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Abstract

We present algorithmic, complexity and implementation results concerning real root
isolation of integer univariate polynomials using the continued fraction expansion of
real algebraic numbers. One motivation is to explain the method’s good performance
in practice. We derive an expected complexity bound of ÕB(d6 + d

4
τ

2), where d is
the polynomial degree and τ bounds the coefficient bit size, using a standard bound
on the expected bit size of the integers in the continued fraction expansion, thus
matching the current worst-case complexity bound for real root isolation by exact
methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homo-
thetic transformation we improve the expected complexity bound to ÕB(d3

τ). We
compute the multiplicities within the same complexity and extend the algorithm to
non square-free polynomials. Finally, we present an open-source C++ implementa-
tion in the algebraic library synaps, and illustrate its completeness and efficiency
as compared to some other available software. For this we use polynomials with
coefficient bit size up to 8000 bits and degree up to 1000.
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1 Introduction

Real root isolation of univariate integer polynomials is a fundamental problem
in computer algebra as well as in many applications ranging from computa-
tional geometry to quantifier elimination. The problem consists in computing
intervals with rational endpoints which contain exactly one real root of the
polynomial and have such an interval for every real root. In this paper we
consider an algorithm for real root isolation based on the continued fraction
expansion (from now on called CF) of real algebraic numbers. Recall that such
a number is a real root of an integer polynomial.

A major motivation is to explain the algorithm’s good performance in im-
plementations, despite the higher complexity bounds which were known until
now. Indeed, we show that continued fractions lead to expected asymptotic
bit complexity bounds that match those recently proven (in the worst case)
for other exact, subdivision-based algorithms, such as Sturm, Descartes and
Bernstein solvers. Using results from the metric theory of continued fractions
we prove that the algorithm achieves an expected complexity of ÕB(d6+d4τ 2),
where d is the degree of the polynomial and τ bounds the coefficient bit size.
Moreover, we present a variant of the algorithm with expected complexity
ÕB(d3τ).

1.1 Notation

In what follows O, resp. OB, means arithmetic, resp. bit, complexity and
the Õ and ÕB notation means that we are ignoring logarithmic factors. For
a polynomial A =

∑d
i=0 aiX

i ∈ Z[X], d = deg (A) denotes its degree. We
consider square-free polynomials except if explicitly stated otherwise. By L (A)
we denote an upper bound on the bit size of the coefficients of A (including a
bit for the sign). For a ∈ Q, L (a) > 1 is the maximum bit size of the numerator
and the denominator. Let M (τ) denote the bit complexity of multiplying two
integers of bit size at most τ . Using FFT, M (τ) = OB(τ lgc τ) for a suitable
constant c. V ar(A) denotes the number of sign variations in the coefficient
list of A ignoring zero terms and ∆ the separation bound of A, that is the
smallest distance between two (complex) roots of A. Lastly, PLB(A) (Positive
Lower Bound) is a function that computes a lower bound on the largest integer,
i.e., the floor of the root, possibly complex, of A with the smallest positive
real part, and N = max {d, τ}.
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1.2 Previous work and our results

Real root isolation of univariate integer polynomials is a well known problem
and various algorithms exist for it. Moreover, there is a huge bibliography on
the problem so we have to mention that we only scratch the surface of the
existing literature and we encourage the reader to refer to the references.

Most exact subdivision-based algorithms for real root isolation are based either
on Descartes’ rule of sign (Th. 1) or on Sturm sequences. Roughly speaking,
the idea behind both approaches is to subdivide a given interval that initially
contains all the real roots until it is certified that none or one real root is
contained in the tested interval. Descartes’ approach [18] achieves this by re-
peatedly transforming the original polynomial and counting the sign variations
in the coefficients’ list, while Sturm’s approach computes a signed polynomial
remainder sequence and evaluates it over the endpoints of the interval of in-
terest. Recently it was proven (refer to [21, 22, 26] and references therein) that
both approaches, the one based on Descartes’ rule of sign (where the polyno-
mials are represented either in the monomial or in the Bernstein basis) and
the one based on Sturm sequences, achieve the same bit complexity bound
in the worst case, namely ÕB(d6 + d4τ 2) or ÕB(N6), where N = max {d, τ}.
Moreover, using Sturm(-Habicht) sequences in a pre-processing and a post-
processing step [26] the bound holds for the non square-free case and the
multiplicities of the roots can also be computed. If the degree of the polyno-
mial is ≤ 4 then real solving can be performed in O(1) or ÕB(τ) [23], instead
of Õ(τ) or ÕB(τ 2), which are achieved by the general purpose algorithms.

The continued fraction algorithm (CF) differs from the subdivision based al-
gorithms in that instead of bisecting a given initial interval, it computes the
continued fraction expansion for each real root of the polynomial. The first
formulation of the algorithm is due to Vincent [57], see also [1, 7] for histor-
ical references. It was based on his theorem (Th. 4 without the terminating
condition) where it was stated that repeated transformations of the polyno-
mial will eventually yield a polynomial with zero (or one) sign variation, thus
Descartes’ rule (Th. 1 and Rem. 2) implies that the transformed polynomial
has zero (resp. one) real root in (0,∞). If one sign variation is attained then
the inverse transformation can be applied in order to compute an isolating in-
terval for the real root that corresponds to the original polynomial. Moreover,
the integers, ci’s, used in the transformations correspond to the partial quo-
tients of the continued fraction expansion of the real root. However, Vincent’s
algorithm is exponential [18]. He computed the ci’s in the transformation of
Th. 4 by repeated shift operations of the form X 7→ X + 1, thus if one of
the ci’s (or even the sum of all) is of magnitude, say, 2τ then an exponential
number of steps must be performed.
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Uspensky [54] extended Vincent’s theorem by computing an upper bound on
the number of transformations so as to isolate the real roots, but failed to deal
with its exponential behavior. See also [16, 48] where the problem of approx-
imating a real algebraic number is also considered. Using Vincent’s theorem,
Collins and Akritas [18] derived a polynomial subdivision-based algorithm
using Descartes’ rule of sign.

Akritas [2, 6] in order to overcome the exponential behavior of the CF algo-
rithm, computed the ci’s in the transformations as positive lower bounds of the
positive real roots, via Cauchy’s bound (for details, see sec. 3). He achieved
a complexity of ÕB(d5τ 3) or ÕB(N8), without using fast Taylor shifts [58].
However, it is not clear how this approach accounts for the increased coef-
ficient size in the transformed polynomial after applying a map of the form
X 7→ c + X. Another issue is to bound the size of the ci. Refer to Eq. (1)
which indicates that the magnitude of the partial quotients is unbounded. CF
is the standard real root isolation function in Mathematica [4] and for some
experiments against subdivision-based algorithms, also in Mathematica, the
reader may refer to [3]. Quite recently, Sharma proved [51] that the worst case
complexity of the CF algorithm, using Hong’s bound [28] for computing the
partial quotients, is ÕB(d7τ 2) or ÕB(N9).

