
On the omplexity of omplex root isolationBernard Mourrain� Elias TsigaridasyApril 5, 2010
AbstractWe onsider the problem of analyzing the omplexity of isolating the omplex roots of polynomialswith Gaussian integers as oeÆients. We provide a simpli�ed proof for the number of steps that asubdivision-based algorithm performs. If d is the degree of the polynomial and � the maximum oeÆientbitsize, then we prove a bound of eOB(d7 + d6� + d5� 2), for algorithms based on Sturm sequenes, thusimproving the previously known by a fator.

1 IntroductionOne of the fundamental operations in algebrai algorithms is root isolation of univariate polynomials, i.e.given a polynomial to ompute intervals (isolating intervals) in the ase of the real roots, or squares(isolating squares) in the ase of the omplex roots, that ontain one and only one root of the polynomial,for every root.In this paper we onsider exat algorithms, that is algorithms that perform omputations with rationalnumbers of arbitrary size, for the omplex ase. Given a polynomial with Gaussian integers as oeÆientswe wish to isolate its omplex roots in a given square. Exat algorithms for this problem are typiallybased on Sturm sequenes (denoted sturm- (C) [1, 6, 10℄. For other erti�ed approahes to this problem see,e.g., [4, 5, 7℄. For the worst-ase analysis of suh algorithms, we signi�antly simplify the proof in [1℄ forbounding the number of subdivisions, and we improve the total omplexity by a fator of d, thus obtaininga new bound of eOB(d7 + d6� + d5� 2). We also prove that the same bound holds when the polynomial hasGaussian rationals as oeÆients.
Notation. OB means bit omplexity and the eOB-notation means that we are ignoring logarithmi fators.For a 2 (Q, L (a) � 1 is the maximum bitsize of the numerator and the denominator. We onsider square-free polynomials. For A = Pdi=1 iXi 2 (ZZ[i℄)[X ℄, dg(A) denotes its degree. L (A) denotes an upperbound on the bitsize of the oeÆients of A (inluding a bit for the sign), i.e. if i = ai + bi, thenL (A) = maxifL (ai) ;L (bi)g. � is the separation bound of A, that is the smallest distane between twoomplex roots of A and �i is the smallest distane between the root i of A and all the other roots. Notiethat � = minif�ig.�projet GALAAD, INRIA M�editerran�ee, Sophia-Antipolis, Frane. mourrain(at)sophia.inria.fryprojet GALAAD, INRIA M�editerran�ee, and Laboratoire I3S, CNRS and the University of Nie, Sophia-Antipolis, Frane.
elias.tsigaridas(at)sophia.inria.fr
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2 Complex root isolationThe �rst in analyzing the omplexity of omplex root isolation is to bound the number of steps (subdivisions)that an algorithm performs. The exat algorithms that we onsider are based on Sturm sequenes andomputation of the Cauhy index, f. [6, 10, 11℄. For this we all the algorithm sturm- (C. The idea is,using a Sturm-based method, to ount the number of omplex roots in a square of the omplex plane. Ifthis number is � 2, then the square is subdivided to 4 (equal) squares and the algorithm ontinues on eahsquare.We need the following proposition. For a proof we refer the reader to [3, 9℄.
Theorem 1 (Davenport-Mahler-Mignotte). Let A 2 (C[X ℄, with deg(A) = d and L (A) = � , whereA(0) 6= 0. Let 
 be any set of k ouples of indies (i; j) suh that 1 � i < j � d and let the non-zero(omplex) roots of A be 0 < j1j � j2j � � � � � jdj. Then2kM(A)k � Y(i;j)2
 ji � j j � 2k� d(d�1)2 M(A)1�d�kpjdisc(A)j;where M (A) is the Mahler measure of A.If A 2 (ZZ[i℄)[x℄, that is its oeÆients are Gaussian integers, fa+ ib j a; b 2 ZZg where L (a) � � , thenM (A) � kAk2 � 2�+1=2pd+ 1.
2.1 The number of subdivisionsThm. 1 allows us to prove a bound on the number of subdivisions needed to isolate all omplex roots.Suppose that, initially, all omplex roots are in a square of side B. This is either given, or derived as abound on the roots' magnitude, e.g. B � 2�+1 [3, 11℄. At step h, we hek for omplex roots in squares thathave sides equal to B=2h.Consider the algorithm expressed as a tree of out-degree 4, where eah node holds a square and the rootholds the initial square. Eah leaf ontains a square that isolates a omplex root and, sine there are atmost d omplex roots, this bounds the number of leaves. The squares that orrespond to leaves have sidesof length � �j and the number of nodes from a leaf to the root is�log B�j � :The number of subdivisions equals the number of nodes, whih is#(T ) = dXj=1 �lg B�j � = 2d+ d� � dXj=1 lg�j = 2d+ d� � lg dYj=1�j : (1)It remains to bound Qdj=1�j . For this we use Thm. 1. Reall that the hypotheses of the theorem arenot ful�lled when symmetri produts our. So, Qdi=1�i = Qk1i=1�iQk2i=1�i, where k1 + k2 = d and thefators are suh that no symmetri produts our. By applying to eah fator Thm. 1 and by taking intoaount that jdisc(A)j � 1 we have:dYi=1�i � 2d2 M (A)2�3d � 2d2 (2�pd+ 1)2�3d;sine M (A) � 2�pd+ 1. If we ombine the last equation with (1) we obtain:2



