
synaps,

a library for symbolic-numeric computation

B. Mourrain & J.P. Pavone & Ph. Trébuchet & E. Tsigaridas

February 28, 2005

The need to combine symbolic and numeric computations is ubiquitous in many problems. Starting
with an exact description of the equations, in most cases, we will eventually have to compute an
approximation of the solutions. Even more, in many problems the coefficients of the equations may
only be known with some inaccuracy (due, for instance, to measurement errors). In this case, we are
not dealing with a solely system but with a neighborhood of the ”exact” system and we have to take
into account the continuity of the solutions with respect to the input coefficients. This leads to new,
interesting and challenging questions either from a theoretical or practical point of view at the frontier
between Algebra and Analysis and witnesses the emergence of new investigations.

The aim of the open source project synaps

http://www-sop.inria.fr/galaad/logiciels/synaps/index.html

is to provide a coherent and efficient library for symbolic and numeric computation. It implements
data-structures and classes for the manipulation of basic objects, such as (dense, sparse, structured)
vectors, matrices, univariate and multivariate polynomials. It also provides fundamental methods such
as algebraic number manipulation tools, different types of univariate and multivariate polynomial root
solvers, resultant computations, ...

1 Structure and concepts

As synaps is targeting different domains of application, it has to provide various internal represen-
tations for the abstract data-types required by algorithms specifications. Thus, this library makes it
possible to define parameterized but efficient data structures for fundamental algebraic objects such as
vectors, matrices, monomials and polynomials ... which can be used easily in the construction of more
elaborated algorithms. We pay a special attention to genericity, or more precisely to parameterized
types (templates in C++ parlance) which allow us to tune easily the data structure to each specific
problem at hand. So-called template expression are used to guide the expansion of code during pro-
gram translation and thus to get very efficient implementations. Traditional developments of libraries,
in particular for scientific computations, are usually understood as a collection of “passive” routines.
The approach taken here is inspired by a recent paradigm of software developments called active li-
brary and illustrated by the library STL. The software components of such libraries take active parts
of the configuration and generation of codes (at compile time), which combine parameterization and
efficiency. The present environment is a step in that direction, with an orientation toward algebraic
data-structures (eg. polynomials).

We also carefully consider the problem of reusability of external or third-party libraries, such as
lapack (Fortran library for numerical linear algebra), gmp (C library for extended arithmetics),
or mpsolve (C univariate solver implementation, using extended multiprecision arithmetic). For
instance lapack routines — can coexist with generic ones, the choice being determined by the internal
representation. We also want this library to be easy to use. Once the basic objects are defined by
specialization of the parameters, including maybe the optimization of some critical routines, we want
to be able to write the code of an algorithm “as it is on the paper”. Tools featured by the C++
programming language to support polymorphism allows us to make a great step towards achieving
the goals described above.

Let us briefly present how these antagonist objectives are achieved. We distinguish several levels
in the implementation of the library.

1

1.1 The containers and domains

The containers specify the internal representation. They provide methods or functions for accessing,
scanning, creating, transforming this representation. Examples are: linalg::rep1d<C>; linalg::
rep2d<C>; lapack::rep2d<C>; ... The containers are attached to domains (implemented as names-
paces): linalg; lapack; upol; bezier; ... They allow to define (by an external user) specialized
algorithms for given containers (through the scope name mechanism). For instance, writting the fol-
lowing code

namespace lapack {
template <class C>

void solve(LU,linalg::rep1d<C> & x, const rep2d<C> & A,
const linalg::rep1d<C> & b);

}

one defines a specialized solve function for the lapack::rep2d<C> container.

1.2 Modules

It is a collection of generic implementations which apply to a family of objects (or containers), sharing
common properties. These functions can thus be applied to third-party containers, provided that they
satisfy some constraints, imposed on the parameters of these generic functions. These constraints
define a category of containers. Modules can be combined or extended naturally. The main modules
of the library are VECTOR, MATRIX, UPOLDAR, MPOLDST ...