Another class of univariate solvers are numerical solvers, e.g. [45, 46, 50], that
compute an approximation of all the roots (real and complex) of a polynomial
up to a desired accuracy. The complexity of these algorithms is ÕB(d3 τ).

The contributions of this paper are the following: First, we improve the bound
of the number of steps (transformations) that the CF algorithm performs, as-
suming that a constant number of shift operations is needed in order to com-
pute the partial quotients. The proof of this is achieved through Th. 7. Second,
we bound the expected bit size of the partial quotients and thus the growth
of the transformed polynomials which appear during the algorithm. For this
we use the hypothesis of the continued fraction expansion of real numbers
(Hyp. 1) and a standard average case analysis. We revisit the proof of [2, 6]
so as to overcome its drawbacks and derive an overall expected bit complexity
bound of ÕB(N6) for the algorithm, (see Sec. 4.2), thus matching the cur-
rent record complexity in the worst case for exact real root isolation. From a
theoretical perspective, we present a variant of the CF algorithm which has
expected complexity ÕB(N4), thus matching the complexity of the numeri-
cal algorithms. The extension to the non square-free case uses the techniques
from [26]. Finally, we present our efficient open-source C++ implementation
of the ÕB(N6) algorithm in synaps 1 , and illustrate it on various data sets,
including polynomials of degree up to 1000 and coefficients of 8000 bits. Our
software seems comparable to, and some times faster than the root isolation

1 http://www-sop.inria.fr/galaad/logiciels/synaps/
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implementations that we tested, including rs 2 , which seems to be one of the
fastest implementations for exact real root isolation. We also tested a numeric
solver, namely aberth [10, 11], which is very efficient in practice but needs
special tuning in order to produce the correct number of real roots. When the
correct number of real roots is computed, then aberth can be up to six times
faster than our implementation. We believe that our software contributes to-
wards reducing the gap between rational and numeric computation, the latter
being usually perceived as faster.

Part of this work appeared in preliminary form in [53].

The rest of the paper is structured as follows. The next section sketches the
theory behind continued fractions and Sec. 3 presents the CF algorithm. In
Sec. 4, we propose a way of computing the partial quotients (Sec. 4.1), we
present the analysis of the CF algorithm (Sec. 4.2), and we propose a vari-
ant of the CF algorithm (Sec. 4.3). We conclude with experiments using our
implementation, along with comparisons against other available software for
univariate equation solving.

2 Continued fractions

We present a short introduction to continued fractions, following [55] which,
although is far from complete, suffices for our purposes. The reader may refer
to, e.g., [6, 12, 55, 60]. In general a simple (regular) continued fraction is a
(possibly infinite) expression of the form

c0 +
1

c1 +
1

c2 + . . .

= [c0, c1, c2, . . . ],

where the numbers ci are called partial quotients, ci ∈ Z and ci ≥ 1 for i > 0.
Notice that c0 may have any sign, however, in our real root isolation algorithm
c0 ≥ 0, without loss of generality. By considering the recurrent relations

P−1 = 1, P0 = c0, Pn+1 = cn+1 Pn + Pn−1,

Q−1 = 0, Q0 = 1, Qn+1 = cn+1 Qn + Qn−1,

2 http://fgbrs.lip6.fr/salsa/Software/
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it can be shown by induction that Rn = Pn

Qn
= [c0, c1, . . . , cn], for n = 0, 1, 2, . . .

and moreover that

Pn Qn+1 − Pn+1 Qn = (−1)n+1,

Pn Qn+2 − Pn+2 Qn = (−1)n+1cn+2.

If γ = [c0, c1, . . . ] then γ = c0+ 1
Q0Q1

− 1
Q1Q2

+ · · · = c0+
∑∞

n=1
(−1)n−1

Qn−1Qn
and since

this is a series of decreasing alternating terms it converges to some real number
γ. A finite section Rn = Pn

Qn
= [c0, c1, . . . , cn] is called the n−th convergent

(or approximant) of γ and the tails γn+1 = [cn+1, cn+2, . . . ] are known as its
complete quotients. That is γ = [c0, c1, . . . , cn, γn+1] for n = 0, 1, 2, . . . . There
is an one to one correspondence between the real numbers and the continued
fractions, where evidently the finite continued fractions correspond to rational
numbers.

It is known that Qn ≥ Fn+1 and that Fn+1 < φn < Fn+2, where Fn is the n−th

Fibonacci number and φ = 1+
√

5
2

is the golden ratio. Continued fractions are
the best (for a given denominator size), approximation. This is as follows:

1

Qn(Qn+1 + Qn)
≤

∣∣∣∣∣γ −
Pn

Qn

∣∣∣∣∣ ≤
1

QnQn+1

< φ−2n+1.

Let γ = [c0, c1, . . . ] be the continued fraction expansion of a real number.
The Gauss-Kuzmin distribution [12, 39, 40, 47] states that for almost all real
numbers γ (meaning that the set of exceptions has Lebesgue measure zero) the
probability for a positive integer δ to appear as an element ci in the continued
fraction expansion of γ is

Prob[ci = δ] ⋍ lg
(δ + 1)2

δ(δ + 2)
, for any fixed i > 0. (1)

The Gauss-Kuzmin law induces that we can not bound the mean value of the
partial quotients or in other words that the expected value (arithmetic mean)
of the partial quotients is diverging, i.e.

E[ci] =
∞∑

δ=1

δ Prob[ci = δ] =∞, for i > 0.

Surprisingly enough the geometric (and the harmonic) mean is not only asymp-
totically bounded, but is bounded by a constant, for almost all γ ∈ R. For the
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geometric mean this is the famous Khintchine’s constant [33], see also [39], i.e.

lim
n→∞

n

√√√√
n∏

i=1

ci = K = 2.685452001...

which is not known if it is an irrational number, let alone transcendental. The
reader may refer to [8] for a comprehensive treatment of Khintchine’s means.
The expected value of the bit size of the partial quotients is a constant for
almost all real numbers, when n→∞ or n sufficiently big [33, 47]. Notice that
in (1), i > 0, thus γ ∈ R is uniformly distributed in (0, 1). Following closely
[47], we have:

E[ln ci] =
1

n

n∑

i=1

ln ci = lnK = 0.98785..., as n→∞, ∀ i > 0.

