
Computing real roots of real polynomials . . .
. . . and now for real!

Alexander Kobel
Max-Planck-Institut

für Informatik
Universität des Saarlandes

Campus E1 4
66123 Saarbrücken, Germany

alexander.kobel
@mpi-inf.mpg.de

Fabrice Rouillier
INRIA Paris

Institut de Mathématiques de
Jussieu Paris Rive Gauche

CNRS UMR 7586
Université P. & M. Curie

4 place Jussieu 75252 Paris
Cedex 05, France

Fabrice.Rouillier@inria.fr

Michael Sagraloff
Max-Planck-Institut

für Informatik
Campus E1 4

66123 Saarbrücken, Germany
michael.sagraloff
@mpi-inf.mpg.de

ABSTRACT
Very recent work introduces an asymptotically fast subdi-
vision algorithm, denoted ANewDsc, for isolating the real
roots of a univariate real polynomial. The method combines
Descartes’ Rule of Signs to test intervals for the existence
of roots, Newton iteration to speed up convergence against
clusters of roots, and approximate computation to decrease
the required precision. It achieves record bounds on the
worst-case complexity for the considered problem, matching
the complexity of Pan’s method for computing all complex
roots and improving upon the complexity of other subdivi-
sion methods by several magnitudes.

In the article at hand, we report on an implementation of
ANewDsc on top of the RS root isolator. RS is a highly
efficient realization of the classical Descartes method and cur-
rently serves as the default real root solver in Maple. We de-
scribe crucial design changes within ANewDsc and RS that
led to a high-performance implementation without harming
the theoretical complexity of the underlying algorithm.

With an excerpt of our collection of benchmarks, avail-
able at http://anewdsc.mpi-inf.mpg.de/, we illustrate that
the theoretical gain in performance of ANewDsc over other
subdivision methods also transfers into practice. These exper-
iments also show that our new implementation outperforms
both RS and mature competitors by magnitudes for noto-
riously hard instances with clustered roots. For all other
instances, we avoid almost any overhead by integrating ad-
ditional optimizations and heuristics.

Keywords
real roots; univariate polynomials; root finding; root iso-
lation; Newton’s method; Descartes method; approximate
arithmetic; certified computation

Accepted for presentation at the 41st International Symposium on
Symbolic and Algebraic Computation (ISSAC), July 19–22, 2016,
Waterloo, Ontario, Canada.

c© 2016 Copyright held by the owner/author(s).

1. INTRODUCTION
Computing the real roots of a univariate polynomial is one
of the fundamental tasks in numerics and computer algebra,
and numerous methods have been proposed to solve this
problem. The leading general-purpose solvers in practice are
based on subdivision algorithms that rely on Descartes’ Rule
of Signs to test for the existence of roots in a certain interval.

The computation for an input polynomial P ∈ R[x] can be
considered as a binary tree where each node corresponds to
an interval I = (a, b) and a polynomial PI = (x+1)nP (ax+b

x+1
).

The number vI of sign changes in the coefficient sequence of
PI then exceeds the number of roots contained in I by an
even non-negative number. In the original algorithm [2], the
two children of a node are obtained by a simple bisection on
the interval and relative transformations on the polynomials,
which yields the polynomial PI . A node is a leaf if vI = 0
or vI = 1; in the first case, I contains no root, whereas,
in the latter case, the interval is isolating for a real root.
Considerable efforts have been taken to improve the worst-
case complexity of different variants of the Descartes method,
and to provide efficient implementations: different traversal
orders of the subdivision tree to optimize the memory us-
age [10], the use of interval arithmetic [8], new strategies to
optimize the main transformations [16], extensions to polyno-
mials with approximate coefficients [11, 5], and many others.

Nevertheless, most formulations suffer from at least one of
the following two deficiencies: First, the subdivision strate-
gies only achieve linear convergence against the roots. In
presence of clusters, those approaches require a large number
of subdivisions to separate the roots. Second, the algorithms
are designed for exact arithmetic on the coefficients of P . An
unguarded choice of the subdivision points can impose an
unnecessarily large precision demand when such an approach
is translated literally to arbitrary precision dyadic numbers.
Even worse, completeness is not guaranteed for polynomials
whose coefficients can only be approximated. For example,
consider the polynomial P (x) = (x− 1)(πx− e) with roots
at (exactly) 1 and e/π ≈ 0.865, and assume that its coef-
ficients are given as an oracle for arbitrarily good dyadic
approximations. In this setting, P (1) = 0 cannot be decided
without resorting to a symbolic simplification of the input,
which is beyond the means of the root isolation method. Like-
wise, the number of sign variations on the intervals (1− ε, 1)
and (1, 1 + ε) for any ε cannot be determined with approx-

1

http://anewdsc.mpi-inf.mpg.de/

imate arithmetic. Thus, once an interval is split at x = 1,
a straight-forward algorithm will request better and better
approximations of P from the oracle, but will not terminate.

Both shortcomings have been resolved in [19]: The pro-
posed algorithm ANewDsc combines the bisection strat-
egy with Newton iteration to achieve quadratic convergence
against clusters. Thus, long chains of intervals I with the
same vI are compressed to only logarithmic length (compared
to the length when considering bisection only). In addition,
intervals are split at admissible points, where the polynomial
takes a (relatively) large absolute value. This allows the preci-
sion demand of the computation to be kept small, improving
by an order of magnitude over previous approaches. Due
to the exclusive use of approximate arithmetic, the method
also applies to (square-free) polynomials with arbitrary real
coefficients. Both the number of subdivision steps and the
precision demand is optimal up to polylogarithmic factors,
and the bound on its bit complexity is comparable to the
record bound [12] that is implied by an algorithm based on
Pan’s near-optimal method [14] for approximate polynomial
factorization. We provide more specific bounds in Section 2.

Unfortunately, asymptotically fast algorithms are often
extremely hard to be implemented or do not exhibit their
theoretical performance in practice. The contribution of this
paper is to show that, for the problem of real root compu-
tation, we can bridge this gap between theory and practice.
We report on an implementation of ANewDsc on top of
the Descartes-based real root finder inside the RS library. It
preserves the key features of RS, which are a close-to-optimal
memory consumption and the intensive use of adaptive mul-
tiprecision interval arithmetic [15].

We present our design changes both to RS and within
ANewDsc that make it possible to achieve significant perfor-
mance gains on hard instances on the one hand and proven
complexity guarantees on the other hand without sacrific-
ing efficiency for small or intrinsically easy instances. The
analysis is supported by benchmark results that show that
ANewDsc can defy the leading general-purpose solvers for
real roots in their special domains, and outperforms the ex-
isting implementations on notoriously hard instances.