1.3 Views

They specify how to manipulate or to see the containers as mathematical objects. The internal data
is available, via the method rep(). They are usualy classes, parameterised by the container type R
and sometimes by trait classes which precise the implementation:

template<class C, class R> struct VectDse;

The implementations of these views are based on modules.
We present now some specific features of the library and applications of them in geometric prob-

lems.

2 Algebraic numbers

Algebraic numbers are of particular importance in geometric problems such as arrangement or topology
computation. In geometric modeling the treatment of algebraic curves or surfaces leads implicitly or
explicitly to the manipulation of algebraic numbers. A package of the library is devoted to such
problems. It is dealing with real algebraic numbers, which are real roots of polynomials, whose
coefficients are integers. We represent such a real algebraic number, by a square-free polynomial and
an isolating interval, that is an interval with rational endpoints, which contains only one root of the
polynomial:

r ≡ (f(X), [a, b]) ,where f ∈ Z[X]and a, b ∈ Q

In order to achieve high performance for problems involving small degree polynomials (typically geo-
metric problems for conics), the treatment of polynomials and algebraic numbers of degree up to 4, is
preprocessed. We use precomputed discrimination systems (Sturm-Habicht sequences) in order to de-
termine the square-free polynomial and to compute the isolating interval as function in the coefficients
of the polynomial (and to compare algebraic numbers).

For polynomials of higher degree, we use a Sturm-like solver in order to isolate the roots of the
polynomial, but we can use any other solver that can return isolating intervals.

The implementation of the algebraic numbers is in the namespace ALGEBRAIC. Since algebraic
numbers need a lot of information concerning the ring and the field number type, the number type
of the approximation etc, we gathered all this information into a struct called ALG STURM<RT>, which
takes only the ring number type RT as parameter and from this class we can determine all the other

2

types. The class of the algebraic number which implements the real algebraic numbers is root of<RT>.
It provides construction functions (such as Solve, RootOf), comparison functions, sign function and
extensions to bivariate problems, considered as univariate over a univariate polynomial ring.In order to
compare two algebraic numbers, filtering techniques improving the numerical approximation combined
with explicit methods based on Sturm’s theorem are used.

The use of these tools will be illustrated on examples, issued from the computation of arrangement
of arcs of curves.

3 Resultant-based methods

A projection operator is an operator which associates to an overdetermined polynomial system in
several variables a polynomial depending only on the coefficients of this system, which vanishes when
the system has a solution. This projection operation is a basic ingredient of many methods in EAG.
It has important applications in CAGD (Computer Aided Geometric Design), such as for the problem
of implicitization of parametric surfaces, or for surface parameterisation inversion, intersection, and
detection of singularities of a parameterized surface. The library implements a set of resultants

Such approach based on resultant constructions yields a preprocessing step in which we generate
a dedicated code for the problem we want to handle. The effective resolution, which then requires the
instantiation of the parameters of the problems and the numerical solving, is thus highly accelerated.
The library synaps contains several types of resultants constructions, such the projective resultant,
the toric resultant (based on an implementation by I. Emiris), and the Bezoutian resultant.

We illustrate the use of such tools on the following CAD modeling problem: the extraction of a set
of geometric primitives properly describing a given 3D point cloud obtained by scanning a real scene.
If the extraction of planes is considered as a well-solved problem, the extraction of circular cylinders,
these geometric primitives are basically used to represent “pipes” in an industrial environment, is not
easy and has been recently addressed. In this section, we describe an application of resultant based
method to this problem which has been experimented in collaboration with Th. Chaperon from the
MENSI company. It proceeds as follows: First, we devise a polynomial dedicated solver, which given 5
points randomly selected in our 3D point cloud, computes the cylinders passing through them (recall
that 5 is the minimum number of points defining generically a finite number of cylinders, actually 6 in
the complex numbers). Then we apply it for almost all (or randomly choosen) sets of 5 points in the
whole point could, and extract the “clusters of directions” as a primitive cylinder. This requires the
intensive resolution of thousands of small polynomial systems. Classical resultant or residual resultant
constructions are used in this case, to compute quickly theirs roots, even in the presence of multiple
roots. We detail the implementation of this approach, using the tools provided by the library synaps.