Let L (ci) , bi, then

E[bi] = O(1). (2)

A real number has an (eventually) periodic continued fraction expansion if
and only if it is a root of an irreducible quadratic polynomial. The set of real
algebraic numbers is countable and has Lebesgue measure zero, thus there is
chance that Gauss-Kuzmin distribution and Khintchine’s law do not hold for
this set. However, “There is no reason to believe that the continued fraction
expansions of non-quadratic algebraic irrationals generally do anything other
than faithfully follow Khintchine’s law”[13]. For our analysis we rely on the
conjecture that Gauss-Kuzmin’s distribution and Khintchine’s law hold for
the set of real algebraic numbers; various experimental results [12, 47, 48]
support the conjecture. It is a major open problem to find an irreducible
integer polynomial such that the continued fraction expansions of its real
roots do not follow the conjecture or to prove the conjecture.

This is not the first time that the continuous distribution of the continued
fraction expansion is used for an analysis of an algorithm. Brent [14, 15], see
also [35], used the Gauss-Kuzmin distribution to model the expected bit size
of the partial quotients of a rational number, in order to study the average
complexity of the binary gcd algorithm. For the largest digit that can appear
in the partial quotients of a rational number the reader may refer to [27].

Lévy loosened the assumptions of Khintchine and proved [39] that the distri-
bution also holds for γ ∈ R with any density function in the set of Lebesgue
measurable functions.

Hypothesis 1 The set of real algebraic numbers of degree greater or equal
to three follows Gauss-Kuzmin’s distribution and Khintchine’s law, i.e., the
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expected bit size of the partial quotients corresponding to the continued fraction
expansion of these real algebraic numbers is a constant.

3 The CF algorithm

Theorem 1 (Descartes’ rule of sign) The number R of real roots of A(X)
in (0,∞) is bounded by V ar(A) and we have R ≡ V ar(A) mod 2.

Remark 2 In general Descartes’ rule of sign obtains an overestimation of the
number of the positive real roots. However, if we know that A is hyperbolic,
i.e. has only real roots, or when the number of sign variations is 0 or 1 then
it counts exactly.

The proof of Th. 1 follows from the following theorem which is due to Budan:

Theorem 3 (Budan) [6, 41] Let a polynomial A, such that deg(A) = d and
let a < b, where a, b ∈ R. Let Aa, resp. Ab, be the polynomial produced after
we apply the map X 7→ X + a, resp. X 7→ X + b, to A. Then the following
hold:

(1) V ar(Aa) ≥ V ar(Ab),
(2) #{γ ∈ (a, b) |A(γ) = 0} ≤ V ar(Aa)− V ar(Ab), and
(3) #{γ ∈ (a, b) |A(γ) = 0} ≡ V ar(Aa)− V ar(Ab) mod 2.

The CF algorithm depends on the following theorem, which dates back to
Vincent’s theorem in 1836 [57]. The inverse of Th. 4 can be found in [6, 19, 41].
The version of the theorem that we present is due to Alesina and Galuzzi [7];
it improves the conditions of all the previous versions [1, 2, 6, 54] and involves
in its proof the one and two circle theorems (refer to [7, 37] and references
therein), employed in the analysis of the Descartes/Bernstein algorithm [18].

Theorem 4 [7] Let A ∈ Z[X] be square-free and let ∆ > 0 be the separation
bound, i.e. the smallest distance between two (complex) roots of A. Let n be
the smallest index such that

Fn−1 Fn ∆ >
2√
3
,

where Fn is the n-th Fibonnaci number. Then the map X 7→ [c0, c1, . . . , cn, X],
where c0, c1, . . . , cn is an arbitrary sequence of positive integers, transforms
A(X) to An(X), whose list of coefficients has no more than one sign variation.

A similar theorem holds for non square-free polynomials but we will not use
it for the analysis of the CF algorithm. The extension of Vincent’s theorem to
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the non square-free case is due to Wang [59], see also [17] and for an improved
version and historical references see [7].

Theorem 5 [7, 59] Let A ∈ Z[X], not necessarily square-free, with deg(A) =
d and let ∆ > 0 be the separation bound. Let k be the smallest index such
that F 2

k−1∆ > 1, m be the smallest integer such that m > 1
2
logφ d and n =

k+m. Then the map X 7→ [c0, c1, . . . , cn, X], where c0, c1, . . . , cn is an arbitrary
sequence of positive integers, transforms A(X) to An(X). If V ar(An) > 0 then
An has a unique positive real root of multiplicity V ar(An).

The previous extension of Vincent’s theorem implies, as already mentioned
by Alesina and Galuzzi [7, Rem. 9], that Descartes’ rule of sign can be used
to isolate the real roots of non square-free polynomials and to compute their
multiplicities, contrary to what it is believed up to now.

In our analysis we will assume that the input polynomial is square-free, except
if explicitly stated otherwise, since we compute the multiplicities of the real
roots differently. Thus we will rely on Th. 4 to isolate the positive real roots of
a square-free polynomial A. In order to isolate the negative roots we perform
the transformation X 7→ −X, so in what follows we will consider only the
positive real roots of A.

Vincent’s variant of the CF algorithm goes as follows: A polynomial A is
transformed to A1 by the transformation X 7→ 1 + X and if V ar(A1) = 0
or V ar(A1) = 1 then A has 0, resp. 1, real root greater than 1 (Th. 1). If
V ar(A1) < V ar(A) then (possibly) there are real roots of A in (0, 1), due
to Budan’s theorem (Th. 3). A2 is produced by applying the transformation
X 7→ 1/(1 + X) to A. If V ar(A2) = 0 or V ar(A2) = 1 then A has 0, resp. 1,
real root less than 1 (Th. 1). Uspensky’s [54] variant of the algorithm (see also
[48]) at every step produces both polynomials A1 and A2 probably, as Akritas
states [1], because he was unaware of Budan’s theorem. In both variants, if
the transformed polynomial has more than one sign variations, we repeat the
process.