2. THE DESCARTES METHOD AND THE
ANEWDSC ALGORITHM

We briefly review the classical Descartes method [2] as well
as the algorithm ANewDsc as introduced in [19]. Given an
interval I = (a0, b0) ⊂ R and a polynomial

P (x) = pnx
n + pn−1x

n−1 + · · ·+ p1x+ p0 ∈ R[x], (1)

the Descartes method recursively subdivides I into equally
sized intervals until each subinterval I = (a, b) ⊂ I has either
been shown to contain no root or exactly one root of P . In
order to test an interval for the existence of a root of P , a
coordinate transformation x 7→ ax+b

x+1
is considered, which

maps R+ one-to-one onto the interval I. Then, Descartes’
Rule of Signs applied to the polynomial

PI(x) :=
∑n

i=0
pI,ix

i := (x+ 1)n · P
(ax+ b

x+ 1

)
(2)

states that the number of sign changes vI := var(P, I) :=
var(PI) in the coefficient sequence of PI exceeds the number
mI of roots (counted with multiplicity) of P in I by a non-
negative even integer. In other words, mI ≤ vI and mI ≡ vI
mod 2. In each step of the recursion within the Descartes

method, the number vI is computed. If vI = 0, the interval
I is discarded. If vI = 1, I is stored as isolating. Intervals
with vI > 1 are further subdivided into two equally sized sub-
intervals. In addition, it is checked whether the subdivision
point, that is the midpoint m(I) = a+b

2
of I, is a root of P .

Algorithm 1: Classical Descartes Method

Input: A polynomial P as in (1) and an interval I.

Reports: Disjoint isolating intervals for all roots of P in I.

• Initialize the list of active intervals to A := {I}.
• While A 6= ∅:
. Remove an arbitrary I = (a, b) from A.
. If vI = 0, discard I and continue.
. If vI = 1, report I and continue.
. Otherwise, add (a,m(I)) and (m(I), b) to A.

If P (m(I)) = 0, additionally report {m(I)}.

If the polynomial P contains only simple roots in I, the
Descartes method yields isolating intervals for all these roots;
otherwise, it converges towards the roots, but does not termi-
nate. If I is chosen large enough to contain all real roots, and
all these roots are simple, the algorithm isolates all real roots
of P . The proof for termination relies on the well known
One- and Two-Circle Theorems [4, 13], which provide lower
bounds on the width w(I) of any produced interval I.

Regarding the worst-case complexity of the above algo-
rithm, we focus, only for simplicity, on the so-called bench-
mark problem of computing all real roots of a square-free
polynomial P of degree n with integer coefficients of abso-
lute value less than 2τ . Nevertheless, we aim to stress the
fact that, for polynomials with arbitrary real coefficients,
more general bounds are known [18, 19], which are expressed
in terms of the separations and the absolute values of the
roots of P , thus being more adaptive and meaningful.

We denote by T the subdivision tree whose nodes are the
intervals I considered by the algorithm. The function var(·) is
sign diminishing, that is, for any disjoint subintervals I1 and
I2 of I, we have vI1 + vI2 ≤ vI ; e.g. see [4] for a proof. This
implies that T has width at most 2n, while the lower bound
on the width of the produced intervals implies that its height
is in O(τ+log σ−1

P), where σP is the minimum root separation
of P . Since log σ−1

P = Õ(nτ), the bound Õ(n2τ) on the total
size of T follows.1 A more refined argument [6, 4], which
takes into account the fact that

∑n
i=1 log σP (zi)

−1 = Õ(nτ),
even shows that |T | = Õ(nτ). The coefficients of the poly-
nomials PI have bitsize bounded by Õ(n2τ), hence the pre-
cision demand for exactly computing PI is also bounded by
Õ(n2τ). This yields the bound Õ(n3τ) for the bit complex-
ity of computing PI , even when using asymptotically fast
methods for polynomial arithmetic. We conclude that the
cost of the classical Descartes method is bounded by Õ(n4τ2)
bit operations. This matches the bound achieved by many
other popular subdivision algorithms for real root compu-
tation such as the continued fraction (CF) method [1, 20],
the Bolzano method [21], or the Sturm method [3]. We re-
mark that the Õ(n4τ2) upper bound on the bit complexity
is actually tight for the latter algorithms; see [6, 1, 3].

The main strengths of the Descartes method are its simplicity
and the fact that tree subdivision tree size and running time
adapt to the separation of the roots [6, 4, 18]. On well-
conditioned inputs, the performance is significantly better

1The tilde denotes that we omit polylogarithmic factors in n or τ .

2

than indicated by the worst-case bounds. Indeed, we observe
that, for many polynomials (e.g. random polynomials), the
size of the tree is only logarithmic in n, in which case the
precision demand does not exceed Õ(τ + n). In such cases,
the bit complexity is by several magnitudes smaller than the
worst case bound. However, despite its good behavior for
many instances, the method has two major shortcomings.

First, in order to determine the sign of the coefficients
of PI as well as the sign of P at the midpoint of I, exact
arithmetic is assumed. If the coefficients of P are integer
or rational, this is feasible, at the expensive of a precision
that exceeds the actual demand by one order of magnitude;
see Table 1 and [18, 19] for more details. However, if the
coefficients of P can only be approximated (e.g trigonomet-
ric expressions), then computing the sign of the coefficients
of PI is impossible in general. Another shortcoming is that
the classical subdivision strategies only achieve linear conver-
gence against the roots. For some inputs, this is not critical
as the separations of the roots are large and the subdivision
tree has small height. However, if roots appear in clusters,
numerous subdivision steps have to be performed in order
to separate distinct roots from each other, and there exist
polynomials2 for which the Descartes method produces a
sequence of intervals Ij of length Ω(nτ) with identical vIj .

subdivision rule and subdivision precision overall bit
model of computation tree size demand complexity

bisection, exact over Z/Q Õ(nτ) Õ(n2τ) Õ(n4τ2)
bisection, approximate Õ(nτ) Õ(nτ) Õ(n3τ2)
Newton, exact over Z/Q Õ(n) Õ(n2τ)∗ Õ(n3τ)

Newton, approximate Õ(n) Õ(nτ)† Õ(n3 + n2τ)

All mentioned bounds are tight for certain classes of inputs.
∗Amortized precision demand over the entire tree is only Õ(nτ).
†Amortized precision demand over the entire tree is only Õ(n+τ).

Table 1: worst-case complexity of variants of Descartes meth-
ods for polynomials in Z[x] with degree n and bitsize τ

In [19], the algorithm ANewDsc3 has been introduced. It
uses approximate arithmetic and an accelerated subdivision
strategy based on Newton’s iteration to address both of the
aforementioned shortcomings. We sketch the main ideas to
an extent as needed in the discussion of its implementation.
At some points, we simplified the presentation at the cost of
mathematical rigor by skipping some rather technical details.
In contrast, our implementation takes into account all details,
thus being certified and complete.

