
Ref-indic: invert details only where they are worth it

Reference manual

Version 1.5

Hend Ben Ameur François Clément Pierre Weis

2017-11-26

1 Outline

Ref-indic, Refinement indicators, is an adaptive parameterization platform using refinement
indicators.

2 Description

The refinement indicator algorithm is suited for the estimation of a distributed parameter oc-
curring in a mathematical simulation model, typically a set of partial differential equations.
When the numerical simulation model must be solved on a fine grid, the refinement indicator
algorithm provides an adaptive parameterization of the saught parameter that avoids over-
parameterization difficulties. In each grid cell, the estimated parameter may be of dimension
greater than one, i.e. the algorithm is able to estimate several scalar distributed parameters.

Ref-indic implements a generic version of the refinement indicator algorithm that can dock
specific programs provided they conform to the generic algorithm API.

The API of Ref-indic requires four main functionalities (called tasks) for the user specific
program, it must be able:

• to initialize, i.e. to open all necessary data files, to perform all necessary preliminary
computation, and to return an initial coarse parameterization (giving a zone number
between 0 and the initial number of zones minus one for each cell of the fine grid);

• to compute the gradient on the fine grid for a given fine parameterization;

• to optimize the problem for a given coarse parameterization;

• and to finalize, i.e. to store the resulting coarse parameterization.

Given any such user specific program, the inversion platform automatically provides a
program that solves the corresponding user inverse problem using the refinement indicator
algorithm.

In its current implementation, the inversion platform can only build coarse parameteriza-
tions for a distributed parameter defined on a fine rectangular grid. From version 1.5+pl0,
the user has the possibility to specify masked cells in the fine rectangular grid that will be
ignored by the algorithm (with the use of the specific zone number -1 in the initial coarse

1

parameterization). This allows for the treatment of inverse problems defined on unstructured
meshes. The handling of both-way interpolations must be taken care of by the gradient com-
putation and optimization tasks. The masked cells must be the same for all components of
the parameter.

3 Installation of Ref-indic

See also the INSTALL file in the root directory of the distribution.

3.1 Requirements

You need OCaml version 4.01 or higher to build Ref-indic.
The OCaml image library Grimage, the polyglot Input/Output library Pio, the OCaml

user’s additional library Ulib, and the OCaml module Generator OCamlGen are also required
to build Ref-indic. They are provided, and their configuration, compilation, and installation
(in a private location) are fully automatic.

Configuration, compilation and installation uses Pph (Portable Project Handler) technol-
ogy. It is provided, and its use is fully automatic.

3.2 Installation instructions

To configure, build and install Ref-indic, type

./configure [-ird <installation root directory>]

make

make install # Note that you may need root privileges for that.

When called without the -ird option, the configure script computes the root directory
for the installation from the system default value, or from previous run of the same script.

Other options for the configuration phase may be accessible, type

./configure -help

To remove all files installed by make install, all files built by make, and all files created
by ./configure, respectively type

make uninstall # Note that you may also need root privileges for that.

make clean

./unconfigure

To uninstall all versions of Ref-indic, type

make uninstall-all-versions # Note that you may also need root privileges

for that.

2

4 Examples

Examples are provided in the example directory. They are all configured to run the inversion
platform in interactive mode. Thus, it is best to run them separately in each sub-directory
(see each dedicated README file):

• identity (OCaml and Fortran implementations);

• transmissivity (Fortran implementation);

• hydrogeology (Fortran implementation).

To configure (set up and compile), and run examples of Ref-indic, respectively type

make configure-example

make example

To remove all files created when running the examples, and those built when configuring
them, respectively type

make clean-example

make unconfigure-example

Note that all examples do not need that Ref-indic is installed to run properly.

5 Support

Please send bug reports to refinement-bugs@inria.fr, comments to refinement-devel@inria.fr,
and contact the user community at refinement-users@inria.fr.

6 License

Ref-indic is free software distributed under the 3-clause BSD license. See the LICENSE file for
details.

7 Acknowledgements

The algorithm implemented in Ref-indic comes from papers co-written with Guy Chavent.
Ref-indic is entirely written in OCaml.