We may consider the process of the algorithm as an infinite binary tree in
which the root corresponds to the original polynomial A. The branch from
a node to a right child corresponds to the map X 7→ X + 1, while to the
left child to the map X 7→ 1

1+X
. Notice that a sequence of c transformations

X 7→ 1 + X followed by one of the type X 7→ 1/(1 + X) is equivalent to two
transformations, one of the type X 7→ c + 1/X followed by X 7→ 1 + X. Thus
Vincent’s algorithm (and Uspensky’s) results to a sequence of transformations
like the one described in Th. 4, and so the leaves of the binary tree that we
considered hold (transformed) polynomials that have no more than one sign
variations, if Th. 4 holds. Akritas [2, 6] replaced a series of X 7→ X + 1 trans-
formations by X 7→ X + b, where b is the positive lower bound (PLB) on the
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positive roots of the tested polynomial. This was computed by Cauchy’s bound
[6, 41, 60]. This way, the number of steps is polynomial and the complexity is
in ÕB(d5τ 3). However, it is not clear whether or how the analysis takes into
account that the coefficient bit size increases after a shift. Another issue is to
bound the size of the b’s.

For these polynomials that have one sign variation we still have to find the
interval where the real root of the initial polynomial A lies. Consider a poly-
nomial An that corresponds to a leaf of the binary tree that has one sign
variation. Notice that An is produced after a transformation as in Th. 4, using
positive integers c0, c1, . . . , cn. This transformation can be written in a more
compact form using the convergents

M : X 7→ PnX + Pn−1

QnX + Qn−1

, (3)

where Pn−1

Qn−1
and Pn

Qn
are consecutive convergents of the continued fraction

[c0, c1, . . . , cn]. Notice that (3) is a Möbius transformation, see [6, 60] for more
details. Since An has one sign variation it has one and only one real root in
(0,∞), so in order to obtain the isolating interval for the corresponding real
root of A we evaluate the right part of Eq. (3) once over 0 and once over ∞.
The (unordered) endpoints of the isolating interval are Pn−1

Qn−1
and Pn

Qn
.

The pseudo-code of the CF algorithm is presented in Alg. 1. Notice that the
Interval function orders the endpoints of the computed isolating interval and
that PLB(A) computes a lower bound on the positive roots of A. The initial
input of the algorithm is a polynomial A(X) and the trivial transformation
M(X) = X. We need the functional M in order to keep track of the trans-
formations that we perform so that to derive the isolating intervals. Notice
that Line 15 is to be executed only when V ar(A1) < V ar(A2), but in order
to simplify the analysis we omit this, since it only doubles the complexity.

Remark 6 The CF algorithm takes into account all the complex roots of the
polynomial; in other words depends on all the roots with positive real part.

4 The complexity of the CF algorithm

The complexity of the CF algorithm depends on the number of transformations
and the cost of each. However, special care should be taken since after each
transformation the bit size of the coefficients of the polynomial increases.

Let disc(A) be the discriminant and lead (A) the leading coefficient of A.
Mahler’s measure of a polynomial A isM(A) = | lead (A) |∏d

i=1 max {1, |γi|},
where γi are all the (complex) roots of A [9, 41, 43, 60]. Moreover M(A) ≤
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Algorithm 1: CF(A,M)

Input: A ∈ Z[X],M(X) = kX+l
mX+n

, k, l,m, n ∈ Z

Output: A list of isolating intervals
Data: Initially M(X) = X, i.e. k = n = 1 and l = m = 0

if A(0) = 0 then1

OUTPUT Interval( M(0),M(0)) ;2

A← A(X)/X;3

CF(A,M);4

V ← Var(A);5

if V = 0 then return ;6

if V = 1 then7

OUTPUT Interval( M(0),M(∞));8

return ;9

b← PLB(A) // PLB ≡ PositiveLowerBound ;10

if b ≥ 1 then A← A(b + X),M ←M(b + X) ;11

A1 ← A(1 + X), M1 ←M(1 + X) ;12

CF(A1,M1) // Looking for real roots in (1, +∞);13

A2 ← A( 1
1+X

), M2 ←M( 1
1+X

) ;14

CF(A2,M2) // Looking for real roots in (0, 1) ;15

return ;16

2τ
√

d + 1. We prove the following theorem, which is based on a theorem by
Mignotte [41], thus extending [20, 22].

Theorem 7 Let A ∈ Z[X], with deg(A) = d and L (A) = τ . Let Ω be any
set of k couples of indices (i, j) such that 1 ≤ i < j ≤ d and let the non-zero
(complex) roots of A be 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γd|. Then

2kM(A)k ≥
∏

(i,j)∈Ω

|γi − γj| ≥ 2k− d(d−1)
2 M(A)1−d−k

√
disc(A).

Proof. Consider the multiset Ω = {j|(i, j) ∈ Ω}, where |Ω| = k. We use the
inequality

∀ a, b ∈ C |a− b| ≤ 2 max {|a|, |b|}, (4)

and the fact [41, 43] that for any root of A, 1
M(A)

≤ |γi| ≤ M(A). In order to
prove the left inequality

∏

(i,j)∈Ω

|γi − γj| ≤ 2k
∏

j∈Ω

|γj| ≤ 2k max
j∈Ω
|γj|k ≤ 2kM(A)k.

Recall [41, 60] that disc(A) = lead (A)2d−2 ∏
i<j (γi − γj)

2. For the right
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inequality we consider the absolute value of the discriminant of A, i.e

| disc(A)| = | lead (A) |2d−2 ∏
i<j |γi − γj|2

= | lead (A) |2d−2 ∏
(i,j)∈Ω |γi − γj|2

∏
(i,j)/∈Ω |γi − γj|2 ⇔

√
| disc(A)| = | lead (A) |d−1 ∏

(i,j)∈Ω |γi − γj|
∏

(i,j)/∈Ω |γi − γj|.

We consider the product
∏

(i,j)/∈Ω |γi − γj| and we apply d(d−1)
2
− k times in-

equality (4), thus

∏
(i,j)/∈Ω |γi − γj| ≤ 2

d(d−1)
2

−k |γ1|0|γ2|1 · · · |γd|d−1 (
∏

j∈Ω |γj|)−1

≤ 2
d(d−1)

2
−kM(A)d−1| lead (A) |1−dM(A)k.

(5)

where we used the inequality |γ1|0|γ2|1 · · · |γd|d−1 ≤ |M(A)/ lead (A) |d−1, and
the fact [41] that, since ∀i, |γi| ≥ M(A)−1, we have

∏
j∈Ω |γj| ≥ |γ1|k ≥

M(A)−k. Thus we conclude that

∏

(i,j)∈Ω

|γi − γj| ≥ 2k− d(d−1)
2 M(A)1−d−k

√
| disc(A)|.