4 Subdivision solvers

In many problems, real root-finding is restricted to a specific subdomain of Rn. In some cases, even
the existence of a solution is of importance. The library synaps provides such method, based on
subdivision techniques. We consider here the problem of computing the solutions of a polynomial
system in a box I := [a1, b1]× · · · × [an, bn] ⊂ Rn. The subdivision solver that we describe here, uses
the representation of multivariate polynomials in the Bernstein basis, analysis of sign variations and
univariate solvers to localise the real roots of a polynomial system. The output is a set of small-enough
boxes, which may contain these roots.

By a direct extension to the multivariate case, any polynomial f(x1, . . . , xn) ∈ R[x1, . . . , xn] of
degree di in the variable xi, can be decomposed as:

f(x1, . . . , xn) =
d1∑

i1=0

· · ·
dn∑

in=0

bi1,...,in Bi1
d1

(x1; a1, b1) · · ·Bin

dn
x(xn; an, bn).

where (Bi1
d1

(x1; a1, b1) · · ·Bin

dn
(xn; an, bn))0≤i1≤d1,...,0≤in≤dn

is the tensor product Bernstein basis on
the domain I := [a1, b1] × · · · × [an, bn] ⊂ Rn and b = (bi1,...,in

)0≤i1≤d1,...,0≤in≤dn
are the control

coefficients of f on I. The polynomial f is represented in this basis by the nth order tensor of control
coefficients b = (bi1,...,in)0≤i≤d1,0≤j≤d2,0≤k≤d3 .

3

De Casteljau algorithm applies in each of the direction xi, i = 1, . . . , n so that we can split this
representation in these directions. We use the following polynomials to isolate the roots: mj(f ;xj) =∑dj

ij=0 min{0≤ik≤dk,k 6=j} bi1,...,in
B

ij

dj
(xj ; aj , bj) and Mj(f ;xj) =

∑dj

ij=0 max{0≤ik≤dk,k 6=j} bi1,...,in
B

ij

dj
(xj ;

aj , bj). By the property m(f ;uj) ≤ f(u) ≤ M(f ;uj), the localisation of roots, can be reduced to
univariate root-finding. This is the basis of the subdivision solver, which implementation contains the
following main ingredients:

− Preconditioner: A transformation of the initial system into a system, which has a better
numerical behavior.

− Reduction strategy: The technique used to reduce the initial domain, for searching the roots
of the system.

− Subdivision strategy: The technique used to subdivide the domain, in order to simplify the
forthcoming steps, for searching of roots of the system.

We will detail how the implementation is parameterised by class components, and illustrate the
performance on the method on classical benchmarks in robotics and on geometric problems on curves
and surfaces in R3.

5 Generalized normal form

In the case, we are interested in computing all the complex roots of a polynomial systems in Cn, one
can consider normal form methods. They proceed in two steps

• Computation of the generalised normal form modulo the ideal (f1, . . . , fn).

• Computation of the roots from eigencomputation.

A classical approach for normal form computation is through Grobner basis. Unfortunately, their
numerical behavior is not satisfactory. In synaps, a generalised normal form method is implemented
which allows us to treat polynomial systems with approximate coefficients, more safely.

From this normal form N , we deduce the roots of the system as follows. We use the properties of
the operators of multiplication by elements of A = R/(f1, .., fs)), as follows.

Algorithm: (Solving in the case of simple roots) Let a ∈ A such that a(ζi) 6= a(ζj) if i 6= j
(which is generically the case).

1. Compute the Ma the multiplication matrix by a in the basis xE = (1, x1, . . . , xn, . . .) of A.

2. Compute the eigenvectors Λ = (Λ1,Λx1 , . . . ,Λxn
, . . .) of M t

a.

3. For each eigenvector Λ with Λ1 6= 0, compute and return the point ζ = (Λx1
Λ1

, . . . ,
Λxn

Λ1
).

The case of multiple roots is treated by simultaneous triangulation of several multiplication ma-
trices. The main ingredients which are involved here are sparse linear algebra (implemented from the
direct sparse linear solver superLU), and eigenvalue and eigenvector computation (based on lapack
routines). We will show how these different types of tools are combined together, in order to obtain
an efficient zero-dimensional polynomial system solver.

4