ANewDsc is similar to the classical Descartes method in
the sense that it recursively subdivides a given interval I and
that it uses a predicate based on Descartes’ Rule of Signs
to test for roots. However, it is tailored to rely solely on
approximate computation. For this, ANewDsc uses the so
called “01-Test”,4 that can be evaluated using approximate
arithmetic only. Similar to the original Descartes test, a call
of the predicate on an interval I returns a value tI ∈ {0, 1, ∗}
2As an example, consider the Mignotte-like polynomials from
Table 2 having two real roots with pairwise distance 2−Ω(nτ).
3The algorithm is an approximate arithmetic variant of the algo-
rithm NewDsc from [17], which exclusively uses exact arithmetic.
The acronym ANewDsc should be read as “A New Descartes” or,
alternatively, as “Approximate Arithmetic Newton-Descartes.”
4The 01-Test is split into two separate subroutines. Both are
modified variants of the classical sign variation tests, where it is
checked whether var(P, J) = 0 or var(P, J) = 1 for some inter-
vals J . For details and proofs regarding the 01-Test, we refer the
reader to [19, Sec. 2.4].

Algorithm 2: Find Admissible Point

Input: Polynomial P as in (1) and a multipoint m[ε;N].

Output: Admissible point m∗ ∈ m[ε;N].

• For ρ = 2, 4, 8, . . . :
. For all mi ∈ m[ε;N], compute approximations ṽi

of vi := P (mi) with |ṽi − vi| < 2−ρ.
. Determine a point mi0 = mi that maximizes |ṽi|.
. If |ṽi0 | > 2−ρ+2, return m∗ := mi0 .

with the following guarantees: If tI = 0, then I contains no
root of P ; if tI = 1, then I isolates a simple root of P ; and
if tI = ∗, no conclusion shall be drawn about the number
of roots of P in I. We remark that the 01-Test is stronger
than the classical sign variation test in the sense that vI = 0
(or 1) implies that the 01-Test returns 0 (or 1), too.

The precision demand of the 01-Test on (a, b) is bounded
by Õ(n + n log |a| + n log |b| + log |P (a)|−1 + log |P (b)|−1 +
log ‖P‖∞)) bits.5 Hence, we strive to choose boundary points
a and b where the value of |P | is not too small. This is realized
by an additional layer on the subdivision scheme. Instead of
choosing a fixed subdivision point m (in the classical method,
the midpoint m(I) of an interval I) in each step, ANewDsc
chooses a nearby, so-called admissible point m∗, where |P |
becomes large. More precisely, for a point m, a positive
integer N with N ≥ n, and a positive value ε, we call a point

m∗ ∈ m[ε;N] := {mi := m+ i · ε for i = −dN
2
e, . . . , dN

2
e}

admissible with respect to the multipoint m[ε;N] (or just
admissible) if |P (m∗)| ≥ 1

4
·maxi |P (mi)|. Algorithm 2 com-

putes such a point using only approximate arithmetic.6 In-
deed, since m[ε;N] contains at least one point that has dis-
tance ε/2 or more to all roots of P , we have maxi |P (mi)| > 0,
and thus the algorithm terminates with a precision ρ that is
bounded by 2 · (1 + log max(1, (maxi |P (mi)|)−1)).

In [19], we always choose N = n. Using approximate
multipoint evaluation [9], this guarantees that the cost for
the approximate evaluations of P at all points mi does not
considerably exceed the cost for the evaluation at only one
point. In addition, in each step, ε is chosen small enough (e.g.,
ε ≈ w(I)/4 in a bisection step with m = m(I)) such that
the size and the structure of the subdivision tree induced by
ANewDsc does not change (in the worst case) when passing
from an admissible point m∗ ∈ m[ε;N] to an arbitrary point
in the interval [m− dN

2
eε,m+ dN

2
eε]. In fact, choosing m∗

to be admissible only affects the needed precision demand in
each iteration but not the size of the subdivision tree.

For simplicity, we will not further specify ε (norN) through-
out the following considerations and just assume that ε is
chosen small enough; for details, see [19]. In this context, we
just say that a point m∗ is admissible for m. With a suitable
choice of the parameters, subdivision on admissible points
reduces the worst-case precision demand of the Descartes
method to Õ(nτ) in the integer setting, improving upon the
classical approach by one order of magnitude. Besides, it
allows to process inputs where the coefficients can only be
approximated as we avoid splitting on roots without verifying
that P is zero at any point.

5We remark that the precise bound on the precision demand is
slightly more complicated; see [19, Sec. 2.4] for details.
6Note that in [19, p. 54], there is a typo in the Admissible Point
algorithm: repeat . . . until (loop (2)) should read repeat . . . while.
However, the proof of [19, Thm. 5 (b)] uses the correct statement.

3

In order to overcome the second shortcoming of the Des-
cartes method, ANewDsc combines bisection with Newton
iteration. For this, it uses a trial and error approach, called
“Newton-Test”, to speed up convergence towards clusters of
roots. In each iteration, the Newton-Test aims to replace
an interval I = (a, b) by some sub-interval I ′ = (a′, b′) ⊂ I
of width w(I ′) ≈ w(I)/NI such that I ′ contains all roots of
P in I. Here, NI denotes a parameter that corresponds to
the actual speed of convergence. Initially, NI is set to 4. If
the Newton step succeeds, we define NI′ := N2

I . In case of
failure, we fall back to bisection, that is, I is subdivided into
two (almost) equally-sized subintervals I` and Ir, and we
define NI` := NIr := max(4,

√
NI). In [19, Sec. 3.2], it has

been shown that the Newton step succeeds under guarantee if
there exists a sufficiently small cluster C of roots of P that is
centered at some point in I and is sufficiently well-separated
from the remaining roots of P .

The method runs in three steps. In the first step, it es-
timates the multiplicity k of such a cluster.7 Then, in the
second step, it performs a corresponding Newton iteration
to obtain a λ with |λ− zi| < w(I)/2NI for each root zi ∈ C.
Finally, the method aims to validate the approximation λ of
the cluster C. For this, we apply the 01-Test to the inter-
vals (a, a′) and (b, b′), where I ′ = (a′, b′) ⊂ I is an interval of
width w(I ′) ≈ w(I)/NI centered at λ. If the latter test yields
the value 0 for both intervals (a, a′) and (b, b′), it follows that
I ′ contains all roots that are contained in I, in which case we
say that the Newton-Test succeeds. Notice that, even in case
of success, we may not conclude that there exists a cluster of
k roots, however, we may conclude that I may be replaced
by I ′ without discarding any root.