2

A similar theorem but with more strict hypotheses on the roots first appeared
in [20], see also [32], and the conditions were generalized in [22]; namely in
order for the bound [20, 22] to hold the sets of indices i and j should be
rearranged such that they form an acyclic graph where each node has out-
degree at most one. The bound of Th. 7 has a factor 2d2

instead of dd in
[20, 22, 32], which plays no role when the polynomial is not square-free or
when d = O(τ) or when the notation with N is used. Moreover, we loosen
the hypotheses of the theorem and thus all the proofs concerning the number
of steps of the subdivision-based solvers [22, 26] are simplified, since there is
no need to rearrange the roots and apply the one and two circle theorems.
Possibly a more involved proof of Th. 7 may eliminate this factor using [42].

Remark 8 There are two crucial observations 3 about Th. 4. When the trans-
formed polynomial has one sign variation, then the interval with endpoints
Pn−1

Qn−1
= [c0, c1, . . . , cn−1] and Pn

Qn
= [c0, c1, . . . , cn] (possibly unordered) isolates

a positive real root of A, say γi. Then, in order for Th. 4 to hold, it suffices to
consider, instead of ∆, the quantity |γi− γci

|, where γci
is a (complex) root of

A closest to γi. When the transformed polynomial has no sign variation and
[c0, c1, . . . , cn] is the continued fraction expansion of the (positive) real part of
a complex root of A, say γi, then again it suffices to replace ∆ by |γi − γci

|.

For the following theorem we assume that a small number of calls to PLB is

3 For a proof of these observations, the reader may also refer to [51].
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needed in order to compute the floor of the root with smallest positive real
part. We will justify this in the next section for the expected case.

Theorem 9 The CF algorithm performs at most O(d2 + dτ) transformation
steps, assuming that at each step a constant number of calls to PLB is needed
in order to compute the floor of the root with the smallest positive real part.

Proof. Let 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γk|, k ≤ d be the (complex) roots of A
with positive real part and let γci

denote the root of A that is closest to γi. We
assume that at each step a constant number of calls to PLB is needed in order
to compute the partial quotient of the root that we are trying to isolate. Or
in other words that Lines 10 and 11 of Alg. 1 are executed a constant number
of times, at each step, in order to compute the partial quotient.

We consider the binary tree T generated during the execution of the CF algo-
rithm. The number of steps of the CF algorithm corresponds to the number
of nodes in T , which we denote by #(T ). We use some arguments and the
notation from [22] in order to prune the tree.

With each node v of T we associate a Möbius transformation Mv : X 7→ kX+l
mX+n

,
a polynomial Av and implicitly an interval Iv whose unordered endpoints can
be found if we evaluate Mv on 0 and on ∞. Recall that Av is produced after
Mv is applied to A. The root of T is associated with A, M(X) = X (i.e.
k = n = 1, l = m = 0) and implicitly with the interval (0,∞).

Let a leaf u of T be of type-i if its interval Iu contains i ≥ 0 real roots. Since
the algorithm terminates the leaves are of type-0 or type-1. We will prune
certain leaves of T so as to obtain a certain sub-tree T ′ where it is easy to
count the number of nodes. We remove every leaf that has a sibling that is
not a leaf. Now we consider the leaves that have a sibling that is also a leaf. If
both leaves are of type-1, we arbitrary prune one of them. If one of them is of
type-1 then we prune the other. If both leaves are of type-0, this means that
the polynomial on the parent node has at least two sign variations and thus
that we are trying to isolate the (positive) real part of some complex root.
We keep the leaf that contains the (positive) real part of this root. And so
#(T ) < 2 #(T ′).

Now we consider the leaves of T ′. All are of type-0 or type-1. In both cases
they hold the positive real part of a root of A, the associated interval is
|Iv| ≥ |γi−γci

| (Rem. 8) and the number of nodes from a leaf to the root is ni,
which is such that the hypothesis of Th. 4 is satisfied. Since ni is the smallest
index such that the hypothesis of Th. 4 holds, if we reduce ni by one then the
inequality does not hold. Thus

Fni−2 Fni−1 |γi−γci
| ≤ 2√

3
⇒ φ2ni−5 |γi−γci

| < 2√
3
⇒ ni < 2− 1

2
lg |γi − γci

|.
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We sum over all ni to bound the nodes of T ′, thus

#(T ′) ≤
k∑

i=1

ni ≤ 2k − 1

2

k∑

i=1

lg |γi − γci
| ≤ 2k − 1

2
lg

k∏

i=1

|γi − γci
|. (6)

In order to apply Th. 7 we should rearrange
∏k

i=1 |γi − γci
| so that the re-

quirements on the indices of roots are fulfilled. This can not be achieved when
symmetric products occur and thus the worst case is when the product con-
sists only of symmetric products i.e.

∏k/2
i=1 |(γj − γcj

)(γcj
− γj)|. We consider

the square of the inequality of Th. 7 taking k
2

instead of k and disc(A) ≥ 1
(since A is square-free), thus

∏k
i=1 |γi − γci

| ≥
(
2

k
2
− d(d−1)

2 M(A)1−d− k
2

)2

− lg
∏k

i=1 |γi − γci
| ≤ d2 − d− k + (2d + k − 2) lgM(A).

(7)

Eq. (6) becomes #(T ′) < 2k + d2− d− k +(2d+ k− 2) lgM(A). However, for
Mahler’s measure it is known thatM(A) ≤ 2τ

√
d + 1⇒ lgM(A) ≤ τ + lg d,

for d ≥ 2, thus #(T ′) ≤ 2k + d2 − d − k + (2d + k − 2)(τ + lg d). Since
#(T ) < 2 #(T ′) and k ≤ d, we conclude that #(T ) = O(d2 + d τ + d lg d). 2

4.1 Rational roots and PLB (Positive Lower Bound) realization

This section studies a way to compute a lower bound on the positive roots, and
presents its efficiency and accuracy. This also supports the assumption that
the expected number of calls to PLB is O(1). Notice that different variants
of the CF algorithm can be introduced depending on how the positive lower
bound is computed. The accuracy and the efficiency of the bounds in the
context of the CF algorithm are seldom, if at all, discussed. For a recent result
concerning the worst case complexity, the reader may refer to [51].

There are two issues that we have to discuss further.

