grateful to F. Rouillier, Z. Zafeirakopoulos, M. Hemmer, E.
Berberich, M. Kerber, and S. Limbach for fruitful discussions and suggestions.

References

1. J. Abbott. Quadratic interval re�nement for real roots. In International Symposium
on Symbolic and Algebraic Computation (ISSAC), poster presentation, 2006.

2. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn, J. Re-
ichel, S. Schmitt, E. Schömer, and N. Wolpert. EXACUS: E�cient and Exact
Algorithms for Curves and Surfaces. In Proc. 13th Annual European Symposium
on Algorithms (ESA), volume 1669 of LNCS, pages 155�166. Springer, 2005.

3. E. Berberich, M. Hemmer, M. Karavelas, and M. Teillaud. Revision of the inter-
face speci�cation of algebaic kernel. Technical Report ACS-TR-243301-01, ACS
European Project, 2007.



4. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
5. G. Collins, J. Johnson, and W. Krandick. Interval Arithmetic in Cylindrical Alge-

braic Decomposition. Journal of Symbolic Computation, 34(2):145�157, 2002.
6. The Core library. http://cs.nyu.edu/exact/.
7. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Ge-

ometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.
8. A. Edelman and E. Kostlan. How may zeros of a random polynomial are real?

Bulletin of American Mathematical Society, 32(1):1�37, Jan 1995.
9. A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert.

A Descartes Algorithm for Polynomials with Bit-Stream Coe�cients. In Proc. 8th
Int. Workshop on Computer Algebra in Scient. Comput. (CASC), volume 3718 of
LNCS, pages 138�149. Springer, 2005.

10. I. Emiris, M. Hemmer, M. Karavelas, S. Limbach, B. Mourrain, E. Tsigaridas, and
Z. Zafeirakopoulos. Cross-benchmarks for univariate algebraic kernels. Technical
Report ACS-TR-363602-02, ACS European Project, 2008.

11. I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards
and open curved kernel. In Proc. 20th Annual ACM Symp. on Computational
Geometry (SoCG), pages 438�446, New York, USA, 2004.

12. Gmp, Gnu multiple precision arithmetic library. http://gmplib.org/.
13. M. Hemmer and S. Limbach. Benchmarks on a generic univariate algebraic kernel.

Technical Report ACS-TR-243306-03, ACS European Project, 2006.
14. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. E�cient and exact manip-

ulation of algebraic points and curves. Computer-Aided Design, 32(11):649�662,
2000.

15. B. Mourrain, P. Pavone, P. Trébuchet, E. P. Tsigaridas, and J. Wintz. Synaps, a li-
brary for dedicated applications in symbolic numeric computations. In M. Stillman,
N. Takayama, and J. Verschelde, editors, IMA Volumes in Mathematics and its Ap-
plications, pages 81�110. Springer, New York, 2007. http://synaps.inria.fr.

16. Mpfi, multiple precision interval arithmetic library. http://perso.ens-lyon.fr/
nathalie.revol/software.html.

17. Mpfr, library for multiple-precision �oating-point computations. http://mpfr.

org/.
18. F. Rouillier and Z. Zimmermann. E�cient isolation of polynomial's real roots. J.

of Computational and Applied Mathematics, 162(1):33�50, 2004.
19. Rs, a software for real solving of algebraic systems. F. Rouillier. http://fgbrs.

lip6.fr.
20. E. P. Tsigaridas and I. Z. Emiris. On the complexity of real root isolation using

Continued Fractions. Theoretical Computer Science, 392:158�173, 2008.
21. E. P. Tsigaridas and I. Z. Emiris. Real algebraic numbers and polynomial systems

of small degree. Theoretical Computer Science, 409(2):186 � 199, 2008.
22. R. Wein and E. Fogel. The new design of CGAL's arrangement package. Technical

report, Tel-Aviv University, 2005.
23. C. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press,

Oxford-New York, 2000.
24. C. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927�
952. Chapmen & Hall/CRC, Boca Raton, FL, 2nd edition, 2004.