It should further be mentioned that the Newton-Test also
integrates a so-called Boundary-Test, which, by default, al-
ways checks whether one of the two intervals (a, a+w(I)/NI)
or (b−w(I)/NI , b) contains all roots that are contained in I.
Again, for this, the 01-Test is applied to (a + w(I)/NI , b)
and (a, b− w(I)/NI), respectively; see Algorithm 4 and [19,
Sec. 3.2] for more details.

In [19], the bit complexity bit complexity as well as the
bounds on the number of iterations and the precision de-
mand of ANewDsc are stated in terms of the degree of P
and values that exclusively depend on the roots zi of the
polynomial, such as the product of the absolute values of all
roots beyond the unit disk or the product of the pairwise dis-
tances between any two roots. Those bounds are both more
adaptive to the intrinsic complexity of the problem and apply
for inputs with approximable coefficients. For brevity, we
only restrict to the benchmark problem here: The length of a
sequence of intervals Ij with invariant var(P, Ij) is now upper
bounded by Õ(log(nτ)) compared to Õ(nτ) for the classical
Descartes method. This is due to the fact that the Newton-
Test succeeds and achieves quadratic convergence for all but
Õ(log(nτ)) intervals. As a consequence, the overall size of the
subdivision tree is bounded by O(vI ·log(nτ)) = O(n log(nτ)),
which is near-optimal; see also [19, Theorems 27–29]. The
bit complexity of the algorithm is bounded by Õ(n3 + n2τ),
which is by three magnitudes better than the bound for
the Descartes method (also see Table 1) and comparable to
the best bound known [12, 7] for the benchmark problem
as achieved by an algorithm based on Pan’s near-optimal

7Algorithm 3 only computes some rational value k̃. Under the
assumption that a cluster C as above exists, we have k ≈ k̃ and,
in particular, k equals the integer that is closest to k̃.

Algorithm 3: Newton-Test

Input: A polynomial P as in (1), an interval I = (a, b), and
an NI ∈ N of the form NI = 22l with l ∈ N≥1.

Output: false or an interval I ′ ⊂ I, with NIw(I′)
w(I)

∈ [1
8
, 1],

that contains all roots of P in I.

• For j ∈ {1, 2, 3}, let ξj := a+ j
4
· w(I),

compute admissible points ξ∗j for ξj and
the Newton correction terms vj := P (ξ∗j)/P ′(ξ∗j).
• For all pairs i, j ∈ {1, 2, 3} with i < j:

. Compute approximations λ̃i,j of

λi,j := ξ∗i + k̃ · vi, where k̃ := (ξ∗j − ξ∗i)/(vi − vj),
with |λ̃i,j − λi,j | ≤ 1/32NI .

. If λ̃i,j 6∈ [a, b], discard (i, j). Otherwise, define

`i,j := b(λ̃i,j − a) · 4NI/w(I)c ∈ {0, . . . , 4NI},
ai,j := a+ max{0, `i,j − 1} · w(I)/4NI , and
bi,j := a+ min{4NI , `i,j + 2} · w(I)/4NI .

If ai,j = a, set a∗i,j := a, and if bi,j = b, set b∗i,j := b.
Otherwise, compute admissible points a∗i,j and b∗i,j
for ai,j and bi,j .

. If the 01-Test returns 0 for both intervals (a, a∗i,j)
and (b∗i,j , b), return I ′ = (a∗i,j , b

∗
i,j).

Otherwise, discard the pair (i, j).
• Boundary test: If all pairs have been discarded,

compute admissible points m∗` and m∗r for
m` := a+ w(I)/2NI and mr := b− w(I)/2NI .
. If the 01-Test yields 0 for (m∗` , b), return (a,m∗`).
. If the 01-Test yields 0 for (a,m∗r), return (m∗r , b).
. Otherwise, return false.

This is a simplified version of Newton- and Boundary-Test

from [19]. For the sake of a concise presentation, some technical

details (e.g. concerning the precision management) are omitted.

method [14] for approximate polynomial factorization. The
bound is obtained by an amortized analysis of the cost at
each node in the subdivision tree. The cost for processing a
certain interval I is related to the maximum of all products
maxzi σP (zi) · |P ′(zi)|, where the zi’s range over all roots
in the one-circle region of I. In the worst-case, the cost at
a node is of size Õ(n2τ), whereas, in average, it is of size
Õ(n(n + τ)). The precision demand is upper bounded by
Õ(nτ) in the worst case and of size Õ(n+ τ) in average.

3. IMPLEMENTING ANEWDSC INSIDE RS
The RS library contains a generic framework [16] that allows
to instantiate several variants of the Descartes method. The
choices include several bisection variants as well as contin-
ued fraction-based subdivision. The default configuration,
which we will denote as “RS” throughout the following con-
siderations, achieves its high efficiency by a careful low-level
implementation of the bottleneck subroutines as well as a few
sophisticated and—at that time—innovative design choices.

RS uses a hybrid arithmetic strategy. Starting with a low
precision (of 63 bits), all predicates are evaluated in interval
arithmetic using MPFI [15]. Whenever a predicate cannot
be conclusively decided within the working precision, the
computation is interrupted and later resumed with a higher
precision. When it is conceivable that exact arithmetic is less
costly than interval arithmetic at high precision, a heuris-
tic can trigger exact computation; this facilitates further
optimizations like (virtual) deflation of exact dyadic roots.

4

Algorithm 4: ANEWDSC

Input: A polynomial P as in (1) and an interval I.

Reports: Disjoint isolating intervals for all roots of P in I.

• Initialize the list of active intervals to A := {(I, 4)}.
• While A 6= ∅:
. Remove an arbitrary (I,NI) with I = (a, b) from A.
. If the 01-Test on I returns 0, discard I and continue.
. If the 01-Test on I returns 1, report I and continue.
. Otherwise: Quadratic (or Newton) step

If the Newton-Test on P and (I,NI) returns
an interval I ′, add (I ′, N2

I) to A and continue.
. Otherwise: Linear (or bisection) step

Compute an admissible point m∗ for m(I) and
add (I ′, NI′) and (I ′′, NI′′) to A, where I ′ = (a,m∗),
I ′′ = (m∗, b), and NI′ := NI′′ := max(4,

√
NI).