The first one concerns the rational numbers. If the polynomial A has (only)
rational real roots then their continued fraction expansion neither follows the
Gauss-Kuzmin distribution nor Khintchine’s law. However, recall that if p

q

is a root of A then p divides a0 and q divides ad, thus in the worst case
L (p/q) = O(τ) and so the rational roots are isolated fast among themselves.
Treating them as real algebraic numbers leads to an overestimation of the
number of iterations.
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The second issue concerns the number of calls of function PLB in order to
compute a partial quotient. We made the assumption that this number of calls
is small. In practice this is always the case. The assumption that the number
of calls to PLB is small enough, is strengthened by (1), since it implies that the
probability that a partial quotient is of magnitude ≤ 10 is ∼ 0.87. This is why
in practice the partial quotients are of very small magnitude, except when the
polynomial has only rational real roots, of great magnitude, well separated
and we are interested in the practical complexity. In this case PLB must be
applied many times in order to compute a partial quotient. Richtmyer et al.
[47] in order to overcome this situation perform a small number of Newton-like
iterations in order to get a good approximation of the partial quotient. In [4],
see also [2, 3], the problem was solved partially by applying the map X 7→ bX,
where b is the computed positive root bound, when b ≥ 16. This is what we
do in our implementation.

Moreover, the relation ∣∣∣∣∣γ −
Pn

Qn

∣∣∣∣∣ <
1

cn+1 Q2
n

,

implies that the appearance of a partial quotient of an extra-ordinary big
magnitude means that the previous approximation of the algebraic number
was extremely good. However, the previous discussion does not provide a
theoretical explanation. We will present a way of computing the positive lower
bound that supports our assumption.

Recall that a lower bound on the positive roots of a polynomial is computed as
the inverse of the upper bound on the positive roots of the reciprocal polyno-
mial. Thus in what follows we will consider only upper bounds for the positive
roots. The bound that we will consider, and that we also use in our imple-
mentation of PLB, is

B2(A) := 2 max
ak<0

{∣∣∣∣
ak

ad

∣∣∣∣

1
d−k

}
, (8)

where 0 ≤ k < d, which is due to [34], see also [32, 35]. Notice that B2 is a
bound for the positive roots only and not a bound for the absolute value of
all the (complex) roots of the polynomial. For such bounds, the reader may
refer to e.g. [41, 43, 56]. For other bounds on the positive roots the reader
may refer to [5, 28, 34, 52]. Last, but not least, we have to mention that the
implementation of B2 requires Õ(d) arithmetic operations [6, 36, 56] and as
van der Sluis [56] says, this bound “is to be recommended among all” because
of its simplicity and the good quality of its results.

Under Hyp. 1, the expected bit size of the partial quotients is a constant. We
compute them, using a combination of binary and exponential search 4 [38].

4 This approach was also proposed to the first author by K. Mehlhorn, A. Eigen-
willig and M. Sagraloff during his visit to MPI-Saarbrücken.
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First, we compute B2(A) and perform the transformation X 7→ X + B2(A).
Next, we perform the transformation X 7→ X + 1. If the number of sign
variations decreases then B2(A) is the partial quotient. If not, then we perform
X 7→ X+2. If the number of sign variations does not decrease, then we perform
X 7→ X+22. Again if the number of sign variations does not decrease, then we
perform X 7→ X + 23 and so on. Eventually, for some positive integer k, there
would be a loss in the sign variations between transformations X 7→ X+2k and
X 7→ X + 2k+1, i.e. the partial quotient ci that we want to compute satisfies
B2(A) + 2k < ci < B2(A) + 2k+1 < 2 ci. We compute the ci by performing
binary search in the interval [B2(A) + 2k, B2(A) + 2k+1]. Thus, the number of
transformations that we need to perform is O(lg ci) = O(bi), which is O(1),
by (2). We do not consider the cases ci = 2k or ci = 2k+1, since then we have
computed a rational root.

The previous discussion implies that at every step of the algorithm (in the
expected case) we must perform one call to PLB and a small number of shift
operations, in order to compute the floor of a root with the smallest positive
real part. Notice that this root may not be unique.

In practice the tightness of the positive root bounds is usually very good,
thus we do not use this exponential search in order to compute the partial
quotients.

We believe that this technique of computing the positive lower bound might
be used in order to improve the worst case complexity bound of CF [51].

4.2 Real root isolation

To complete the analysis of the CF algorithm we have to compute the cost of
every step that the algorithm performs. In the worst case every step consists of
a computation of a positive lower bound b (Line 10) and three transformations,
X 7→ b+X, X 7→ 1+X and X 7→ 1

1+X
(Lines 11, 12 and 14 in Alg. 1). Recall,

that inversion can be performed in O(d). Thus, the complexity is dominated
by the shift operation (Line 11 in Alg. 1) since in the expected case a constant
number of calls to PLB is needed, as justified in Sec. 4.1. In order to compute
this cost, a bound on L (ck) , bk, 0 ≤ k ≤ mi is needed, see Eq. (2).

For the analysis of the CF algorithm we will need the following:

Proposition 10 (Fast Taylor shift) [58] Let A ∈ Z[X], with deg(A) = d
and L (A) = τ and let a ∈ Z, such that L (a) = σ. Then the cost of computing
B = A(a+X) ∈ Z[X] is OB(M (d2 lg d + d2σ + dτ)). Moreover L (B) = O(τ +
dσ).
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Initially A has degree d and bit size τ . Evidently the degree does not change
after a shift operation. Each shift operation by a number of bit size bh in-
creases the bit size of the polynomial by an additive factor d bh, in the worst
case (Prop. 10). At the h−th step of the algorithm the polynomial has bit size
O(τ +d

∑h
i=1 bi) and we perform a shift operation by a number of bit size bh+1.

Prop. 10 states that this can be done inOB

(
M

(
d2 lg d + d2bh+1 + d(τ + d

∑h
i=1 bi)

))

or OB

(
M

(
d2 lg d + dτ + d2 ∑h+1

i=1 bi

))
.

Now we have to bound
∑h+1

i=1 bi. For this we use Hyp. 1 and we derive a bound
on the expected complexity. Below we elaborate on this. We use Eq. (2) which
bounds E[bi]. By linearity of expectation it follows that E[

∑h+1
i=1 bi] = O(h).

Since h ≤ #(T ) = O(d2 + dτ) (Th. 9 and Sec. 4.1), the (expected) worst
case cost of step h is OB(M (d2 lg d + dτ + d2(d2 + dτ))) or ÕB(d2(d2 + dτ)).
Finally, multiplying by the number of steps, #(T ), we conclude that the overall
complexity is ÕB(d6+d5τ +d4τ 2), or ÕB(d4τ 2) if d = O(τ), or ÕB(N6), where
N = max {d, τ}.