3

8 What is adaptive parameterization?

Ref-indic implements the adaptive parameterization algorithm using refinement indicators to
solve inverse problems set as minimization problems of the form

argmin
p

J(p)
def
=

1

2
‖d−F(p)‖2,

where F models the cause-to-effect relation from parameter p to measures d (it is the function
to invert). Typically, computing measures F(p) for some parameter p involves the resolution
of a set of PDEs depending on the distributed parameter p (e.g., a function of the space
variable).

Parameter p is searched for under the form p = Pm where P is a piecewise constant pa-
rameterization operator splitting the domain of function p into a given number of—constant—
pieces; m is called coarse parameter (one value per piece), and in contrast, p is now called
fine parameter (one value per point). Piecewise constant parameterization operators are fully
and uniquely defined by the choice of a partition of the space domain (with no empty part),
hence the identification of partitions and parameterization operators.

To avoid over-parameterization problems, pieces are progressively split one at a time in
an optimal manner to build an optimal sequence of parameterization operators (Pn)n=1,2,...

where each Pn is associated with a partition into n pieces. Hence the name “adaptive param-
eterization algorithm”.

The approach is efficient for inverse problems in which modeling operator F is almost
linear with respect to low frequency contents of the parameter p, and may become more and
more nonlinear as the frequency contents increase. It is not suited at all to the case where
low frequencies of the unknown parameter are related to a highly nonlinear behavior of the
model, as for seismic inversion.

9 Algorithmic details

Input data are a dimension management (Vector, or Best component only), a refinement
strategy (Overall best, or Best in a family), and an initial vector partition P1. An user-
supplied external program provides the following functions:

optim : P 7−→ (m⋆, J⋆) = (argmin
m

J(Pm), J(Pm⋆)), grad : p′ 7−→ ∇pJ(p
′).

For Vector dimension management, all components are always subject to the same scalar
partition. For Best component only dimension management, different components may be
subject to different scalar partitions.

A cutting cP splits some part P of some partition P into nonempty disjoint subparts P+

and P
−.

Initialization

0. Compute optimal parameter associated with initial vector partition P1,

(m1, J1) = optim(P1).

Iterations For n ≥ 1, until stopping criterion is satisfied, do:

4

1. Compute fine gradient, gn = grad(Pnmn).

2a. Compute scalar first order indicator for all scalar cuttings in all parts for all com-
ponents,

∀k, ∀P ∈ Pk
n , ∀cP = (P+,P−) ∈ CP, IkcP =

∣

∣

∣

∣

∣

∣

∑

i∈P+

(gkn)i −
∑

i∈P−

(gkn)i

∣

∣

∣

∣

∣

∣

,

2b. For Vector dimension management, compute vector first order indicator for all
vector cuttings in all parts,

∀P ∈ Pn, ∀cP ∈ CP, IcP = ‖(IkcP)k‖q.

With the refinement strategy Overall best, we have to take q = ∞ when the
dimension of the parameter is greater than 1.

3. Select best candidate cuttings (highest first order indicators),
Vector: C⋆ ⊂

⋃

P∈Pn
CP, Best component only: C⋆ ⊂

⋃

k

⋃

P∈Pk
n
CP.

4. Compute exact indicator for all selected cuttings,

∀c⋆ ∈ C⋆, (mc⋆ , Jc⋆) = optim(Pc⋆).

5. Pick best selected cutting (lowest exact indicator): copt = argminc⋆ Jc⋆

(Pn+1,mn+1, Jn+1) = (Pcopt ,mcopt , Jcopt).

References

[1] H. Ben Ameur, G. Chavent, F. Clément, and P. Weis. Image segmentation with multidi-
mensional refinement indicators. Inverse Problems in Science and Engineering, 19(5):577–
597, 2011. Special Issue: Proceedings of the 5th Internat. Conf. on Inverse Problems:
Modeling and Simulation, May 24th–29th, 2010, held in Antalya, Turkey.

[2] H. Ben Ameur, F. Clément, P. Weis, and G. Chavent. The multidimensional refinement
indicators algorithm for optimal parameterization. Journal of Inverse and Ill-Posed Prob-

lems, 16(2):107–126, 2008.

5