The realization of the sign variation test in RS is adapted to
this interval setting: While we work with exact polynomials
f =

∑
fix

i in theory, the computations are executed on
coefficient-wise interval approximations [f] =

∑
[f]ix

i of f
such that fi ∈ [f]i for all i. In particular, the value of
var(f) is replaced by a (super-)set var([f]) = {v−, . . . , v+}
of possible sign variations for the family of polynomials in
[f], that is, var(g) ∈ var([f]) for all g ∈ [f]. In this model, a
sign variation test for a polynomial [f] succeeds if and only if
var([f]) = {0}, var([f]) = {1}, or 0, 1 /∈ var([f]). Otherwise,
the accuracy is not sufficient to decide the branching strategy
for the current interval, and the precision is increased. We
keep this classical test as a filter in ANewDsc; if it does
not succeed, we call the full 01-Test, which again uses the
interval sign variation computation as a primitive.

Another crucial difference between RS and the previous
variants of the Descartes method is the traversal of the sub-
division tree. In Collins’ and Akritas’ [2] formulation, the
subdivision tree is explored in a depth-first search strategy.
This traversal allows to obtain some of the intermediate poly-
nomials with comparatively little computational effort from
previous results, but comes at the expense of storing a po-
tentially very long list of active nodes. On the other hand,
Krandick’s variant [8] with breadth-first traversal is more
memory-efficient, but requires more expensive arithmetic op-
erations; see [16, Sec. 3]. The trade-off which proved optimal
for RS was a depth-first search traversal in a near-constant-
memory variant, oblivious of intermediate results. To keep
the arithmetic cost of the algorithm close to the optimum for
bisection methods, RS uses specifically tailored subroutines
for reconstructing the discarded intermediate polynomials.
They are supplemented by a custom garbage collector that
ensures that only an insignificant amount of time is spent
for memory management. For details of those design choices,
we refer to the original description of RS [16, Sec. 4].

RS is a promising basis for an implementation of ANewDsc
due to its high performance as a general-purpose solver and
the availability in Maple. Also, the extensive use of interval
arithmetic offers the flexibility to design a numerical root
solver for polynomials with irrational coefficients that can
be approximated arbitrarily well. However, to combine the
theoretical improvements of the new algorithm with the long-
evolved insights for a practical realization, modifications are
required on both ends. In this section, we will describe the
most crucial design decisions in this light.

3.1 Changes over the theoretical ANEWDSC

Random sampling of pseudo-admissible points.
A tight analysis of the theoretical worst-case bit complexity of
any variant of the Descartes method heavily relies on asymp-
totically fast algorithms for polynomial arithmetic. However,
in practice, many asymptotically fast methods are only ef-
fective for inputs larger than a threshold that is well beyond
what can realistically be handled with state-of-the-art solvers.
Until now, careful implementations of the naive algorithms
are more efficient except for artificial counterexamples.

The most prominent places where such tools are used in
ANewDsc are the basis transformations from (1) to (2) (so-
called Taylor shifts) and the approximate multipoint eval-
uations within the admissible point selections. With the
advanced methods, both subroutines require only a near-
linear number of arithmetic operations in the coefficient ring,
compared to quadratically many for naive approaches. The
Taylor shifts are intrinsic to any Descartes method (although
we will discuss a partial remedy for some situations at the
end of Section 3.2). But the multipoint evaluations in the
”Admissible Point” routine can be avoided: In our initial
description of ANewDsc, we choose an admissible point
m∗ ∈m := m[ε;n] such that |P (m∗)| ≥ 1

4
·maxmi∈m|P (mi)|.

For our implementation, we propose to consider the multi-
point M := m[ε

2λ
;n ·2λ] instead, which spans the same range

as m (i.e. the extremal points in m and M define the same
interval [m−dn

2
eε,m+dn

2
eε]) but contains 2λ times as many

points as m. Here, λ is a positive integer of size O(logn).
However, instead of choosing an admissible point in M we
choose a so-called pseudo-admissible point, where P is only
required to take an absolute value that is related to the cur-
rent working precision. For this, we randomly sample a point
mj from M and compute an approximation ṽj of vj = P (mj)
(via interval arithmetic) with |ṽj−vj | < 2−ρ. If |ṽj | > 2−ρ+2,
we keep mj . Otherwise, we double the precision ρ and choose
a new sample point; see also Algorithm 5.

Algorithm 5: Find Pseudo-Admissible Point

Input: A polynomial P (x) as in (1) and a multipoint
M := m[ε

2λ
; 2λn] with λ ∈ N≥2 and λ = O(logn).

Output: A point m′ ∈M with value P (m′) 6= 0.

• For ρ = 63, 127, 255, . . . :
. Pick a random mj among the points in M.
. Compute an approximation ṽj of vj = P (mj)

with |ṽj − vj | < 2−ρ (using interval arithmetic).
. If |ṽ′| > 2−ρ+2, return m′ := mj .

The following lemma guarantees that, with high probabil-
ity, we choose a point m′ ∈M for which |P (m′)| is not much
smaller than maxmi∈m|P (mi)|.

Lemma 1. Algorithm 5 returns a point m′ ∈M such that

log |P (m′)| = 2k ·O(n logn+ log max(1, (max
mi∈m

|P (mi)|)−1))

with probability 1− 2−kλ ≥ 1− 2−k.

Proof. Let M∗ ⊂M denote the subset consisting of all
points in M whose distance to all roots of P is at least ε ·2−λ.
Let m̄ ∈m be a point with |P (m̄)| = maxmi∈m|P (mi)|, and
define ρ0 := dlog max(1, |P (m̄)|−1)e. For any complex root

z of P and any point mj ∈M∗, we have |m̄−z||mj−z|
> 1

1+n2λ
>

5

2−λ−1−logn and, thus,
|P (mj)|
|P (m̄)| > 2−n(λ+1+logn). Suppose

that, in a certain iteration of Algorithm 5, we have ρ ≥ ρ0 +
n(λ+ 1 + log n) + 2. Then, it holds that 2−ρ+2 < |P (mj)| for
all mj ∈M∗; hence, the algorithm terminates if we pick such
an mj . Since M∗ contains at least 2λ(n+ 1)−2n points, the
probability of choosing a point from M∗ is at least 1−2−(λ−1).
Hence, with probability 1− 2−k(λ−1), we terminate with a ρ
of size 2k ·O(n log n+log max(1, (maxmi∈m|P (mi)|)−1)).

Our analysis shows that, in expectation, there might be an
increase in precision by an additive term of size O(n logn)
when choosing a pseudo-admissible point instead of an ad-
missible point; in practice, we observe that the increase in
precision is entirely negligible. We further remark that the
complexity bounds as derived in [19] are not affected, since
a term of size Õ(n) already appears in the bound on the
precision demand of the 01-Test. Yet, our implementation
only models the theoretical result in a Las-Vegas setting due
to the random choice of a pseudo-admissible point.