Now let us isolate, and compute the multiplicities, of the real roots of Ain ∈
Z[X], which is not necessarily square-free, with deg(Ain) = d and L (Ain) = τ .
We use the technique from [26] and compute the square-free part A of Ain using
Sturm-Habicht sequences in ÕB(d2τ). The bit size of A is L (A) = O(d + τ).
Using the CF algorithm we isolate the positive real roots of A and then, by
applying the map X 7→ −X, we isolate the negative real roots. Finally, using
the square-free factorization of Ain, which can be computed in ÕB(d2τ), it is
possible to find the multiplicities in ÕB(d3τ).

The previous discussion leads to the following theorem.

Theorem 11 Let A ∈ Z[X] (not necessarily square-free) such that deg(A) =
d > 2 and L (A) = τ . We can isolate the real roots of A, using CF, and
compute their multiplicities in expected time ÕB(d6+d4τ 2), or ÕB(N6), where
N = max {d, τ}, if Hypothesis 1 holds.

In order to work in the expected case, we assume that for random polynomials,
by considering a distribution on their coefficients, the real algebraic numbers
which are roots of these polynomials follow Hyp. 1. One way to formalize this
is as follows: The (complex) roots of the polynomials cluster uniformly around
(and very close to) the unit circle [29, 30, 31]. The density of the real parts of
the roots is a Lebesgue measurable function, if we consider the set of the real
parts as a set of real numbers, and thus Hyp. 1 holds [39].

For non square-free polynomials, instead of using Sturm-Habicht sequences
in order to compute to the square-free part of the polynomial and compute
the multiplicities, we may rely on Th. 5 and force the algorithm to compute
isolating intervals as small as the (theoretical) separation bound.
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4.3 Better complexity bounds

A closer look to the proof of Th. 9 reveals that in order to derive the number
of steps of the CF algorithm we do not depend on an interval that initially
contains all the real roots. Notice that this dependence is intrinsic for the
subdivision algorithms [22, 26]. This will allow us to improve the complexity
of the CF algorithm by spreading away the roots.

We consider the square-free polynomial A and we apply the homothetic trans-
formation X 7→ X/2ℓ(d+τ), where ℓ is a constant specified in the sequel. Notice
that in any case ℓ should be chosen such that to be an integer value. Besides
that, the algorithm is exactly the same as in Alg. 1. The transformed polyno-
mial, say C, has bit size O(τ + ℓd2 + ℓdτ) and its roots βj are the roots of A
multiplied by 2ℓ(d+τ), i.e.

βi = 2ℓ(d+τ) γi, (9)

where γi are the roots of A and 1 ≤ i ≤ d. Evidently it suffices to isolate the
real roots of C.

We will use the notation of the proof of Th. 9. Let k1 be the number roots
of C with positive real part and k2 those with negative real part. Notice that
k1 +k2 = d. Following the proof of Th. 9, see Eq. (6), the number of steps that
the CF algorithm must perform, besides the small number of shift operations
needed to compute partial quotients (see Sec. 4.1), in order to isolate the real
roots of C is

#(T ′) ≤
k1∑

i=1

ni +
k2∑

j=1

nj

≤ 2k1 −
1

2

k1∑

i=1

lg |βi − βci
|+ 2k2 −

1

2

k2∑

j=1

lg |βj − βcj
|

≤ 2d− 1

2
lg

d∏

i=1

|βi − βci
|.

(10)

If we consider the product term of the previous equation and (9) then

d∏

i=1

|βi − βci
| = 2ℓd2+ℓdτ

d∏

i=1

|γi − γci
|.
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Combining the previous equation with (7) we have

− lg
∏d

i=1 |βi − βci
| ≤ d2 + (3d− 2)τ − 2d− 2 lg d + 3d lg d− ℓ (d2 + dτ)

≤ 4d2 + 4dτ + 3d lg d− ℓ (d2 + dτ) .

(11)
We want to specify the value of ℓ in such way so as to eliminate the quantities
of the form d2 and dτ from Eq. (11). By elementary calculus we see that ℓ = 4.

Using this result and combining Eq. (10) and (11), we conclude that #(T ) =
O(d lg d) = Õ(d). If we substitute this value of #(T ) in the proof of Th. 11,
presented in Sec. 4.2, recalling that a small number of shift operations is needed
on order to compute the partial quotients (Sec. 4.1) and taking into account
that the bit size of C is O(τ + ℓd2 + ℓdτ), then we conclude the following.

Corollary 12 The expected complexity of this variant of the CF algorithm is
ÕB(d3τ), if Hypothesis 1 holds.

This variant of the CF algorithm is of small practical interest, as our pre-
liminary experiments also indicate, since the transformation X 7→ X/2ℓ(d+τ)

increases the bit size a lot. However, to the best of our knowledge this is the
first complexity bound, even using average case analysis, that matches the
complexity bounds of the numerical algorithms [45, 46, 50].

5 Implementation and experiments

We have implemented the cf algorithm in synaps [44], which is a C++ library
for symbolic-numeric computations that provides data-structures, classes and
operations for univariate and multivariate polynomials, vector and matrices.
Our code is already included 5 in the current version of synaps. Our imple-
mentation uses (8) for computing the positive lower bound. There are also
implementations by B. Mourrain and V. Sharma that use other positive lower
bounds, e.g. [5, 28]. The implementation is based on the integer arithmetic
of gmp 6 (v. 4.1.4) and uses only transformations of the form X 7→ 2βX and
X 7→ X+1 to benefit from the fast implementations that are available in gmp.
However, our implementation follows the generic programming paradigm, thus
any library that provides arbitrary precision integer arithmetic can be used
instead of gmp.

We restrict ourselves to square-free polynomials of degree ∈ {100, 200, . . . , 1000}.
Following [49], the first class of experiments concerns well-known ill-conditioned

5 The reader may refer to the file synaps/usolve/bin/solve cf.cc
6 www.swox.com/gmp/
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polynomials namely: Laguerre (L), first (C1) and second (C2) kind Chebyshev,
and Wilkinson (W) polynomials. We also consider Mignotte (M1) polynomials
Xd−2(101X−1)2, that have 4 real roots but two of them very close together,

and a product
(
Xd − 2(101X − 1)2

) (
Xd − 2((101 + 1

101
)X − 1)2

)
of two such

polynomials (M2) that has 8 real roots. Finally, we consider polynomials with
random coefficients (R1), and monic polynomials with random coefficients
(R2) in the range [-1000, 1000], produced by maple, using 101 as a seed for
the pseudo-random number generator.