Lemma 2. The number of subdivisions for omplex root isolation is O(d2 + d� ).The proof of this lemma simpli�es signi�antly the proof appeared in [1℄, where an amortized-like ar-gument is used. Our bound on the number of subdivisions has d2 instead of d lg d whih, as in the realroot ase, is immaterial when d = O(� ). Moreover, if the initial polynomial is not square-free, this is againimmaterial, beause the square-free fatorization auses the square-free polynomial to have oeÆients ofsize O(d+ � ).
2.2 Overall complexityConsider a polynomial A(X) 2 (ZZ[i℄)[X ℄, where X is a omplex variable, i.e. X = x+ iy. After substitutionand some elementary operations, A an be written as A(X) = A0(x; y) + iA1(x; y), where A0; A1 2 ZZ[x; y℄and x; y are real variables.To ount the number of omplex roots in a square we will use the notion of the degree of the Gaussmap [8℄. We refer the reader to Wilf [10℄, Pinkert [6℄, for alternative, however equivalent, approahes. Let
SR(f; g) denote a signed polynomial remainder sequene of the polynomials f and g and VAR(SR(f; g) ; a))the number of sign variation our when we evaluate the sequene over a rational number a. The Cauhyindex of the real funtion g=f in an interval [a; b℄ isIb

a (g=f) = VAR(SR(f; g) ; a))� VAR(SR(f; g) ; b)):The following holds
Proposition 3. [8℄ The number of roots, r, of A(X) in a square in the omplex plane de�ned by a1 � x � a2and a3 � y � a4, is given by r = �12(R1 +R2 +R3 +R4)where R1 = Ia2a1 (A1(x; a3); A0(x; a3)); R2 = Ia4a3 (A1(a2; y); A0(a2; y));R3 = Ia1a2 (A1(x; a4); A0(x; a4)); R4 = Ia3a4 (A1(a1; y); A0(a1; y)):To isolate the omplex root of A we start with the �rst quadrant, i.e. we isolate the roots in the square[0;B℄� [0;B℄. We apply Prop. 3 and we ount the omplex roots. If there are more than one roots, then wesplit the square to four squares and we ontinue the proess to eah of them.Applying Prop. 3 onsists in omputing 4 times the Cauhy index. Eah suh omputation orresponds tothe evaluation of signed polynomial remainder sequene. It suÆes to study only the omplexity of omputingR1. The polynomialsA0(x; y) and A1(x; y) are of degree at most d and maximum oeÆient bitsize � . At theh step of algorithm, we have to ompute the Cauhy index of A0(x;B=2h) and A1(x;B=2h), over rationals ofmagnitude at most B=2h; thus of bitsize � h+lgB = h+� . The degree of these polynomials is � d and theirbitsize is eO(� + d� + dh), or eO(d� + dh). The omputation of Cauhy index osts eOB(d2(d� + dh+ � + h),or eOB(d3� + d3h) [2℄. Multiplying by the number of steps, h, we get a bound of eOB(d3�h + d3h2), and byapplying Lem. 2 we get an overall omplexity of eOB(d7 + d6� + d5� 2), or eOB(N7), where N = maxfd; �g.This ompletes the proof of the following:
Theorem 4. The worst-ase omplexity of omplex root isolation, of a polynomial with Gaussian integersas oeÆients of degree bounded by d and bitsize bounded by � , is in eOB(d7 + d6� + d5� 2), or eOB(N7).The previous theorem improves the bound in [1℄ by a fator.

3



2.3 The case of Gaussian rationalsIn the previous analysis we assumed that the oeÆients of the polynomial where Gaussian integers. Anatural question to ask is whether the omplexity bound holds if the oeÆients are Gaussian rationals, thatis numbers in the set fa+ ib j a; b 2 (Qg. Reall, that the bitsize of a rational number is the maximum ofthe bitsizes of the numerator and the denominator.We ould eliminate denominators by multiplying by their least ommon multiple. Sine the bitsize ofthe oeÆients is � � , after the elimination we get a polynomial with Gaussian integers as oeÆients, thebitsize of whih is bounded by d� .Even though the bitsize of the polynomial inreases, we observe that the Mahler bound of the polynomialdoes not hange, sine it is the produt of the roots with measure greater than one. This implies, refer toThm. 1, that the bitsize of the separation bound, and the number of subdivisions remains the same, i.e.eOB(d2 + d� ).Following the analysis of the previous setion, we see that also in this ase, at eah step, we have toompute the Cauhy index of polynomials of degree d and of bitsize O(d�+dh). Thus the overall omplexityremains the same.
Corollary 5. The bound of Thm. 4 holds even in the ase where the oeÆients are Gaussian rationals.
3 Conclusion and future workIn this paper we simpli�ed the proof for omputing the number of steps that a subdivision algorithm performsto isolate the omplex roots of a polynomial with Gaussian oeÆients, we improved the bound of the exatalgorithms for the problem, based on Sturm sequenes, by a fator d and we proved that the bound alsoholds when the polynomial has Gaussian rationals, of the same bitsize, as oeÆients.The tehniques that we presented will be useful to study the omplexity of algorithms for omplex rootisolation that are based on the omputation of the topologial degree, e.g.[4℄. Suh algorithms allows omplexroot ounting to be performed to more ompliated areas than squares, e.g. polygons, and they are amenableto eÆient implementations.Last, but not least, we are urrently working towards obtaining output-sensitive omplexity results, aswell as bounds for the average ase.
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