Heuristics to delay invocations of the Newton step.
The asymptotic cost of the calls to the Newton-Test is domi-
nated by the Taylor shift which is part of the sign-variation
test for any interval. However, in practice there is a no-
ticeable impact of unsuccessful Newton-Tests on the perfor-
mance due to the expensive 01-Tests for the siblings (a, a∗i,j)
and (b∗i,j , b) of the candidate intervals (a∗i,j , b

∗
i,j). Thus, we

strive for calling the Newton-Test only if it will succeed with
high likelihood; vice versa, in the generic situation of well-
distributed roots without any distinguished root clusters, as
little computation time as possible should be wasted.

We say that a linear step on an interval I to I ′ and I ′′ leads
to a proper split if var(P, I ′) and var(P, I ′′) are both non-zero.
In this case, Obreshkoff’s One-circle theorem [4, 13] asserts
that there is at least one root in the neighborhood of I ′′ that
is not part of a potential cluster within I ′, and the symmetric
argument holds for I ′′. There are two explanations for such
a situation: If the goal on the convergence speed was too
optimistic (that is, the value of NI was set too high), the
candidate interval in the Newton-Test might not comprise the
entire cluster of roots. In this case, a success of the Newton
step on I ′ and I ′′ with a coarser resolution NI′ = NI′′ =

√
NI

is not entirely unlikely. However, if NI = 4 was already at
the minimum, the roots near I ′ and I ′′ are well-separated
compared to the resolution NI , and an immediate success of
the Newton-Test would be an unexpected artifact.

We installed a heuristic to distinguish those situations and
inhibit Newton-Tests in the latter case. For each node I
in the subdivision tree, we keep track of the distance to
its closest ancestor J with NJ = 4 that lead to a proper
split. If this distance is smaller than logn, we immediately
process I with bisection8 and keep NI = 4. On intervals with
well-separated roots where we never achieve nor profit from
quadratic convergence, this strategy renders it likely that
there is never even an attempt to call a Newton-Test, and
the overhead of ANewDsc compared to the variant ADsc
without the Newton-Test is almost zero. On the other hand,
the size of the subdivision tree is increased by at most a
factor of size O(logn), and thus stays soft-linear in n and
polylogarithmic in τ in the worst case.

8In the terminology of [19], proper splits occur on a subset of the
special nodes of the subdivision tree, and we allow paths of dlogne
many ordinary nodes before further Newton-Tests.

3.2 Changes over the classical RS
Full caching instead of constant-memory version.
The default instantiations of RS use a near-constant-memory
strategy. None of the intermediate local polynomials are
cached, but are computed from the previously considered
node. In general, this means that larger round-off errors
are accumulated, and expensive recomputation from scratch
is potentially required more often. Yet, performance com-
parisons show a clear benefit of this approach due to the
drastically reduced costs for memory management and RS’
sophisticated way of performing incremental computations
between adjacent nodes in the subdivision tree [16, Sec. 4].

However, the fast transformations rely on certain struc-
tural properties of the subdivision tree: in a pure bisection
algorithm, all emerging intervals are of the form (c

2e
, c+1

2e
)

for some integers c and e. In this setting and with the strong
specification of the traversal order of the tree, a good portion
of the arithmetic operations for Taylor shifts can be achieved
by cheap bitshift and addition operations. In contrast, a
general Taylor shift requires noticeably more expensive mul-
tiplications of arbitrary precision interval values.

These relations between the intervals are lost when New-
ton steps are performed or the canonical dyadic subdivision
points need to be replaced by (pseudo-)admissible points.
Furthermore, optimizations such as the delayed Newton calls
are incompatible with strategies that keep only one interval in
memory at a time, because the behavior of the algorithm on
some interval is no longer independent of the neighborhood:
whether a quadratic convergence step is pursued becomes
conditional on the outcome of the 01-Test on its sibling.

Fortunately, using the Newton technique, long chains of
intervals with a unique descendant in the bisection tree are
compressed to only logarithmic height, thus shrinking the
entire tree by an order of magnitude in the worst-case and
even two orders of magnitude for some special instances (e.g.
sparse polynomials with clustered roots such as Mignotte
polynomials). In this light, the impact of the constant-
memory strategy is much less pronounced, and it is advisable
to switch back to the naive approach of caching all interme-
diate results. We stress that, without the Newton iteration,
the memory consumption in a depth-first traversal would be
prohibitive for particular examples with strongly clustered,
ill-separated roots such as Mignotte polynomials.

Degree truncation through partial Taylor shifts.
We can consider any univariate polynomial P (x) as a function
P (x) = pn ·

∏n
j=1(x − zj) in its (not necessarily distinct)

complex roots zj . When the domain of interest is restricted
to a small region in the complex plane, say, a disk D ⊂ C,
the relative influence of each root zj on P scales with the
distance of zj to the points x ∈ D. If there are only k � n
roots in D and all other roots are well-separated from D, the
distance to the remote roots is almost stable for all x ∈ D,
and P |D is dominated by the roots in D.

In this situation, the local behavior of P is captured in its
partial Taylor expansion around a point within D up to the
k-th term. Hence, an approximation of P by its truncated
Taylor expansion might suffice for computing isolating inter-
vals for the real roots. We consider this approach whenever
a Newton step succeeds and suggests the existence of a well-
separated cluster of k � n roots around an interval I. We
remark that the multiplicity guess k := round(k̃) is already

6

computed within the Newton-Test. To ensure correctness,
we conservatively take into account the truncation error as
the interval evaluation of the Lagrangian remainder term.

More precisely, whenever the inclusion-exclusion-predicates
of ANewDsc call for sign variation tests on some PI , we
work on an approximation for the intermediate polynomial
QI :=

∑n
i=0 qI,ix

i := P (a+ (b− a)x) on I = (a, b),

Q̃I(x) =
∑k−1

i=0
qI,ix

i + [r]I,kx
k, [r]I,k ⊃

P (k)(I)

k!
,

where the coefficient [r]I,k of the Lagrangian remainder is
evaluated on the entire interval I in conservative interval
arithmetic. The root exclusion test on the truncated poly-
nomial remains almost identical; however, we modify the
certificate for inclusion of a single root.

Lemma 2. Let P be a polynomial as in (1) and I = (a, b)

and Q̃I be as above. Define G̃I := (x + 1)k Q̃I((x + 1)−1)

and H̃I := (x+ 1)k−1 Q̃′I((x+ 1)−1).