We performed experiments against rs which seems to be one of the fastest
available software for exact real root isolation. It implements a subdivision-
based algorithm using Descartes’ rule of sign with several optimizations and
symbolic-numeric techniques [49]. Note that we had to use rs through its
maple interface. Timings were reported by its internal function rs time().

We also test aberth [10, 11], which a numerical solver with unknown (bit)
complexity but very efficient in practice, available through synaps. In partic-
ular, it uses multi-precision floats and provides a floating-point approximation
of all the complex roots. Since aberth is a numerical solver it approximates
the roots up to a desired accuracy. Even though we tuned aberth to search
for roots on the real axis only, unfortunately, we were not always able to tune
its behavior in order to produce the correct number of real roots in all the
cases, i.e. to specify the output precision.

In synaps, there are several univariate solvers, based on Sturm sequences,
Descartes’ rule of sign, Bernstein basis, etc (see [26] for details and experi-
mental results). cf is clearly faster than all these solvers, therefore we do not
report on these experiments. In particular, the large inputs used here are not
tractable by the Sturm-sequence solver in synaps, and this is also the case
for another implementation of the Sturm-sequence solver in core 7 .

So, in Table 1, we report experiments with cf, rs, aberth, where the timings
are in seconds. The asterisk (*) denotes that the computation did not finish
after 12000s. The experiments were performed on a 2.6 GHz Pentium with 1
GB RAM, and our code was compiled using g++ 3.3 with option -O3.

For (M1) and (M2), there are rational numbers with a very simple continued
fraction expansion that isolate the real roots which are close. These experi-
ments are extremely hard for rs. On (M1), aberth is the fastest and correctly
computes all real roots, but on (M2), which has 4 real roots close together, it
is slower than cf. cf is advantageous on (W) since, as soon as a real root is
found, transformations of the form X 7→ X +1 rapidly produce the other real
roots. We were not able to tune aberth on (W). For (L), (C1) and (C2), cf

7 cs.nyu.edu/exact/core pages/
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100 200 300 400 500 600 700 800 900 1000

L

cf 0.27 2.24 9.14 25.27 55.86 110.13 214.99 407.09 774.22 1376.34

rs 0.65 3.65 13.06 35.23 77.21 151.17 283.43 527.42 885.86 1387.45

#roots 100 200 300 400 500 600 700 800 900 1000

C1

cf 0.11 0.85 3.16 8.61 19.67 38.23 77.75 139.18 247.11 414.51

rs 0.21 1.36 3.80 10.02 23.15 46.02 82.01 150.01 269.35 458.67

#roots 100 200 300 400 500 600 700 800 900 1000

C2

cf 0.11 0.77 3.14 8.20 19.28 38.58 73.59 133.52 233.48 386.61

rs 0.23 1.48 3.80 9.84 23.28 46.34 83.58 146.04 273.00 452.77

#roots 100 200 300 400 500 600 700 800 900 1000

W

cf 0.11 0.76 2.54 6.09 12.07 21.43 34.52 53.35 81.88 120.21

rs 0.09 0.59 2.25 6.34 14.62 29.82 55.47 104.56 179.23 298.45

#roots 100 200 300 400 500 600 700 800 900 1000

M1

cf 0.02 0.08 0.21 0.42 0.73 1.19 1.84 2.75 4.16 6.22

rs 7.83 287.27 1936.48 7328.86 * * * * * *

aberth 0.01 0.04 0.07 0.11 0.12 0.26 0.43 0.37 0.47 0.90

#roots 4 4 4 4 4 4 4 4 4 4

M2

cf 0.08 0.43 1.10 2.78 4.71 8.67 18.26 25.28 40.15 60.10

rs 1.24 144.64 1036.785 4278.275 12743.79 * * * * *

#roots 8 8 8 8 8 8 8 8 8 8

R1

cf 0.001 0.04 0.07 0.33 0.06 0.37 0.66 0.76 1.03 1.77

rs 0.026 0.09 0.11 0.68 0.22 0.89 0.95 0.69 1.55 2.09

aberth 0.02 0.03 0.07 0.14 0.21 0.31 0.44 0.51 0.64 0.80

#roots 4 4 2 6 2 4 4 2 4 4

R2

cf 0.01 0.04 0.08 0.36 0.14 0.38 0.74 0.77 1.24 1.42

rs 0.05 0.23 0.47 1.18 0.81 1.64 2.68 3.02 4.02 4.88

aberth 0.01 0.05 0.08 0.14 0.23 0.33 0.44 0.55 0.67 0.83

#roots 4 4 4 6 4 4 6 4 6 4

Table 1
Experimental results

is clearly faster than rs, while we were not able to appropriately tune aberth

to produce the correct number of real roots. The polynomials in (R1) and (R2)
have few and well separated real roots, thus the semi-numerical techniques in
rs are very effective. To be more specific, rs isolates all roots using only 63 bits
of accuracy (this information was extracted using the function rs verbose(

1)). However, even in this case, cf is comparable to rs. aberth is even faster
on these experiments (see Table 1). We have to mention that, as F. Rouillier
pointed out to us, rs can about 30% faster in (L), (C1) and (C2) if we use it
with the (non-default) option precision=0.

We also tested a univariate polynomial that appears in the Voronoi diagram
of ellipses [25]. The polynomial has degree 184, coefficient bit size 903, and 8
real roots. cf solves it in 0.12s, rs in 0.3s and aberth in 1.7s. Finally, for
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polynomials of the form (Xd− 2(a X − 1)2)(Xd− (a X − 1)2) [22], which have
three real roots very close to 1

a
, the behavior of the CF solver is similar to that

of the subdivision-based algorithms.

In short, CF is complete, simple to use and is at least as efficient as the state
of the art.

6 Future work

The first thing that comes in mind is to drop the dependence of the analysis
on Hyp. 1. This conjecture is one the most important open problems in the
theory of continued fractions.

Th. 5 implies that Descartes’ rule of sign can be used for non square-free
polynomials. Of course the obstacle is that we have to perform iterations up
to the theoretical separation bound, which is a very bad overestimation of the
actual one.

As for the implementation of the CF algorithm, there are several ways that
should improve our solver. First, instead of exact integer arithmetic we may
use semi-numerical techniques like those in rs [49]. These techniques may be
based on interval arithmetic.

Last, but not least, the expected complexity bounds for the CF algorithm
that we present in this paper motivate questions about similar bounds for the
subdivision-based algorithms. We conjecture that the expected complexity of
the subdivision-based solvers, i.e. Descartes/Bernstein and Sturm is ÕB(N5)
if not ÕB(N4). For some preliminaries results the reader may refer to [24].
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