1. If ṽI := var(G̃I) = {0}, then P has no root in I.9

2. If ṽI = {1} and, additionally, ṽ′I := var(H̃I) = {0},
then P has exactly one simple real root in I.

Proof. We consider the polynomials Q̃I , G̃I and H̃I si-
multaneously as polynomials with interval coefficients and
as the set of exact polynomials with coefficients contained
in the intervals. Assume that ṽI = 0, but P has a root
ξ = a + λ(b − a) ∈ I. By the Lagrange representation of
the truncation error in Taylor’s theorem, there exists a ξ ∈ I
such that the polynomial FI(x) :=

∑k−1
i=0 qI,ix

i + P (k)(ξ)
k!

xk

of degree k has a root at λ. Hence, Descartes’ Rule of Signs
asserts var((x + 1)k FI((x + 1)−1)) > 0. Since FI ∈ Q̃I , it

follows that (x+ 1)k FI((x+ 1)−1) ∈ G̃I because the trans-
formations in interval arithmetic overestimate the possible
values. This contradicts the assumption that ṽI = 0.

For the second part, an analogous argument on the deriva-
tive shows that P is strictly increasing or strictly decreasing
on I if ṽ′ = {0}. Since ṽI = {1}, we know that P takes
values of different sign at the endpoints of I; hence, P has
exactly one root in I.

If a 01-Test in the processing of a node is unsuccessful, we
usually double the working precision. However, if the local
polynomials are only partial Taylor expansions, the source
of the loss in accuracy may also stem from the truncation.
Hence, before increasing the working precision, we gradually
double the multiplicity guess k until we eventually compute
the full polynomial. This approach guarantees that, in the
worst case, after logn steps the heuristic falls back to the
theoretical model. Hence, even if the heuristic is unsuccessful,
the complexity increases at most by a factor of logn.

We observe that partial Taylor shifts give a tremendous
speedup for polynomials with tight clusters of low multipli-
city. In such situations, we can consider the technique as a
partial substitute for the current deficiency of asymptotically
fast Taylor shifts. For instances with clusters consisting of
constantly many roots, the expected speedup is linear in n:
if the heuristic applies, the local polynomials on each ac-
tive region in the subdivision tree have to computed up to
only constantly many coefficients of the Taylor series. This
prediction is accurately reflected in the benchmarks.

9Recall that var(·), called on an interval polynomial, returns a
(super-)set of the possible numbers of sign variations; see the
remarks about the use of interval arithmetic in RS in Section 3.

4. EXPERIMENTS
We present and discuss a short excerpt of our extensive
benchmark suite; the entire collection is available online at
http://anewdsc.mpi-inf.mpg.de/. The objective is to illus-
trate that the integration of ANewDsc into RS entails very
small overheads for instances with well-distributed roots and
shallow subdivision trees, but huge performance gains in
challenging situations with clustered roots.

The classical RS serves as a baseline in a configuration similar
to the one used in Maple, but without some crucial optimiza-
tions to improve comparability. In particular, we disabled
the hardware floating-point phase, which is not yet supported
for ANewDsc, as well as the heuristic for switching to ex-
act arithmetic that can improve performance, but destroys
the guarantees on the expected precision demand. Besides
the full-fledged ANewDsc (denoted as AND in the tables),
we also list the intermediate variant ADsc. It includes sub-
division on pseudo-admissible points and full caching, but
neither Newton iterations nor degree truncation.

We compare to three well-established competitors:
MPSolve (named MPS in the tables) is the leading complex

root solver. It is known to keep up with the most efficient real
root isolators even though it solves a more general problem.
Given our more modest goals, we restrict the region of inter-
est to the real line, and call MPSolve in its latest version 3.1.5
with unisolve -au -Gi -SR -Dr -Of -j1 -o1048576.

CF denotes the continued fraction-based variant of the
Descartes method available in Mathematica 10. We bypass
the high-level interface of the computer algebra system via
System‘Private‘RealRoots to eliminate the effect of prepro-
cessing stages that are applied by the usual RootIntervals
call (e.g. the detection and special handling of sparse poly-
nomials or simplifications for even or odd polynomials).

Finally, we compare against Carl Witty’s variant of Eigen-
willig’s bitstream Descartes method in Bernstein basis [5],
which constitutes the default real root isolator in the Sage
7.0 open-source computer algebra system. We invoke the al-
gorithm in the optimized variant for 64-bit architectures with
real_roots (f, skip_squarefree=True, wordsize=64).

All instances are passed as dense integer polynomials, filtered
in a preprocessing stage to factor out side effects of optimiza-
tions unrelated to the solver. It involves the trivial algebraic
simplification of even and odd polynomials, verification of
square-freeness and reduction to the primitive part. The
values in the tables are runtimes in seconds, measured on
a single run on the same machine. Degree and coefficient
bitsize are denoted by n and τ .

Polynomials of Mignotte type are classical benchmark in-
stances. Their ill-separated pair of roots at approximately
2−τ/2 ± 2−nτ/2 forces a huge subdivision depth in bisection
approaches. This behavior is mitigated by the quadratic
convergence in ANewDsc: The subdivision tree size shrinks
from approximately 33500 nodes for RS and ADsc to a mere
47 for ANewDsc for (n, τ) = (129, 512), and even an in-
stance with τ = 216 leads to a tree with only 65 nodes. For
such instances, CF presumably exhibits an almost optimal
subdivision tree due to the rational center of the cluster;
however, the performance is spoiled by the use of exact arith-
metic. The class of nested Mignotte polynomials, shown
around an irrational center in Table 3, shows the robustness
of ANewDsc both to the higher multiplicity 20 and the
irrational center of the cluster.

7

http://anewdsc.mpi-inf.mpg.de/

n τ MPS CF Sage RS ADsc AND

257

14

0.7 0.1 1.6 7.6 7.7 0.1
513 2.9 0.2 2.4 87.6 89.1 0.2

1025 13.8 1.1 4.8 >600 >600 0.7
2049 78.5 7.2 12.8 2.9
4097 486.3 67.6 85.8 11.2
8193 >600 224.3 >600 43.2

16385 >600 188.1

129

128 1.2 0.3 0.5 26.2 25.1 0.1
512 5.9 3.8 3.9 378.5 293.8 0.4

2048 43.4 78.4 >600 >600 >600 3.3
8192 274.7 >600 20.8

32768 >600 96.8
131072 503.0

Table 2: Mignotte: xn − ((2τ/2 − 1)x− 1)2

n τ MPS CF Sage RS ADsc AND

260

140

2.7 1.0 1.9 1.6 1.7 0.4
516 9.5 21.6 3.3 18.0 18.0 0.8

1028 67.8 565.0 >600 230.3 232.4 7.1
2052 283.6 >600 >600 >600 13.1
4100 >600 88.4
8196 394.0

260

160 3.1 1.4 0.3 2.2 2.3 0.9
640 5.8 14.9 call 20.8 19.2 0.9

2560 33.7 222.6 stack 301.2 254.0 3.7
10240 248.0 >600 over- >600 >600 31.4
40960 >600 flow 341.2

Table 3: nested Mignotte:
∏4
i=1

(
xn/4 − ((2τ/8 − 1)x2 − 1)2i

)
n τ MPS CF Sage RS ADsc AND

1024

1024

2.5 0.3 4.1 0.6 0.6 0.5
2048 9.8 0.9 8.4 1.6 1.7 1.7
4096 37.5 2.7 29.1 3.8 3.7 3.5
8192 159.4 22.1 183.5 36.0 36.3 36.5

16384 578.9 376.6 >600 275.1 280.9 279.0

Table 4: dense with uniformly random coefficients in (−2τ , 2τ)∩Z

n τ MPS CF Sage RS ADsc AND

256 506 4.7 34.1 1.6 18.2 19.1 1.1
512 762 25.9 456.9 3.7 107.7 110.4 3.0

1024 1274 207.5 >600 22.5 >600 >600 23.6
2048 2296 >600 >600 132.2
4096 4343 596.6

Table 5: clustered: f2 − 1 for f =
∑
i ai
(n
i

)1/2
xi/
√
i+ 1 with ai

drawn from a normal Gaussian distribution, rounded to Z[x]

Random polynomials have a low number (Θ(logn)) of
well-separated real roots; they require only low precision for
the isolation and induce flat subdivision trees. Hence, we
can expect no gain from the improvements in ANewDsc.
On the other hand, the experiments confirm that the en-
hancements incur almost no additional cost. We observe
similar overheads of low constant factors compared to RS
on other classes of polynomials with well-distributed roots,
such as Wilkinson polynomials with evenly spaced real roots,
different classes of orthogonal polynomials, or resultants of
random bivariate polynomials that arise in projection-based
polynomial system solving and the topology analysis of real
algebraic curves.

Finally, polynomials with normal Gaussian-distributed co-
efficients have a much higher number (Θ(

√
n)) of real roots.

By squaring and perturbing such inputs, we construct bench-
mark instances with many clusters of multiplicity two. We
find that ANewDsc quickly detects the clusters, succeeds in
the Newton steps, and computes the appropriate number of
terms in the partial Taylor shifts.

The benchmarks are performed on polynomials with ex-
act integer coefficients. Nevertheless, we emphasize that
ANewDsc can process inputs with arbitrary approximable,
possibly irrational coefficients. We observe that the perfor-
mance is unaffected if, for example, the coefficients of the
random instances (Tables 4 and 5) are drawn from a con-
tinuous distribution, or the coefficients of the Mignotte-like
polynomials are irrational numbers of comparable magnitude.

Acknowledgments. We thank Maplesoft for their sup-
port in the development of RS, Leonardo Robol (Katholieke
Universiteit Leuven) for his help and support on running
the development version of MPSolve and Adam Strzebonski
(Wolfram Research) for his instructions on how to control
the behavior of Mathematica’s RootIntervals function.

5. REFERENCES
[1] G. E. Collins. Continued fraction real root isolation using

the Hong bound. JSC, 2014.

[2] G. E. Collins & A. G. Akritas. Polynomial real root isolation
using Descartes’ Rule of Signs. In SYMSAC, pp. 272–275,
1976.

[3] Z. Du, V. Sharma & C. K. Yap. Amortized Bounds for Root
Isolation via Sturm Sequences. In SNC, pp. 113–129, 2007.

[4] A. Eigenwillig. Real Root Isolation for Exact and Approxi-
mate Polynomials Using Descartes’ Rule of Signs. PhD the-
sis, Saarland University, 2008.

[5] A. Eigenwillig et al. A Descartes algorithm for polynomials
with bit-stream coefficients. In CASC, pp. 138–149, 2005.

[6] A. Eigenwillig, V. Sharma & C. K. Yap. Almost tight com-
plexity bounds for the Descartes method. In ISSAC, pp. 151–
158, 2006.

[7] I. Z. Emiris, V. Y. Pan & E. P. Tsigaridas. Algebraic al-
gorithms. In Computing Handbook: Computer Science and
Software Engineering, ch. 10, pp. 1–30. CRC, 3rd ed., 2014.

[8] J. R. Johnson & W. Krandick. Polynomial real root isolation
using approximate arithmetic. In ISSAC, pp. 225–232, 1997.

[9] A. Kobel & M. Sagraloff. On the complexity of computing
with planar algebraic curves. J. Compl., 31(2):206–236, 2014.

[10] W. Krandick. Isolierung reeller Nullstellen von Polynomen.
In J. Herzberger, editor, Wissenschaftliches Rechnen, pp.
105–154. Akademie Verlag, Berlin, 1995.

[11] K. Mehlhorn & M. Sagraloff. A deterministic Descartes algo-
rithm for real polynomials. JSC, 46(1):70–90, 2011.

[12] K. Mehlhorn, M. Sagraloff & P. Wang. From approximate
factorization to root isolation with application to cylindrical
algebraic decomposition. JSC, 66:34–69, 2015.

[13] N. Obreshkoff. Zeros of Polynomials. Marina Drinov, Sofia,
2003. Translation of the Bulgarian original.

[14] V. Y. Pan. Univariate polynomials: Nearly optimal algo-
rithms for numerical factorization and root-finding. JSC,
33(5):701–733, 2002.

[15] N. Revol & F. Rouillier. Motivations for an arbitrary pre-
cision interval arithmetic and the MPFI library. Reliable
Computing, 11(4):275–290, 2005.

[16] F. Rouillier & P. Zimmermann. Efficient isolation of [a] poly-
nomial’s real roots. JCAM, 162:33–50, 2004.

[17] M. Sagraloff. When Newton meets Descartes: A simple and
fast algorithm to isolate the real roots of a polynomial. In
ISSAC, pp. 297–304, 2012.

[18] M. Sagraloff. On the complexity of the Descartes method
when using approximate arithmetic. JSC, 65(0):79–110, 2014.

[19] M. Sagraloff & K. Mehlhorn. Computing real roots of real
polynomials. JSC, 73:46–86, 2016.

[20] E. P. Tsigaridas. Improved bounds for the CF algorithm.
TCS, 479:120–126, 2013.

[21] C. K. Yap & M. Sagraloff. A simple but exact and efficient
algorithm for complex root isolation. In ISSAC, pp. 353–360,
2011.

8

	Abstract
	Introduction
	The Descartes Method and the ANewDsc Algorithm
	Implementing ANewDsc inside RS
	Changes over the theoretical ANewDsc
	Random sampling of pseudo-admissible points
	Heuristics to delay invocations of the Newton step

	Changes over the classical RS
	Full caching instead of constant-memory version
	Degree truncation through partial Taylor shifts

	Experiments
	References

